1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 using namespace llvm;
23 using namespace llvm::ELF;
24 using namespace llvm::object;
25 using namespace llvm::sys::fs;
26 
27 using namespace lld;
28 using namespace lld::elf;
29 
30 template <class ELFT>
31 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
32   std::error_code EC;
33   ELFFile<ELFT> F(MB.getBuffer(), EC);
34   check(EC);
35   return F;
36 }
37 
38 template <class ELFT>
39 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
40     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {}
41 
42 template <class ELFT>
43 ELFKind ELFFileBase<ELFT>::getELFKind() {
44   if (ELFT::TargetEndianness == support::little)
45     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
46   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
47 }
48 
49 template <class ELFT>
50 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
51   if (!Symtab)
52     return Elf_Sym_Range(nullptr, nullptr);
53   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
54   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
55   uint32_t FirstNonLocal = Symtab->sh_info;
56   if (FirstNonLocal > NumSymbols)
57     fatal("invalid sh_info in symbol table");
58 
59   if (OnlyGlobals)
60     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
61   return makeArrayRef(Syms.begin(), Syms.end());
62 }
63 
64 template <class ELFT>
65 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
66   uint32_t I = Sym.st_shndx;
67   if (I == ELF::SHN_XINDEX)
68     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
69   if (I >= ELF::SHN_LORESERVE)
70     return 0;
71   return I;
72 }
73 
74 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
75   if (!Symtab)
76     return;
77   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
78 }
79 
80 template <class ELFT>
81 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
82     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
83 
84 template <class ELFT>
85 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
86   if (!this->Symtab)
87     return this->SymbolBodies;
88   uint32_t FirstNonLocal = this->Symtab->sh_info;
89   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
90 }
91 
92 template <class ELFT>
93 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
94   if (!this->Symtab)
95     return this->SymbolBodies;
96   uint32_t FirstNonLocal = this->Symtab->sh_info;
97   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
98 }
99 
100 template <class ELFT>
101 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
102   if (!this->Symtab)
103     return this->SymbolBodies;
104   return makeArrayRef(this->SymbolBodies).slice(1);
105 }
106 
107 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
108   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
109     return MipsOptions->Reginfo->ri_gp_value;
110   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
111     return MipsReginfo->Reginfo->ri_gp_value;
112   return 0;
113 }
114 
115 template <class ELFT>
116 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
117   // Read section and symbol tables.
118   initializeSections(ComdatGroups);
119   initializeSymbols();
120 }
121 
122 // Sections with SHT_GROUP and comdat bits define comdat section groups.
123 // They are identified and deduplicated by group name. This function
124 // returns a group name.
125 template <class ELFT>
126 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
127   const ELFFile<ELFT> &Obj = this->ELFObj;
128   uint32_t SymtabdSectionIndex = Sec.sh_link;
129   const Elf_Shdr *SymtabSec = check(Obj.getSection(SymtabdSectionIndex));
130   uint32_t SymIndex = Sec.sh_info;
131   const Elf_Sym *Sym = Obj.getSymbol(SymtabSec, SymIndex);
132   StringRef StringTable = check(Obj.getStringTableForSymtab(*SymtabSec));
133   return check(Sym->getName(StringTable));
134 }
135 
136 template <class ELFT>
137 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
138 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
139   const ELFFile<ELFT> &Obj = this->ELFObj;
140   ArrayRef<Elf_Word> Entries =
141       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
142   if (Entries.empty() || Entries[0] != GRP_COMDAT)
143     fatal("unsupported SHT_GROUP format");
144   return Entries.slice(1);
145 }
146 
147 template <class ELFT> static bool shouldMerge(const typename ELFT::Shdr &Sec) {
148   typedef typename ELFT::uint uintX_t;
149 
150   // We don't merge sections if -O0 (default is -O1). This makes sometimes
151   // the linker significantly faster, although the output will be bigger.
152   if (Config->Optimize == 0)
153     return false;
154 
155   uintX_t Flags = Sec.sh_flags;
156   if (!(Flags & SHF_MERGE))
157     return false;
158   if (Flags & SHF_WRITE)
159     fatal("writable SHF_MERGE sections are not supported");
160   uintX_t EntSize = Sec.sh_entsize;
161   if (!EntSize || Sec.sh_size % EntSize)
162     fatal("SHF_MERGE section size must be a multiple of sh_entsize");
163 
164   // Don't try to merge if the aligment is larger than the sh_entsize and this
165   // is not SHF_STRINGS.
166   //
167   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
168   // It would be equivalent for the producer of the .o to just set a larger
169   // sh_entsize.
170   if (Flags & SHF_STRINGS)
171     return true;
172 
173   if (Sec.sh_addralign > EntSize)
174     return false;
175 
176   return true;
177 }
178 
179 template <class ELFT>
180 void elf::ObjectFile<ELFT>::initializeSections(
181     DenseSet<StringRef> &ComdatGroups) {
182   uint64_t Size = this->ELFObj.getNumSections();
183   Sections.resize(Size);
184   unsigned I = -1;
185   const ELFFile<ELFT> &Obj = this->ELFObj;
186   for (const Elf_Shdr &Sec : Obj.sections()) {
187     ++I;
188     if (Sections[I] == &InputSection<ELFT>::Discarded)
189       continue;
190 
191     switch (Sec.sh_type) {
192     case SHT_GROUP:
193       Sections[I] = &InputSection<ELFT>::Discarded;
194       if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
195         continue;
196       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
197         if (SecIndex >= Size)
198           fatal("invalid section index in group");
199         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
200       }
201       break;
202     case SHT_SYMTAB:
203       this->Symtab = &Sec;
204       break;
205     case SHT_SYMTAB_SHNDX:
206       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
207       break;
208     case SHT_STRTAB:
209     case SHT_NULL:
210       break;
211     case SHT_RELA:
212     case SHT_REL: {
213       // This section contains relocation information.
214       // If -r is given, we do not interpret or apply relocation
215       // but just copy relocation sections to output.
216       if (Config->Relocatable) {
217         Sections[I] = new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
218         break;
219       }
220 
221       // Find the relocation target section and associate this
222       // section with it.
223       InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
224       if (!Target)
225         break;
226       if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
227         S->RelocSections.push_back(&Sec);
228         break;
229       }
230       if (auto *S = dyn_cast<EHInputSection<ELFT>>(Target)) {
231         if (S->RelocSection)
232           fatal("multiple relocation sections to .eh_frame are not supported");
233         S->RelocSection = &Sec;
234         break;
235       }
236       fatal("relocations pointing to SHF_MERGE are not supported");
237     }
238     default:
239       Sections[I] = createInputSection(Sec);
240     }
241   }
242 }
243 
244 template <class ELFT>
245 InputSectionBase<ELFT> *
246 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
247   uint32_t Idx = Sec.sh_info;
248   if (Idx >= Sections.size())
249     fatal("invalid relocated section index");
250   InputSectionBase<ELFT> *Target = Sections[Idx];
251 
252   // Strictly speaking, a relocation section must be included in the
253   // group of the section it relocates. However, LLVM 3.3 and earlier
254   // would fail to do so, so we gracefully handle that case.
255   if (Target == &InputSection<ELFT>::Discarded)
256     return nullptr;
257 
258   if (!Target)
259     fatal("unsupported relocation reference");
260   return Target;
261 }
262 
263 template <class ELFT>
264 InputSectionBase<ELFT> *
265 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
266   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
267 
268   // .note.GNU-stack is a marker section to control the presence of
269   // PT_GNU_STACK segment in outputs. Since the presence of the segment
270   // is controlled only by the command line option (-z execstack) in LLD,
271   // .note.GNU-stack is ignored.
272   if (Name == ".note.GNU-stack")
273     return &InputSection<ELFT>::Discarded;
274 
275   if (Name == ".note.GNU-split-stack") {
276     error("objects using splitstacks are not supported");
277     return &InputSection<ELFT>::Discarded;
278   }
279 
280   if (Config->StripDebug && Name.startswith(".debug"))
281     return &InputSection<ELFT>::Discarded;
282 
283   // A MIPS object file has a special sections that contain register
284   // usage info, which need to be handled by the linker specially.
285   if (Config->EMachine == EM_MIPS) {
286     if (Name == ".reginfo") {
287       MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec));
288       return MipsReginfo.get();
289     }
290     if (Name == ".MIPS.options") {
291       MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec));
292       return MipsOptions.get();
293     }
294   }
295 
296   // We dont need special handling of .eh_frame sections if relocatable
297   // output was choosen. Proccess them as usual input sections.
298   if (!Config->Relocatable && Name == ".eh_frame")
299     return new (EHAlloc.Allocate()) EHInputSection<ELFT>(this, &Sec);
300   if (shouldMerge<ELFT>(Sec))
301     return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec);
302   return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
303 }
304 
305 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
306   this->initStringTable();
307   Elf_Sym_Range Syms = this->getElfSymbols(false);
308   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
309   SymbolBodies.reserve(NumSymbols);
310   for (const Elf_Sym &Sym : Syms)
311     SymbolBodies.push_back(createSymbolBody(&Sym));
312 }
313 
314 template <class ELFT>
315 InputSectionBase<ELFT> *
316 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
317   uint32_t Index = this->getSectionIndex(Sym);
318   if (Index == 0)
319     return nullptr;
320   if (Index >= Sections.size() || !Sections[Index])
321     fatal("invalid section index");
322   InputSectionBase<ELFT> *S = Sections[Index];
323   if (S == &InputSectionBase<ELFT>::Discarded)
324     return S;
325   return S->Repl;
326 }
327 
328 template <class ELFT>
329 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
330   unsigned char Binding = Sym->getBinding();
331   InputSectionBase<ELFT> *Sec = getSection(*Sym);
332   if (Binding == STB_LOCAL) {
333     if (Sym->st_shndx == SHN_UNDEF)
334       return new (Alloc) Undefined(Sym->st_name, Sym->st_other, Sym->getType());
335     return new (Alloc) DefinedRegular<ELFT>(*Sym, Sec);
336   }
337 
338   StringRef Name = check(Sym->getName(this->StringTable));
339 
340   switch (Sym->st_shndx) {
341   case SHN_UNDEF:
342     return elf::Symtab<ELFT>::X
343         ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), this)
344         ->body();
345   case SHN_COMMON:
346     return elf::Symtab<ELFT>::X
347         ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other,
348                     Sym->getType(), this)
349         ->body();
350   }
351 
352   switch (Binding) {
353   default:
354     fatal("unexpected binding");
355   case STB_GLOBAL:
356   case STB_WEAK:
357   case STB_GNU_UNIQUE:
358     if (Sec == &InputSection<ELFT>::Discarded)
359       return elf::Symtab<ELFT>::X
360           ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), this)
361           ->body();
362     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
363   }
364 }
365 
366 template <class ELFT> void ArchiveFile::parse() {
367   File = check(Archive::create(MB), "failed to parse archive");
368 
369   // Read the symbol table to construct Lazy objects.
370   for (const Archive::Symbol &Sym : File->symbols())
371     Symtab<ELFT>::X->addLazyArchive(this, Sym);
372 }
373 
374 // Returns a buffer pointing to a member file containing a given symbol.
375 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
376   Archive::Child C =
377       check(Sym->getMember(),
378             "could not get the member for symbol " + Sym->getName());
379 
380   if (!Seen.insert(C.getChildOffset()).second)
381     return MemoryBufferRef();
382 
383   MemoryBufferRef Ret =
384       check(C.getMemoryBufferRef(),
385             "could not get the buffer for the member defining symbol " +
386                 Sym->getName());
387 
388   if (C.getParent()->isThin())
389     maybeCopyInputFile(check(C.getFullName()), Ret.getBuffer());
390 
391   return Ret;
392 }
393 
394 template <class ELFT>
395 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
396     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
397 
398 template <class ELFT>
399 const typename ELFT::Shdr *
400 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
401   uint32_t Index = this->getSectionIndex(Sym);
402   if (Index == 0)
403     return nullptr;
404   return check(this->ELFObj.getSection(Index));
405 }
406 
407 // Partially parse the shared object file so that we can call
408 // getSoName on this object.
409 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
410   typedef typename ELFT::Dyn Elf_Dyn;
411   typedef typename ELFT::uint uintX_t;
412   const Elf_Shdr *DynamicSec = nullptr;
413 
414   const ELFFile<ELFT> Obj = this->ELFObj;
415   for (const Elf_Shdr &Sec : Obj.sections()) {
416     switch (Sec.sh_type) {
417     default:
418       continue;
419     case SHT_DYNSYM:
420       this->Symtab = &Sec;
421       break;
422     case SHT_DYNAMIC:
423       DynamicSec = &Sec;
424       break;
425     case SHT_SYMTAB_SHNDX:
426       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
427       break;
428     case SHT_GNU_versym:
429       this->VersymSec = &Sec;
430       break;
431     case SHT_GNU_verdef:
432       this->VerdefSec = &Sec;
433       break;
434     }
435   }
436 
437   this->initStringTable();
438   SoName = this->getName();
439 
440   if (!DynamicSec)
441     return;
442   auto *Begin =
443       reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset);
444   const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn);
445 
446   for (const Elf_Dyn &Dyn : make_range(Begin, End)) {
447     if (Dyn.d_tag == DT_SONAME) {
448       uintX_t Val = Dyn.getVal();
449       if (Val >= this->StringTable.size())
450         fatal("invalid DT_SONAME entry");
451       SoName = StringRef(this->StringTable.data() + Val);
452       return;
453     }
454   }
455 }
456 
457 // Parse the version definitions in the object file if present. Returns a vector
458 // whose nth element contains a pointer to the Elf_Verdef for version identifier
459 // n. Version identifiers that are not definitions map to nullptr. The array
460 // always has at least length 1.
461 template <class ELFT>
462 std::vector<const typename ELFT::Verdef *>
463 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
464   std::vector<const Elf_Verdef *> Verdefs(1);
465   // We only need to process symbol versions for this DSO if it has both a
466   // versym and a verdef section, which indicates that the DSO contains symbol
467   // version definitions.
468   if (!VersymSec || !VerdefSec)
469     return Verdefs;
470 
471   // The location of the first global versym entry.
472   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
473                                                 VersymSec->sh_offset) +
474            this->Symtab->sh_info;
475 
476   // We cannot determine the largest verdef identifier without inspecting
477   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
478   // sequentially starting from 1, so we predict that the largest identifier
479   // will be VerdefCount.
480   unsigned VerdefCount = VerdefSec->sh_info;
481   Verdefs.resize(VerdefCount + 1);
482 
483   // Build the Verdefs array by following the chain of Elf_Verdef objects
484   // from the start of the .gnu.version_d section.
485   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
486   for (unsigned I = 0; I != VerdefCount; ++I) {
487     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
488     Verdef += CurVerdef->vd_next;
489     unsigned VerdefIndex = CurVerdef->vd_ndx;
490     if (Verdefs.size() <= VerdefIndex)
491       Verdefs.resize(VerdefIndex + 1);
492     Verdefs[VerdefIndex] = CurVerdef;
493   }
494 
495   return Verdefs;
496 }
497 
498 // Fully parse the shared object file. This must be called after parseSoName().
499 template <class ELFT> void SharedFile<ELFT>::parseRest() {
500   // Create mapping from version identifiers to Elf_Verdef entries.
501   const Elf_Versym *Versym = nullptr;
502   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
503 
504   Elf_Sym_Range Syms = this->getElfSymbols(true);
505   for (const Elf_Sym &Sym : Syms) {
506     unsigned VersymIndex = 0;
507     if (Versym) {
508       VersymIndex = Versym->vs_index;
509       ++Versym;
510     }
511 
512     StringRef Name = check(Sym.getName(this->StringTable));
513     if (Sym.isUndefined()) {
514       Undefs.push_back(Name);
515       continue;
516     }
517 
518     if (Versym) {
519       // Ignore local symbols and non-default versions.
520       if (VersymIndex == 0 || (VersymIndex & VERSYM_HIDDEN))
521         continue;
522     }
523     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, Verdefs[VersymIndex]);
524   }
525 }
526 
527 BitcodeFile::BitcodeFile(MemoryBufferRef M) : InputFile(BitcodeKind, M) {}
528 
529 static uint8_t getGvVisibility(const GlobalValue *GV) {
530   switch (GV->getVisibility()) {
531   case GlobalValue::DefaultVisibility:
532     return STV_DEFAULT;
533   case GlobalValue::HiddenVisibility:
534     return STV_HIDDEN;
535   case GlobalValue::ProtectedVisibility:
536     return STV_PROTECTED;
537   }
538   llvm_unreachable("unknown visibility");
539 }
540 
541 template <class ELFT>
542 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats,
543                                   const IRObjectFile &Obj,
544                                   const BasicSymbolRef &Sym) {
545   const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl());
546 
547   SmallString<64> Name;
548   raw_svector_ostream OS(Name);
549   Sym.printName(OS);
550   StringRef NameRef = Saver.save(StringRef(Name));
551 
552   uint32_t Flags = Sym.getFlags();
553   bool IsWeak = Flags & BasicSymbolRef::SF_Weak;
554   uint32_t Binding = IsWeak ? STB_WEAK : STB_GLOBAL;
555 
556   uint8_t Type = STT_NOTYPE;
557   bool CanOmitFromDynSym = false;
558   // FIXME: Expose a thread-local flag for module asm symbols.
559   if (GV) {
560     if (GV->isThreadLocal())
561       Type = STT_TLS;
562     CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV);
563   }
564 
565   uint8_t Visibility;
566   if (GV)
567     Visibility = getGvVisibility(GV);
568   else
569     // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose
570     // protected visibility.
571     Visibility = STV_DEFAULT;
572 
573   if (GV)
574     if (const Comdat *C = GV->getComdat())
575       if (!KeptComdats.count(C))
576         return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
577                                              this);
578 
579   const Module &M = Obj.getModule();
580   if (Flags & BasicSymbolRef::SF_Undefined)
581     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
582                                          this);
583   if (Flags & BasicSymbolRef::SF_Common) {
584     // FIXME: Set SF_Common flag correctly for module asm symbols, and expose
585     // size and alignment.
586     assert(GV);
587     const DataLayout &DL = M.getDataLayout();
588     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
589     return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(),
590                                       Binding, Visibility, STT_OBJECT, this);
591   }
592   return Symtab<ELFT>::X->addBitcode(NameRef, IsWeak, Visibility, Type,
593                                      CanOmitFromDynSym, this);
594 }
595 
596 bool BitcodeFile::shouldSkip(uint32_t Flags) {
597   if (!(Flags & BasicSymbolRef::SF_Global))
598     return true;
599   if (Flags & BasicSymbolRef::SF_FormatSpecific)
600     return true;
601   return false;
602 }
603 
604 template <class ELFT>
605 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
606   Obj = check(IRObjectFile::create(MB, Driver->Context));
607   const Module &M = Obj->getModule();
608 
609   DenseSet<const Comdat *> KeptComdats;
610   for (const auto &P : M.getComdatSymbolTable()) {
611     StringRef N = Saver.save(P.first());
612     if (ComdatGroups.insert(N).second)
613       KeptComdats.insert(&P.second);
614   }
615 
616   for (const BasicSymbolRef &Sym : Obj->symbols())
617     if (!shouldSkip(Sym.getFlags()))
618       Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym));
619 }
620 
621 template <typename T>
622 static std::unique_ptr<InputFile> createELFFileAux(MemoryBufferRef MB) {
623   std::unique_ptr<T> Ret = llvm::make_unique<T>(MB);
624 
625   if (!Config->FirstElf)
626     Config->FirstElf = Ret.get();
627 
628   if (Config->EKind == ELFNoneKind) {
629     Config->EKind = Ret->getELFKind();
630     Config->EMachine = Ret->getEMachine();
631     if (Config->EMachine == EM_MIPS && Config->EKind == ELF64LEKind)
632       Config->Mips64EL = true;
633   }
634 
635   return std::move(Ret);
636 }
637 
638 template <template <class> class T>
639 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) {
640   unsigned char Size;
641   unsigned char Endian;
642   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
643   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
644     fatal("invalid data encoding: " + MB.getBufferIdentifier());
645 
646   if (Size == ELFCLASS32) {
647     if (Endian == ELFDATA2LSB)
648       return createELFFileAux<T<ELF32LE>>(MB);
649     return createELFFileAux<T<ELF32BE>>(MB);
650   }
651   if (Size == ELFCLASS64) {
652     if (Endian == ELFDATA2LSB)
653       return createELFFileAux<T<ELF64LE>>(MB);
654     return createELFFileAux<T<ELF64BE>>(MB);
655   }
656   fatal("invalid file class: " + MB.getBufferIdentifier());
657 }
658 
659 static bool isBitcode(MemoryBufferRef MB) {
660   using namespace sys::fs;
661   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
662 }
663 
664 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB,
665                                                  StringRef ArchiveName) {
666   std::unique_ptr<InputFile> F;
667   if (isBitcode(MB))
668     F.reset(new BitcodeFile(MB));
669   else
670     F = createELFFile<ObjectFile>(MB);
671   F->ArchiveName = ArchiveName;
672   return F;
673 }
674 
675 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) {
676   return createELFFile<SharedFile>(MB);
677 }
678 
679 template <class ELFT>
680 void LazyObjectFile::parse() {
681   for (StringRef Sym : getSymbols())
682     Symtab<ELFT>::X->addLazyObject(Sym, this->MB);
683 }
684 
685 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
686   typedef typename ELFT::Shdr Elf_Shdr;
687   typedef typename ELFT::Sym Elf_Sym;
688   typedef typename ELFT::SymRange Elf_Sym_Range;
689 
690   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
691   for (const Elf_Shdr &Sec : Obj.sections()) {
692     if (Sec.sh_type != SHT_SYMTAB)
693       continue;
694     Elf_Sym_Range Syms = Obj.symbols(&Sec);
695     uint32_t FirstNonLocal = Sec.sh_info;
696     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
697     std::vector<StringRef> V;
698     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
699       if (Sym.st_shndx != SHN_UNDEF)
700         V.push_back(check(Sym.getName(StringTable)));
701     return V;
702   }
703   return {};
704 }
705 
706 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
707   LLVMContext Context;
708   std::unique_ptr<IRObjectFile> Obj =
709       check(IRObjectFile::create(this->MB, Context));
710   std::vector<StringRef> V;
711   for (const BasicSymbolRef &Sym : Obj->symbols()) {
712     uint32_t Flags = Sym.getFlags();
713     if (BitcodeFile::shouldSkip(Flags))
714       continue;
715     if (Flags & BasicSymbolRef::SF_Undefined)
716       continue;
717     SmallString<64> Name;
718     raw_svector_ostream OS(Name);
719     Sym.printName(OS);
720     V.push_back(Saver.save(StringRef(Name)));
721   }
722   return V;
723 }
724 
725 // Returns a vector of globally-visible defined symbol names.
726 std::vector<StringRef> LazyObjectFile::getSymbols() {
727   if (isBitcode(this->MB))
728     return getBitcodeSymbols();
729 
730   unsigned char Size;
731   unsigned char Endian;
732   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
733   if (Size == ELFCLASS32) {
734     if (Endian == ELFDATA2LSB)
735       return getElfSymbols<ELF32LE>();
736     return getElfSymbols<ELF32BE>();
737   }
738   if (Endian == ELFDATA2LSB)
739     return getElfSymbols<ELF64LE>();
740   return getElfSymbols<ELF64BE>();
741 }
742 
743 template void ArchiveFile::parse<ELF32LE>();
744 template void ArchiveFile::parse<ELF32BE>();
745 template void ArchiveFile::parse<ELF64LE>();
746 template void ArchiveFile::parse<ELF64BE>();
747 
748 template void
749 BitcodeFile::parse<ELF32LE>(llvm::DenseSet<StringRef> &ComdatGroups);
750 template void
751 BitcodeFile::parse<ELF32BE>(llvm::DenseSet<StringRef> &ComdatGroups);
752 template void
753 BitcodeFile::parse<ELF64LE>(llvm::DenseSet<StringRef> &ComdatGroups);
754 template void
755 BitcodeFile::parse<ELF64BE>(llvm::DenseSet<StringRef> &ComdatGroups);
756 
757 template void LazyObjectFile::parse<ELF32LE>();
758 template void LazyObjectFile::parse<ELF32BE>();
759 template void LazyObjectFile::parse<ELF64LE>();
760 template void LazyObjectFile::parse<ELF64BE>();
761 
762 template class elf::ELFFileBase<ELF32LE>;
763 template class elf::ELFFileBase<ELF32BE>;
764 template class elf::ELFFileBase<ELF64LE>;
765 template class elf::ELFFileBase<ELF64BE>;
766 
767 template class elf::ObjectFile<ELF32LE>;
768 template class elf::ObjectFile<ELF32BE>;
769 template class elf::ObjectFile<ELF64LE>;
770 template class elf::ObjectFile<ELF64BE>;
771 
772 template class elf::SharedFile<ELF32LE>;
773 template class elf::SharedFile<ELF32BE>;
774 template class elf::SharedFile<ELF64LE>;
775 template class elf::SharedFile<ELF64BE>;
776