1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Config.h"
11 #include "DWARF.h"
12 #include "Driver.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "lld/Common/DWARF.h"
21 #include "llvm/ADT/CachedHashString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/Object/IRObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileSystem.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 SmallVector<std::unique_ptr<MemoryBuffer>> elf::memoryBuffers;
47 SmallVector<BinaryFile *, 0> elf::binaryFiles;
48 SmallVector<BitcodeFile *, 0> elf::bitcodeFiles;
49 SmallVector<BitcodeFile *, 0> elf::lazyBitcodeFiles;
50 SmallVector<ELFFileBase *, 0> elf::objectFiles;
51 SmallVector<SharedFile *, 0> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = f->getName();
63     else
64       (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
65   }
66   return std::string(f->toStringCache);
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   llvm::TimeTraceScope timeScope("Load input files", path);
109 
110   // The --chroot option changes our virtual root directory.
111   // This is useful when you are dealing with files created by --reproduce.
112   if (!config->chroot.empty() && path.startswith("/"))
113     path = saver().save(config->chroot + path);
114 
115   log(path);
116   config->dependencyFiles.insert(llvm::CachedHashString(path));
117 
118   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
119                                        /*RequiresNullTerminator=*/false);
120   if (auto ec = mbOrErr.getError()) {
121     error("cannot open " + path + ": " + ec.message());
122     return None;
123   }
124 
125   MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
126   memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
127 
128   if (tar)
129     tar->append(relativeToRoot(path), mbref.getBuffer());
130   return mbref;
131 }
132 
133 // All input object files must be for the same architecture
134 // (e.g. it does not make sense to link x86 object files with
135 // MIPS object files.) This function checks for that error.
136 static bool isCompatible(InputFile *file) {
137   if (!file->isElf() && !isa<BitcodeFile>(file))
138     return true;
139 
140   if (file->ekind == config->ekind && file->emachine == config->emachine) {
141     if (config->emachine != EM_MIPS)
142       return true;
143     if (isMipsN32Abi(file) == config->mipsN32Abi)
144       return true;
145   }
146 
147   StringRef target =
148       !config->bfdname.empty() ? config->bfdname : config->emulation;
149   if (!target.empty()) {
150     error(toString(file) + " is incompatible with " + target);
151     return false;
152   }
153 
154   InputFile *existing = nullptr;
155   if (!objectFiles.empty())
156     existing = objectFiles[0];
157   else if (!sharedFiles.empty())
158     existing = sharedFiles[0];
159   else if (!bitcodeFiles.empty())
160     existing = bitcodeFiles[0];
161   std::string with;
162   if (existing)
163     with = " with " + toString(existing);
164   error(toString(file) + " is incompatible" + with);
165   return false;
166 }
167 
168 template <class ELFT> static void doParseFile(InputFile *file) {
169   if (!isCompatible(file))
170     return;
171 
172   // Binary file
173   if (auto *f = dyn_cast<BinaryFile>(file)) {
174     binaryFiles.push_back(f);
175     f->parse();
176     return;
177   }
178 
179   // Lazy object file
180   if (file->lazy) {
181     if (auto *f = dyn_cast<BitcodeFile>(file)) {
182       lazyBitcodeFiles.push_back(f);
183       f->parseLazy();
184     } else {
185       cast<ObjFile<ELFT>>(file)->parseLazy();
186     }
187     return;
188   }
189 
190   if (config->trace)
191     message(toString(file));
192 
193   // .so file
194   if (auto *f = dyn_cast<SharedFile>(file)) {
195     f->parse<ELFT>();
196     return;
197   }
198 
199   // LLVM bitcode file
200   if (auto *f = dyn_cast<BitcodeFile>(file)) {
201     bitcodeFiles.push_back(f);
202     f->parse<ELFT>();
203     return;
204   }
205 
206   // Regular object file
207   objectFiles.push_back(cast<ELFFileBase>(file));
208   cast<ObjFile<ELFT>>(file)->parse();
209 }
210 
211 // Add symbols in File to the symbol table.
212 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
213 
214 // Concatenates arguments to construct a string representing an error location.
215 static std::string createFileLineMsg(StringRef path, unsigned line) {
216   std::string filename = std::string(path::filename(path));
217   std::string lineno = ":" + std::to_string(line);
218   if (filename == path)
219     return filename + lineno;
220   return filename + lineno + " (" + path.str() + lineno + ")";
221 }
222 
223 template <class ELFT>
224 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
225                                 InputSectionBase &sec, uint64_t offset) {
226   // In DWARF, functions and variables are stored to different places.
227   // First, lookup a function for a given offset.
228   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
229     return createFileLineMsg(info->FileName, info->Line);
230 
231   // If it failed, lookup again as a variable.
232   if (Optional<std::pair<std::string, unsigned>> fileLine =
233           file.getVariableLoc(sym.getName()))
234     return createFileLineMsg(fileLine->first, fileLine->second);
235 
236   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
237   return std::string(file.sourceFile);
238 }
239 
240 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
241                                  uint64_t offset) {
242   if (kind() != ObjKind)
243     return "";
244   switch (config->ekind) {
245   default:
246     llvm_unreachable("Invalid kind");
247   case ELF32LEKind:
248     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
249   case ELF32BEKind:
250     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
251   case ELF64LEKind:
252     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
253   case ELF64BEKind:
254     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
255   }
256 }
257 
258 StringRef InputFile::getNameForScript() const {
259   if (archiveName.empty())
260     return getName();
261 
262   if (nameForScriptCache.empty())
263     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
264 
265   return nameForScriptCache;
266 }
267 
268 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
269   llvm::call_once(initDwarf, [this]() {
270     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
271         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
272         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
273         [&](Error warning) {
274           warn(getName() + ": " + toString(std::move(warning)));
275         }));
276   });
277 
278   return dwarf.get();
279 }
280 
281 // Returns the pair of file name and line number describing location of data
282 // object (variable, array, etc) definition.
283 template <class ELFT>
284 Optional<std::pair<std::string, unsigned>>
285 ObjFile<ELFT>::getVariableLoc(StringRef name) {
286   return getDwarf()->getVariableLoc(name);
287 }
288 
289 // Returns source line information for a given offset
290 // using DWARF debug info.
291 template <class ELFT>
292 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
293                                                   uint64_t offset) {
294   // Detect SectionIndex for specified section.
295   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
296   ArrayRef<InputSectionBase *> sections = s->file->getSections();
297   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
298     if (s == sections[curIndex]) {
299       sectionIndex = curIndex;
300       break;
301     }
302   }
303 
304   return getDwarf()->getDILineInfo(offset, sectionIndex);
305 }
306 
307 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
308   ekind = getELFKind(mb, "");
309 
310   switch (ekind) {
311   case ELF32LEKind:
312     init<ELF32LE>();
313     break;
314   case ELF32BEKind:
315     init<ELF32BE>();
316     break;
317   case ELF64LEKind:
318     init<ELF64LE>();
319     break;
320   case ELF64BEKind:
321     init<ELF64BE>();
322     break;
323   default:
324     llvm_unreachable("getELFKind");
325   }
326 }
327 
328 template <typename Elf_Shdr>
329 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
330   for (const Elf_Shdr &sec : sections)
331     if (sec.sh_type == type)
332       return &sec;
333   return nullptr;
334 }
335 
336 template <class ELFT> void ELFFileBase::init() {
337   using Elf_Shdr = typename ELFT::Shdr;
338   using Elf_Sym = typename ELFT::Sym;
339 
340   // Initialize trivial attributes.
341   const ELFFile<ELFT> &obj = getObj<ELFT>();
342   emachine = obj.getHeader().e_machine;
343   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
344   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
345 
346   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
347   elfShdrs = sections.data();
348   numELFShdrs = sections.size();
349 
350   // Find a symbol table.
351   bool isDSO =
352       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
353   const Elf_Shdr *symtabSec =
354       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
355 
356   if (!symtabSec)
357     return;
358 
359   // Initialize members corresponding to a symbol table.
360   firstGlobal = symtabSec->sh_info;
361 
362   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
363   if (firstGlobal == 0 || firstGlobal > eSyms.size())
364     fatal(toString(this) + ": invalid sh_info in symbol table");
365 
366   elfSyms = reinterpret_cast<const void *>(eSyms.data());
367   numELFSyms = uint32_t(eSyms.size());
368   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
369 }
370 
371 template <class ELFT>
372 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
373   return CHECK(
374       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
375       this);
376 }
377 
378 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
379   object::ELFFile<ELFT> obj = this->getObj();
380   // Read a section table. justSymbols is usually false.
381   if (this->justSymbols)
382     initializeJustSymbols();
383   else
384     initializeSections(ignoreComdats, obj);
385 
386   // Read a symbol table.
387   initializeSymbols(obj);
388 }
389 
390 // Sections with SHT_GROUP and comdat bits define comdat section groups.
391 // They are identified and deduplicated by group name. This function
392 // returns a group name.
393 template <class ELFT>
394 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
395                                               const Elf_Shdr &sec) {
396   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
397   if (sec.sh_info >= symbols.size())
398     fatal(toString(this) + ": invalid symbol index");
399   const typename ELFT::Sym &sym = symbols[sec.sh_info];
400   return CHECK(sym.getName(this->stringTable), this);
401 }
402 
403 template <class ELFT>
404 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
405   // On a regular link we don't merge sections if -O0 (default is -O1). This
406   // sometimes makes the linker significantly faster, although the output will
407   // be bigger.
408   //
409   // Doing the same for -r would create a problem as it would combine sections
410   // with different sh_entsize. One option would be to just copy every SHF_MERGE
411   // section as is to the output. While this would produce a valid ELF file with
412   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
413   // they see two .debug_str. We could have separate logic for combining
414   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
415   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
416   // logic for -r.
417   if (config->optimize == 0 && !config->relocatable)
418     return false;
419 
420   // A mergeable section with size 0 is useless because they don't have
421   // any data to merge. A mergeable string section with size 0 can be
422   // argued as invalid because it doesn't end with a null character.
423   // We'll avoid a mess by handling them as if they were non-mergeable.
424   if (sec.sh_size == 0)
425     return false;
426 
427   // Check for sh_entsize. The ELF spec is not clear about the zero
428   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
429   // the section does not hold a table of fixed-size entries". We know
430   // that Rust 1.13 produces a string mergeable section with a zero
431   // sh_entsize. Here we just accept it rather than being picky about it.
432   uint64_t entSize = sec.sh_entsize;
433   if (entSize == 0)
434     return false;
435   if (sec.sh_size % entSize)
436     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
437           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
438           Twine(entSize) + ")");
439 
440   if (sec.sh_flags & SHF_WRITE)
441     fatal(toString(this) + ":(" + name +
442           "): writable SHF_MERGE section is not supported");
443 
444   return true;
445 }
446 
447 // This is for --just-symbols.
448 //
449 // --just-symbols is a very minor feature that allows you to link your
450 // output against other existing program, so that if you load both your
451 // program and the other program into memory, your output can refer the
452 // other program's symbols.
453 //
454 // When the option is given, we link "just symbols". The section table is
455 // initialized with null pointers.
456 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
457   sections.resize(numELFShdrs);
458 }
459 
460 // An ELF object file may contain a `.deplibs` section. If it exists, the
461 // section contains a list of library specifiers such as `m` for libm. This
462 // function resolves a given name by finding the first matching library checking
463 // the various ways that a library can be specified to LLD. This ELF extension
464 // is a form of autolinking and is called `dependent libraries`. It is currently
465 // unique to LLVM and lld.
466 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
467   if (!config->dependentLibraries)
468     return;
469   if (Optional<std::string> s = searchLibraryBaseName(specifier))
470     driver->addFile(*s, /*withLOption=*/true);
471   else if (Optional<std::string> s = findFromSearchPaths(specifier))
472     driver->addFile(*s, /*withLOption=*/true);
473   else if (fs::exists(specifier))
474     driver->addFile(specifier, /*withLOption=*/false);
475   else
476     error(toString(f) +
477           ": unable to find library from dependent library specifier: " +
478           specifier);
479 }
480 
481 // Record the membership of a section group so that in the garbage collection
482 // pass, section group members are kept or discarded as a unit.
483 template <class ELFT>
484 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
485                                ArrayRef<typename ELFT::Word> entries) {
486   bool hasAlloc = false;
487   for (uint32_t index : entries.slice(1)) {
488     if (index >= sections.size())
489       return;
490     if (InputSectionBase *s = sections[index])
491       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
492         hasAlloc = true;
493   }
494 
495   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
496   // collection. See the comment in markLive(). This rule retains .debug_types
497   // and .rela.debug_types.
498   if (!hasAlloc)
499     return;
500 
501   // Connect the members in a circular doubly-linked list via
502   // nextInSectionGroup.
503   InputSectionBase *head;
504   InputSectionBase *prev = nullptr;
505   for (uint32_t index : entries.slice(1)) {
506     InputSectionBase *s = sections[index];
507     if (!s || s == &InputSection::discarded)
508       continue;
509     if (prev)
510       prev->nextInSectionGroup = s;
511     else
512       head = s;
513     prev = s;
514   }
515   if (prev)
516     prev->nextInSectionGroup = head;
517 }
518 
519 template <class ELFT>
520 void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
521                                        const llvm::object::ELFFile<ELFT> &obj) {
522   ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
523   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
524   uint64_t size = objSections.size();
525   this->sections.resize(size);
526 
527   std::vector<ArrayRef<Elf_Word>> selectedGroups;
528 
529   for (size_t i = 0; i != size; ++i) {
530     if (this->sections[i] == &InputSection::discarded)
531       continue;
532     const Elf_Shdr &sec = objSections[i];
533 
534     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
535     // if -r is given, we'll let the final link discard such sections.
536     // This is compatible with GNU.
537     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
538       if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
539         cgProfileSectionIndex = i;
540       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
541         // We ignore the address-significance table if we know that the object
542         // file was created by objcopy or ld -r. This is because these tools
543         // will reorder the symbols in the symbol table, invalidating the data
544         // in the address-significance table, which refers to symbols by index.
545         if (sec.sh_link != 0)
546           this->addrsigSec = &sec;
547         else if (config->icf == ICFLevel::Safe)
548           warn(toString(this) +
549                ": --icf=safe conservatively ignores "
550                "SHT_LLVM_ADDRSIG [index " +
551                Twine(i) +
552                "] with sh_link=0 "
553                "(likely created using objcopy or ld -r)");
554       }
555       this->sections[i] = &InputSection::discarded;
556       continue;
557     }
558 
559     switch (sec.sh_type) {
560     case SHT_GROUP: {
561       // De-duplicate section groups by their signatures.
562       StringRef signature = getShtGroupSignature(objSections, sec);
563       this->sections[i] = &InputSection::discarded;
564 
565       ArrayRef<Elf_Word> entries =
566           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
567       if (entries.empty())
568         fatal(toString(this) + ": empty SHT_GROUP");
569 
570       Elf_Word flag = entries[0];
571       if (flag && flag != GRP_COMDAT)
572         fatal(toString(this) + ": unsupported SHT_GROUP format");
573 
574       bool keepGroup =
575           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
576           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
577               .second;
578       if (keepGroup) {
579         if (config->relocatable)
580           this->sections[i] = createInputSection(
581               i, sec, check(obj.getSectionName(sec, shstrtab)));
582         selectedGroups.push_back(entries);
583         continue;
584       }
585 
586       // Otherwise, discard group members.
587       for (uint32_t secIndex : entries.slice(1)) {
588         if (secIndex >= size)
589           fatal(toString(this) +
590                 ": invalid section index in group: " + Twine(secIndex));
591         this->sections[secIndex] = &InputSection::discarded;
592       }
593       break;
594     }
595     case SHT_SYMTAB_SHNDX:
596       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
597       break;
598     case SHT_SYMTAB:
599     case SHT_STRTAB:
600     case SHT_REL:
601     case SHT_RELA:
602     case SHT_NULL:
603       break;
604     case SHT_LLVM_SYMPART:
605       ctx->hasSympart.store(true, std::memory_order_relaxed);
606       LLVM_FALLTHROUGH;
607     default:
608       this->sections[i] =
609           createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
610     }
611   }
612 
613   // We have a second loop. It is used to:
614   // 1) handle SHF_LINK_ORDER sections.
615   // 2) create SHT_REL[A] sections. In some cases the section header index of a
616   //    relocation section may be smaller than that of the relocated section. In
617   //    such cases, the relocation section would attempt to reference a target
618   //    section that has not yet been created. For simplicity, delay creation of
619   //    relocation sections until now.
620   for (size_t i = 0; i != size; ++i) {
621     if (this->sections[i] == &InputSection::discarded)
622       continue;
623     const Elf_Shdr &sec = objSections[i];
624 
625     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) {
626       // Find a relocation target section and associate this section with that.
627       // Target may have been discarded if it is in a different section group
628       // and the group is discarded, even though it's a violation of the spec.
629       // We handle that situation gracefully by discarding dangling relocation
630       // sections.
631       const uint32_t info = sec.sh_info;
632       InputSectionBase *s = getRelocTarget(i, sec, info);
633       if (!s)
634         continue;
635 
636       // ELF spec allows mergeable sections with relocations, but they are rare,
637       // and it is in practice hard to merge such sections by contents, because
638       // applying relocations at end of linking changes section contents. So, we
639       // simply handle such sections as non-mergeable ones. Degrading like this
640       // is acceptable because section merging is optional.
641       if (auto *ms = dyn_cast<MergeInputSection>(s)) {
642         s = make<InputSection>(ms->file, ms->flags, ms->type, ms->alignment,
643                                ms->data(), ms->name);
644         sections[info] = s;
645       }
646 
647       if (s->relSecIdx != 0)
648         error(
649             toString(s) +
650             ": multiple relocation sections to one section are not supported");
651       s->relSecIdx = i;
652 
653       // Relocation sections are usually removed from the output, so return
654       // `nullptr` for the normal case. However, if -r or --emit-relocs is
655       // specified, we need to copy them to the output. (Some post link analysis
656       // tools specify --emit-relocs to obtain the information.)
657       if (config->copyRelocs) {
658         auto *isec = make<InputSection>(
659             *this, sec, check(obj.getSectionName(sec, shstrtab)));
660         // If the relocated section is discarded (due to /DISCARD/ or
661         // --gc-sections), the relocation section should be discarded as well.
662         s->dependentSections.push_back(isec);
663         sections[i] = isec;
664       }
665       continue;
666     }
667 
668     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
669     // the flag.
670     if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
671       continue;
672 
673     InputSectionBase *linkSec = nullptr;
674     if (sec.sh_link < size)
675       linkSec = this->sections[sec.sh_link];
676     if (!linkSec)
677       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
678 
679     // A SHF_LINK_ORDER section is discarded if its linked-to section is
680     // discarded.
681     InputSection *isec = cast<InputSection>(this->sections[i]);
682     linkSec->dependentSections.push_back(isec);
683     if (!isa<InputSection>(linkSec))
684       error("a section " + isec->name +
685             " with SHF_LINK_ORDER should not refer a non-regular section: " +
686             toString(linkSec));
687   }
688 
689   for (ArrayRef<Elf_Word> entries : selectedGroups)
690     handleSectionGroup<ELFT>(this->sections, entries);
691 }
692 
693 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
694 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
695 // the input objects have been compiled.
696 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
697                              const InputFile *f) {
698   Optional<unsigned> attr =
699       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
700   if (!attr.hasValue())
701     // If an ABI tag isn't present then it is implicitly given the value of 0
702     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
703     // including some in glibc that don't use FP args (and should have value 3)
704     // don't have the attribute so we do not consider an implicit value of 0
705     // as a clash.
706     return;
707 
708   unsigned vfpArgs = attr.getValue();
709   ARMVFPArgKind arg;
710   switch (vfpArgs) {
711   case ARMBuildAttrs::BaseAAPCS:
712     arg = ARMVFPArgKind::Base;
713     break;
714   case ARMBuildAttrs::HardFPAAPCS:
715     arg = ARMVFPArgKind::VFP;
716     break;
717   case ARMBuildAttrs::ToolChainFPPCS:
718     // Tool chain specific convention that conforms to neither AAPCS variant.
719     arg = ARMVFPArgKind::ToolChain;
720     break;
721   case ARMBuildAttrs::CompatibleFPAAPCS:
722     // Object compatible with all conventions.
723     return;
724   default:
725     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
726     return;
727   }
728   // Follow ld.bfd and error if there is a mix of calling conventions.
729   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
730     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
731   else
732     config->armVFPArgs = arg;
733 }
734 
735 // The ARM support in lld makes some use of instructions that are not available
736 // on all ARM architectures. Namely:
737 // - Use of BLX instruction for interworking between ARM and Thumb state.
738 // - Use of the extended Thumb branch encoding in relocation.
739 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
740 // The ARM Attributes section contains information about the architecture chosen
741 // at compile time. We follow the convention that if at least one input object
742 // is compiled with an architecture that supports these features then lld is
743 // permitted to use them.
744 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
745   Optional<unsigned> attr =
746       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
747   if (!attr.hasValue())
748     return;
749   auto arch = attr.getValue();
750   switch (arch) {
751   case ARMBuildAttrs::Pre_v4:
752   case ARMBuildAttrs::v4:
753   case ARMBuildAttrs::v4T:
754     // Architectures prior to v5 do not support BLX instruction
755     break;
756   case ARMBuildAttrs::v5T:
757   case ARMBuildAttrs::v5TE:
758   case ARMBuildAttrs::v5TEJ:
759   case ARMBuildAttrs::v6:
760   case ARMBuildAttrs::v6KZ:
761   case ARMBuildAttrs::v6K:
762     config->armHasBlx = true;
763     // Architectures used in pre-Cortex processors do not support
764     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
765     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
766     break;
767   default:
768     // All other Architectures have BLX and extended branch encoding
769     config->armHasBlx = true;
770     config->armJ1J2BranchEncoding = true;
771     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
772       // All Architectures used in Cortex processors with the exception
773       // of v6-M and v6S-M have the MOVT and MOVW instructions.
774       config->armHasMovtMovw = true;
775     break;
776   }
777 }
778 
779 // If a source file is compiled with x86 hardware-assisted call flow control
780 // enabled, the generated object file contains feature flags indicating that
781 // fact. This function reads the feature flags and returns it.
782 //
783 // Essentially we want to read a single 32-bit value in this function, but this
784 // function is rather complicated because the value is buried deep inside a
785 // .note.gnu.property section.
786 //
787 // The section consists of one or more NOTE records. Each NOTE record consists
788 // of zero or more type-length-value fields. We want to find a field of a
789 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
790 // the ABI is unnecessarily complicated.
791 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
792   using Elf_Nhdr = typename ELFT::Nhdr;
793   using Elf_Note = typename ELFT::Note;
794 
795   uint32_t featuresSet = 0;
796   ArrayRef<uint8_t> data = sec.rawData;
797   auto reportFatal = [&](const uint8_t *place, const char *msg) {
798     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
799           Twine::utohexstr(place - sec.rawData.data()) + "): " + msg);
800   };
801   while (!data.empty()) {
802     // Read one NOTE record.
803     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
804     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
805       reportFatal(data.data(), "data is too short");
806 
807     Elf_Note note(*nhdr);
808     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
809       data = data.slice(nhdr->getSize());
810       continue;
811     }
812 
813     uint32_t featureAndType = config->emachine == EM_AARCH64
814                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
815                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
816 
817     // Read a body of a NOTE record, which consists of type-length-value fields.
818     ArrayRef<uint8_t> desc = note.getDesc();
819     while (!desc.empty()) {
820       const uint8_t *place = desc.data();
821       if (desc.size() < 8)
822         reportFatal(place, "program property is too short");
823       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
824       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
825       desc = desc.slice(8);
826       if (desc.size() < size)
827         reportFatal(place, "program property is too short");
828 
829       if (type == featureAndType) {
830         // We found a FEATURE_1_AND field. There may be more than one of these
831         // in a .note.gnu.property section, for a relocatable object we
832         // accumulate the bits set.
833         if (size < 4)
834           reportFatal(place, "FEATURE_1_AND entry is too short");
835         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
836       }
837 
838       // Padding is present in the note descriptor, if necessary.
839       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
840     }
841 
842     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
843     data = data.slice(nhdr->getSize());
844   }
845 
846   return featuresSet;
847 }
848 
849 template <class ELFT>
850 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx,
851                                                 const Elf_Shdr &sec,
852                                                 uint32_t info) {
853   if (info < this->sections.size()) {
854     InputSectionBase *target = this->sections[info];
855 
856     // Strictly speaking, a relocation section must be included in the
857     // group of the section it relocates. However, LLVM 3.3 and earlier
858     // would fail to do so, so we gracefully handle that case.
859     if (target == &InputSection::discarded)
860       return nullptr;
861 
862     if (target != nullptr)
863       return target;
864   }
865 
866   error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
867         ") has invalid sh_info (" + Twine(info) + ")");
868   return nullptr;
869 }
870 
871 template <class ELFT>
872 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
873                                                     const Elf_Shdr &sec,
874                                                     StringRef name) {
875   if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
876     ARMAttributeParser attributes;
877     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
878     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
879                                                  ? support::little
880                                                  : support::big)) {
881       auto *isec = make<InputSection>(*this, sec, name);
882       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
883     } else {
884       updateSupportedARMFeatures(attributes);
885       updateARMVFPArgs(attributes, this);
886 
887       // FIXME: Retain the first attribute section we see. The eglibc ARM
888       // dynamic loaders require the presence of an attribute section for dlopen
889       // to work. In a full implementation we would merge all attribute
890       // sections.
891       if (in.attributes == nullptr) {
892         in.attributes = std::make_unique<InputSection>(*this, sec, name);
893         return in.attributes.get();
894       }
895       return &InputSection::discarded;
896     }
897   }
898 
899   if (sec.sh_type == SHT_RISCV_ATTRIBUTES && config->emachine == EM_RISCV) {
900     RISCVAttributeParser attributes;
901     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
902     if (Error e = attributes.parse(contents, support::little)) {
903       auto *isec = make<InputSection>(*this, sec, name);
904       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
905     } else {
906       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
907       // present.
908 
909       // FIXME: Retain the first attribute section we see. Tools such as
910       // llvm-objdump make use of the attribute section to determine which
911       // standard extensions to enable. In a full implementation we would merge
912       // all attribute sections.
913       if (in.attributes == nullptr) {
914         in.attributes = std::make_unique<InputSection>(*this, sec, name);
915         return in.attributes.get();
916       }
917       return &InputSection::discarded;
918     }
919   }
920 
921   if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
922     ArrayRef<char> data =
923         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
924     if (!data.empty() && data.back() != '\0') {
925       error(toString(this) +
926             ": corrupted dependent libraries section (unterminated string): " +
927             name);
928       return &InputSection::discarded;
929     }
930     for (const char *d = data.begin(), *e = data.end(); d < e;) {
931       StringRef s(d);
932       addDependentLibrary(s, this);
933       d += s.size() + 1;
934     }
935     return &InputSection::discarded;
936   }
937 
938   if (name.startswith(".n")) {
939     // The GNU linker uses .note.GNU-stack section as a marker indicating
940     // that the code in the object file does not expect that the stack is
941     // executable (in terms of NX bit). If all input files have the marker,
942     // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
943     // make the stack non-executable. Most object files have this section as
944     // of 2017.
945     //
946     // But making the stack non-executable is a norm today for security
947     // reasons. Failure to do so may result in a serious security issue.
948     // Therefore, we make LLD always add PT_GNU_STACK unless it is
949     // explicitly told to do otherwise (by -z execstack). Because the stack
950     // executable-ness is controlled solely by command line options,
951     // .note.GNU-stack sections are simply ignored.
952     if (name == ".note.GNU-stack")
953       return &InputSection::discarded;
954 
955     // Object files that use processor features such as Intel Control-Flow
956     // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
957     // .note.gnu.property section containing a bitfield of feature bits like the
958     // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
959     //
960     // Since we merge bitmaps from multiple object files to create a new
961     // .note.gnu.property containing a single AND'ed bitmap, we discard an input
962     // file's .note.gnu.property section.
963     if (name == ".note.gnu.property") {
964       this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
965       return &InputSection::discarded;
966     }
967 
968     // Split stacks is a feature to support a discontiguous stack,
969     // commonly used in the programming language Go. For the details,
970     // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
971     // for split stack will include a .note.GNU-split-stack section.
972     if (name == ".note.GNU-split-stack") {
973       if (config->relocatable) {
974         error(
975             "cannot mix split-stack and non-split-stack in a relocatable link");
976         return &InputSection::discarded;
977       }
978       this->splitStack = true;
979       return &InputSection::discarded;
980     }
981 
982     // An object file cmpiled for split stack, but where some of the
983     // functions were compiled with the no_split_stack_attribute will
984     // include a .note.GNU-no-split-stack section.
985     if (name == ".note.GNU-no-split-stack") {
986       this->someNoSplitStack = true;
987       return &InputSection::discarded;
988     }
989 
990     // Strip existing .note.gnu.build-id sections so that the output won't have
991     // more than one build-id. This is not usually a problem because input
992     // object files normally don't have .build-id sections, but you can create
993     // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
994     // against it.
995     if (name == ".note.gnu.build-id")
996       return &InputSection::discarded;
997   }
998 
999   // The linker merges EH (exception handling) frames and creates a
1000   // .eh_frame_hdr section for runtime. So we handle them with a special
1001   // class. For relocatable outputs, they are just passed through.
1002   if (name == ".eh_frame" && !config->relocatable)
1003     return make<EhInputSection>(*this, sec, name);
1004 
1005   if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
1006     return make<MergeInputSection>(*this, sec, name);
1007   return make<InputSection>(*this, sec, name);
1008 }
1009 
1010 // Initialize this->Symbols. this->Symbols is a parallel array as
1011 // its corresponding ELF symbol table.
1012 template <class ELFT>
1013 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
1014   SymbolTable &symtab = *elf::symtab;
1015 
1016   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1017   symbols.resize(eSyms.size());
1018 
1019   // Some entries have been filled by LazyObjFile.
1020   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1021     if (!symbols[i])
1022       symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1023 
1024   // Perform symbol resolution on non-local symbols.
1025   SmallVector<unsigned, 32> undefineds;
1026   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1027     const Elf_Sym &eSym = eSyms[i];
1028     uint32_t secIdx = eSym.st_shndx;
1029     if (secIdx == SHN_UNDEF) {
1030       undefineds.push_back(i);
1031       continue;
1032     }
1033 
1034     uint8_t binding = eSym.getBinding();
1035     uint8_t stOther = eSym.st_other;
1036     uint8_t type = eSym.getType();
1037     uint64_t value = eSym.st_value;
1038     uint64_t size = eSym.st_size;
1039 
1040     Symbol *sym = symbols[i];
1041     sym->isUsedInRegularObj = true;
1042     if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
1043       if (value == 0 || value >= UINT32_MAX)
1044         fatal(toString(this) + ": common symbol '" + sym->getName() +
1045               "' has invalid alignment: " + Twine(value));
1046       hasCommonSyms = true;
1047       sym->resolve(
1048           CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
1049       continue;
1050     }
1051 
1052     // Handle global defined symbols. Defined::section will be set in postParse.
1053     sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
1054                          nullptr});
1055   }
1056 
1057   // Undefined symbols (excluding those defined relative to non-prevailing
1058   // sections) can trigger recursive extract. Process defined symbols first so
1059   // that the relative order between a defined symbol and an undefined symbol
1060   // does not change the symbol resolution behavior. In addition, a set of
1061   // interconnected symbols will all be resolved to the same file, instead of
1062   // being resolved to different files.
1063   for (unsigned i : undefineds) {
1064     const Elf_Sym &eSym = eSyms[i];
1065     Symbol *sym = symbols[i];
1066     sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
1067                            eSym.getType()});
1068     sym->isUsedInRegularObj = true;
1069     sym->referenced = true;
1070   }
1071 }
1072 
1073 template <class ELFT> void ObjFile<ELFT>::initializeLocalSymbols() {
1074   if (!firstGlobal)
1075     return;
1076   localSymStorage = std::make_unique<SymbolUnion[]>(firstGlobal);
1077   SymbolUnion *locals = localSymStorage.get();
1078 
1079   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1080   for (size_t i = 0, end = firstGlobal; i != end; ++i) {
1081     const Elf_Sym &eSym = eSyms[i];
1082     uint32_t secIdx = eSym.st_shndx;
1083     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1084       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1085     else if (secIdx >= SHN_LORESERVE)
1086       secIdx = 0;
1087     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1088       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1089     if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
1090       error(toString(this) + ": non-local symbol (" + Twine(i) +
1091             ") found at index < .symtab's sh_info (" + Twine(end) + ")");
1092 
1093     InputSectionBase *sec = sections[secIdx];
1094     uint8_t type = eSym.getType();
1095     if (type == STT_FILE)
1096       sourceFile = CHECK(eSym.getName(stringTable), this);
1097     if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
1098       fatal(toString(this) + ": invalid symbol name offset");
1099     StringRef name(stringTable.data() + eSym.st_name);
1100 
1101     symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1102     if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1103       new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1104                                  /*discardedSecIdx=*/secIdx);
1105     else
1106       new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1107                                eSym.st_value, eSym.st_size, sec);
1108     symbols[i]->isUsedInRegularObj = true;
1109   }
1110 }
1111 
1112 // Called after all ObjFile::parse is called for all ObjFiles. This checks
1113 // duplicate symbols and may do symbol property merge in the future.
1114 template <class ELFT> void ObjFile<ELFT>::postParse() {
1115   static std::mutex mu;
1116   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1117   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1118     const Elf_Sym &eSym = eSyms[i];
1119     Symbol &sym = *symbols[i];
1120     uint32_t secIdx = eSym.st_shndx;
1121     uint8_t binding = eSym.getBinding();
1122     if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
1123                       binding != STB_GNU_UNIQUE))
1124       errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
1125                   ") has invalid binding: " + Twine((int)binding));
1126 
1127     // st_value of STT_TLS represents the assigned offset, not the actual
1128     // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1129     // only be referenced by special TLS relocations. It is usually an error if
1130     // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1131     if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
1132         eSym.getType() != STT_NOTYPE)
1133       errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
1134                   toString(sym.file) + "\n>>> in " + toString(this));
1135 
1136     // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1137     // assignment to redefine a symbol without an error.
1138     if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
1139         secIdx == SHN_COMMON)
1140       continue;
1141 
1142     if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1143       secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1144     else if (secIdx >= SHN_LORESERVE)
1145       secIdx = 0;
1146     if (LLVM_UNLIKELY(secIdx >= sections.size()))
1147       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1148     InputSectionBase *sec = sections[secIdx];
1149     if (sec == &InputSection::discarded) {
1150       if (sym.traced) {
1151         printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
1152                                    sym.stOther, sym.type, secIdx},
1153                          sym.getName());
1154       }
1155       if (sym.file == this) {
1156         std::lock_guard<std::mutex> lock(mu);
1157         ctx->nonPrevailingSyms.emplace_back(&sym, secIdx);
1158       }
1159       continue;
1160     }
1161 
1162     if (sym.file == this) {
1163       cast<Defined>(sym).section = sec;
1164       continue;
1165     }
1166 
1167     if (binding == STB_WEAK)
1168       continue;
1169     std::lock_guard<std::mutex> lock(mu);
1170     ctx->duplicates.push_back({&sym, this, sec, eSym.st_value});
1171   }
1172 }
1173 
1174 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1175 // A tentative definition will be promoted to a global definition if there are
1176 // no non-tentative definitions to dominate it. When we hold a tentative
1177 // definition to a symbol and are inspecting archive members for inclusion
1178 // there are 2 ways we can proceed:
1179 //
1180 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1181 //    tentative to real definition has already happened) and not inspect
1182 //    archive members for Global/Weak definitions to replace the tentative
1183 //    definition. An archive member would only be included if it satisfies some
1184 //    other undefined symbol. This is the behavior Gold uses.
1185 //
1186 // 2) Consider the tentative definition as still undefined (ie the promotion to
1187 //    a real definition happens only after all symbol resolution is done).
1188 //    The linker searches archive members for STB_GLOBAL definitions to
1189 //    replace the tentative definition with. This is the behavior used by
1190 //    GNU ld.
1191 //
1192 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1193 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1194 //  (pre F90) FORTRAN code that is packaged into an archive.
1195 //
1196 //  The following functions search archive members for definitions to replace
1197 //  tentative definitions (implementing behavior 2).
1198 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1199                                   StringRef archiveName) {
1200   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1201   for (const irsymtab::Reader::SymbolRef &sym :
1202        symtabFile.TheReader.symbols()) {
1203     if (sym.isGlobal() && sym.getName() == symName)
1204       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1205   }
1206   return false;
1207 }
1208 
1209 template <class ELFT>
1210 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1211                            StringRef archiveName) {
1212   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1213   StringRef stringtable = obj->getStringTable();
1214 
1215   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1216     Expected<StringRef> name = sym.getName(stringtable);
1217     if (name && name.get() == symName)
1218       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1219              !sym.isCommon();
1220   }
1221   return false;
1222 }
1223 
1224 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1225                            StringRef archiveName) {
1226   switch (getELFKind(mb, archiveName)) {
1227   case ELF32LEKind:
1228     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1229   case ELF32BEKind:
1230     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1231   case ELF64LEKind:
1232     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1233   case ELF64BEKind:
1234     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1235   default:
1236     llvm_unreachable("getELFKind");
1237   }
1238 }
1239 
1240 unsigned SharedFile::vernauxNum;
1241 
1242 // Parse the version definitions in the object file if present, and return a
1243 // vector whose nth element contains a pointer to the Elf_Verdef for version
1244 // identifier n. Version identifiers that are not definitions map to nullptr.
1245 template <typename ELFT>
1246 static SmallVector<const void *, 0>
1247 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1248   if (!sec)
1249     return {};
1250 
1251   // Build the Verdefs array by following the chain of Elf_Verdef objects
1252   // from the start of the .gnu.version_d section.
1253   SmallVector<const void *, 0> verdefs;
1254   const uint8_t *verdef = base + sec->sh_offset;
1255   for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1256     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1257     verdef += curVerdef->vd_next;
1258     unsigned verdefIndex = curVerdef->vd_ndx;
1259     if (verdefIndex >= verdefs.size())
1260       verdefs.resize(verdefIndex + 1);
1261     verdefs[verdefIndex] = curVerdef;
1262   }
1263   return verdefs;
1264 }
1265 
1266 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1267 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1268 // implement sophisticated error checking like in llvm-readobj because the value
1269 // of such diagnostics is low.
1270 template <typename ELFT>
1271 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1272                                                const typename ELFT::Shdr *sec) {
1273   if (!sec)
1274     return {};
1275   std::vector<uint32_t> verneeds;
1276   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1277   const uint8_t *verneedBuf = data.begin();
1278   for (unsigned i = 0; i != sec->sh_info; ++i) {
1279     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1280       fatal(toString(this) + " has an invalid Verneed");
1281     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1282     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1283     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1284       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1285         fatal(toString(this) + " has an invalid Vernaux");
1286       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1287       if (aux->vna_name >= this->stringTable.size())
1288         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1289       uint16_t version = aux->vna_other & VERSYM_VERSION;
1290       if (version >= verneeds.size())
1291         verneeds.resize(version + 1);
1292       verneeds[version] = aux->vna_name;
1293       vernauxBuf += aux->vna_next;
1294     }
1295     verneedBuf += vn->vn_next;
1296   }
1297   return verneeds;
1298 }
1299 
1300 // We do not usually care about alignments of data in shared object
1301 // files because the loader takes care of it. However, if we promote a
1302 // DSO symbol to point to .bss due to copy relocation, we need to keep
1303 // the original alignment requirements. We infer it in this function.
1304 template <typename ELFT>
1305 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1306                              const typename ELFT::Sym &sym) {
1307   uint64_t ret = UINT64_MAX;
1308   if (sym.st_value)
1309     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1310   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1311     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1312   return (ret > UINT32_MAX) ? 0 : ret;
1313 }
1314 
1315 // Fully parse the shared object file.
1316 //
1317 // This function parses symbol versions. If a DSO has version information,
1318 // the file has a ".gnu.version_d" section which contains symbol version
1319 // definitions. Each symbol is associated to one version through a table in
1320 // ".gnu.version" section. That table is a parallel array for the symbol
1321 // table, and each table entry contains an index in ".gnu.version_d".
1322 //
1323 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1324 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1325 // ".gnu.version_d".
1326 //
1327 // The file format for symbol versioning is perhaps a bit more complicated
1328 // than necessary, but you can easily understand the code if you wrap your
1329 // head around the data structure described above.
1330 template <class ELFT> void SharedFile::parse() {
1331   using Elf_Dyn = typename ELFT::Dyn;
1332   using Elf_Shdr = typename ELFT::Shdr;
1333   using Elf_Sym = typename ELFT::Sym;
1334   using Elf_Verdef = typename ELFT::Verdef;
1335   using Elf_Versym = typename ELFT::Versym;
1336 
1337   ArrayRef<Elf_Dyn> dynamicTags;
1338   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1339   ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
1340 
1341   const Elf_Shdr *versymSec = nullptr;
1342   const Elf_Shdr *verdefSec = nullptr;
1343   const Elf_Shdr *verneedSec = nullptr;
1344 
1345   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1346   for (const Elf_Shdr &sec : sections) {
1347     switch (sec.sh_type) {
1348     default:
1349       continue;
1350     case SHT_DYNAMIC:
1351       dynamicTags =
1352           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1353       break;
1354     case SHT_GNU_versym:
1355       versymSec = &sec;
1356       break;
1357     case SHT_GNU_verdef:
1358       verdefSec = &sec;
1359       break;
1360     case SHT_GNU_verneed:
1361       verneedSec = &sec;
1362       break;
1363     }
1364   }
1365 
1366   if (versymSec && numELFSyms == 0) {
1367     error("SHT_GNU_versym should be associated with symbol table");
1368     return;
1369   }
1370 
1371   // Search for a DT_SONAME tag to initialize this->soName.
1372   for (const Elf_Dyn &dyn : dynamicTags) {
1373     if (dyn.d_tag == DT_NEEDED) {
1374       uint64_t val = dyn.getVal();
1375       if (val >= this->stringTable.size())
1376         fatal(toString(this) + ": invalid DT_NEEDED entry");
1377       dtNeeded.push_back(this->stringTable.data() + val);
1378     } else if (dyn.d_tag == DT_SONAME) {
1379       uint64_t val = dyn.getVal();
1380       if (val >= this->stringTable.size())
1381         fatal(toString(this) + ": invalid DT_SONAME entry");
1382       soName = this->stringTable.data() + val;
1383     }
1384   }
1385 
1386   // DSOs are uniquified not by filename but by soname.
1387   DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
1388   bool wasInserted;
1389   std::tie(it, wasInserted) =
1390       symtab->soNames.try_emplace(CachedHashStringRef(soName), this);
1391 
1392   // If a DSO appears more than once on the command line with and without
1393   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1394   // user can add an extra DSO with --no-as-needed to force it to be added to
1395   // the dependency list.
1396   it->second->isNeeded |= isNeeded;
1397   if (!wasInserted)
1398     return;
1399 
1400   sharedFiles.push_back(this);
1401 
1402   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1403   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1404 
1405   // Parse ".gnu.version" section which is a parallel array for the symbol
1406   // table. If a given file doesn't have a ".gnu.version" section, we use
1407   // VER_NDX_GLOBAL.
1408   size_t size = numELFSyms - firstGlobal;
1409   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1410   if (versymSec) {
1411     ArrayRef<Elf_Versym> versym =
1412         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1413               this)
1414             .slice(firstGlobal);
1415     for (size_t i = 0; i < size; ++i)
1416       versyms[i] = versym[i].vs_index;
1417   }
1418 
1419   // System libraries can have a lot of symbols with versions. Using a
1420   // fixed buffer for computing the versions name (foo@ver) can save a
1421   // lot of allocations.
1422   SmallString<0> versionedNameBuffer;
1423 
1424   // Add symbols to the symbol table.
1425   SymbolTable &symtab = *elf::symtab;
1426   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1427   for (size_t i = 0, e = syms.size(); i != e; ++i) {
1428     const Elf_Sym &sym = syms[i];
1429 
1430     // ELF spec requires that all local symbols precede weak or global
1431     // symbols in each symbol table, and the index of first non-local symbol
1432     // is stored to sh_info. If a local symbol appears after some non-local
1433     // symbol, that's a violation of the spec.
1434     StringRef name = CHECK(sym.getName(stringTable), this);
1435     if (sym.getBinding() == STB_LOCAL) {
1436       warn("found local symbol '" + name +
1437            "' in global part of symbol table in file " + toString(this));
1438       continue;
1439     }
1440 
1441     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1442     if (sym.isUndefined()) {
1443       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1444       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1445       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1446         if (idx >= verneeds.size()) {
1447           error("corrupt input file: version need index " + Twine(idx) +
1448                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1449                 toString(this));
1450           continue;
1451         }
1452         StringRef verName = stringTable.data() + verneeds[idx];
1453         versionedNameBuffer.clear();
1454         name = saver().save(
1455             (name + "@" + verName).toStringRef(versionedNameBuffer));
1456       }
1457       Symbol *s = symtab.addSymbol(
1458           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1459       s->exportDynamic = true;
1460       if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
1461           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1462         requiredSymbols.push_back(s);
1463       continue;
1464     }
1465 
1466     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1467     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1468     // workaround for this bug.
1469     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1470         name == "_gp_disp")
1471       continue;
1472 
1473     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1474     if (!(versyms[i] & VERSYM_HIDDEN)) {
1475       auto *s = symtab.addSymbol(
1476           SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
1477                        sym.getType(), sym.st_value, sym.st_size, alignment});
1478       if (s->file == this)
1479         s->verdefIndex = idx;
1480     }
1481 
1482     // Also add the symbol with the versioned name to handle undefined symbols
1483     // with explicit versions.
1484     if (idx == VER_NDX_GLOBAL)
1485       continue;
1486 
1487     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1488       error("corrupt input file: version definition index " + Twine(idx) +
1489             " for symbol " + name + " is out of bounds\n>>> defined in " +
1490             toString(this));
1491       continue;
1492     }
1493 
1494     StringRef verName =
1495         stringTable.data() +
1496         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1497     versionedNameBuffer.clear();
1498     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1499     auto *s = symtab.addSymbol(
1500         SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
1501                      sym.getType(), sym.st_value, sym.st_size, alignment});
1502     if (s->file == this)
1503       s->verdefIndex = idx;
1504   }
1505 }
1506 
1507 static ELFKind getBitcodeELFKind(const Triple &t) {
1508   if (t.isLittleEndian())
1509     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1510   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1511 }
1512 
1513 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1514   switch (t.getArch()) {
1515   case Triple::aarch64:
1516   case Triple::aarch64_be:
1517     return EM_AARCH64;
1518   case Triple::amdgcn:
1519   case Triple::r600:
1520     return EM_AMDGPU;
1521   case Triple::arm:
1522   case Triple::thumb:
1523     return EM_ARM;
1524   case Triple::avr:
1525     return EM_AVR;
1526   case Triple::hexagon:
1527     return EM_HEXAGON;
1528   case Triple::mips:
1529   case Triple::mipsel:
1530   case Triple::mips64:
1531   case Triple::mips64el:
1532     return EM_MIPS;
1533   case Triple::msp430:
1534     return EM_MSP430;
1535   case Triple::ppc:
1536   case Triple::ppcle:
1537     return EM_PPC;
1538   case Triple::ppc64:
1539   case Triple::ppc64le:
1540     return EM_PPC64;
1541   case Triple::riscv32:
1542   case Triple::riscv64:
1543     return EM_RISCV;
1544   case Triple::x86:
1545     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1546   case Triple::x86_64:
1547     return EM_X86_64;
1548   default:
1549     error(path + ": could not infer e_machine from bitcode target triple " +
1550           t.str());
1551     return EM_NONE;
1552   }
1553 }
1554 
1555 static uint8_t getOsAbi(const Triple &t) {
1556   switch (t.getOS()) {
1557   case Triple::AMDHSA:
1558     return ELF::ELFOSABI_AMDGPU_HSA;
1559   case Triple::AMDPAL:
1560     return ELF::ELFOSABI_AMDGPU_PAL;
1561   case Triple::Mesa3D:
1562     return ELF::ELFOSABI_AMDGPU_MESA3D;
1563   default:
1564     return ELF::ELFOSABI_NONE;
1565   }
1566 }
1567 
1568 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1569                          uint64_t offsetInArchive, bool lazy)
1570     : InputFile(BitcodeKind, mb) {
1571   this->archiveName = archiveName;
1572   this->lazy = lazy;
1573 
1574   std::string path = mb.getBufferIdentifier().str();
1575   if (config->thinLTOIndexOnly)
1576     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1577 
1578   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1579   // name. If two archives define two members with the same name, this
1580   // causes a collision which result in only one of the objects being taken
1581   // into consideration at LTO time (which very likely causes undefined
1582   // symbols later in the link stage). So we append file offset to make
1583   // filename unique.
1584   StringRef name = archiveName.empty()
1585                        ? saver().save(path)
1586                        : saver().save(archiveName + "(" + path::filename(path) +
1587                                       " at " + utostr(offsetInArchive) + ")");
1588   MemoryBufferRef mbref(mb.getBuffer(), name);
1589 
1590   obj = CHECK(lto::InputFile::create(mbref), this);
1591 
1592   Triple t(obj->getTargetTriple());
1593   ekind = getBitcodeELFKind(t);
1594   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1595   osabi = getOsAbi(t);
1596 }
1597 
1598 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1599   switch (gvVisibility) {
1600   case GlobalValue::DefaultVisibility:
1601     return STV_DEFAULT;
1602   case GlobalValue::HiddenVisibility:
1603     return STV_HIDDEN;
1604   case GlobalValue::ProtectedVisibility:
1605     return STV_PROTECTED;
1606   }
1607   llvm_unreachable("unknown visibility");
1608 }
1609 
1610 template <class ELFT>
1611 static void
1612 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
1613                     const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
1614   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1615   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1616   uint8_t visibility = mapVisibility(objSym.getVisibility());
1617 
1618   if (!sym)
1619     sym = symtab->insert(saver().save(objSym.getName()));
1620 
1621   int c = objSym.getComdatIndex();
1622   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1623     Undefined newSym(&f, StringRef(), binding, visibility, type);
1624     sym->resolve(newSym);
1625     sym->referenced = true;
1626     return;
1627   }
1628 
1629   if (objSym.isCommon()) {
1630     sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
1631                               objSym.getCommonAlignment(),
1632                               objSym.getCommonSize()});
1633   } else {
1634     Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
1635     if (objSym.canBeOmittedFromSymbolTable())
1636       newSym.exportDynamic = false;
1637     sym->resolve(newSym);
1638   }
1639 }
1640 
1641 template <class ELFT> void BitcodeFile::parse() {
1642   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1643     keptComdats.push_back(
1644         s.second == Comdat::NoDeduplicate ||
1645         symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1646             .second);
1647   }
1648 
1649   symbols.resize(obj->symbols().size());
1650   // Process defined symbols first. See the comment in
1651   // ObjFile<ELFT>::initializeSymbols.
1652   for (auto it : llvm::enumerate(obj->symbols()))
1653     if (!it.value().isUndefined()) {
1654       Symbol *&sym = symbols[it.index()];
1655       createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this);
1656     }
1657   for (auto it : llvm::enumerate(obj->symbols()))
1658     if (it.value().isUndefined()) {
1659       Symbol *&sym = symbols[it.index()];
1660       createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this);
1661     }
1662 
1663   for (auto l : obj->getDependentLibraries())
1664     addDependentLibrary(l, this);
1665 }
1666 
1667 void BitcodeFile::parseLazy() {
1668   SymbolTable &symtab = *elf::symtab;
1669   symbols.resize(obj->symbols().size());
1670   for (auto it : llvm::enumerate(obj->symbols()))
1671     if (!it.value().isUndefined()) {
1672       auto *sym = symtab.insert(saver().save(it.value().getName()));
1673       sym->resolve(LazyObject{*this});
1674       symbols[it.index()] = sym;
1675     }
1676 }
1677 
1678 void BitcodeFile::postParse() {
1679   for (auto it : llvm::enumerate(obj->symbols())) {
1680     const Symbol &sym = *symbols[it.index()];
1681     const auto &objSym = it.value();
1682     if (sym.file == this || !sym.isDefined() || objSym.isUndefined() ||
1683         objSym.isCommon() || objSym.isWeak())
1684       continue;
1685     int c = objSym.getComdatIndex();
1686     if (c != -1 && !keptComdats[c])
1687       continue;
1688     reportDuplicate(sym, this, nullptr, 0);
1689   }
1690 }
1691 
1692 void BinaryFile::parse() {
1693   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1694   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1695                                      8, data, ".data");
1696   sections.push_back(section);
1697 
1698   // For each input file foo that is embedded to a result as a binary
1699   // blob, we define _binary_foo_{start,end,size} symbols, so that
1700   // user programs can access blobs by name. Non-alphanumeric
1701   // characters in a filename are replaced with underscore.
1702   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1703   for (size_t i = 0; i < s.size(); ++i)
1704     if (!isAlnum(s[i]))
1705       s[i] = '_';
1706 
1707   llvm::StringSaver &saver = lld::saver();
1708 
1709   symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_start"),
1710                                        STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0,
1711                                        0, section});
1712   symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_end"),
1713                                        STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1714                                        data.size(), 0, section});
1715   symtab->addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_size"),
1716                                        STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1717                                        data.size(), 0, nullptr});
1718 }
1719 
1720 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1721                                  uint64_t offsetInArchive) {
1722   if (isBitcode(mb))
1723     return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false);
1724 
1725   switch (getELFKind(mb, archiveName)) {
1726   case ELF32LEKind:
1727     return make<ObjFile<ELF32LE>>(mb, archiveName);
1728   case ELF32BEKind:
1729     return make<ObjFile<ELF32BE>>(mb, archiveName);
1730   case ELF64LEKind:
1731     return make<ObjFile<ELF64LE>>(mb, archiveName);
1732   case ELF64BEKind:
1733     return make<ObjFile<ELF64BE>>(mb, archiveName);
1734   default:
1735     llvm_unreachable("getELFKind");
1736   }
1737 }
1738 
1739 InputFile *elf::createLazyFile(MemoryBufferRef mb, StringRef archiveName,
1740                                uint64_t offsetInArchive) {
1741   if (isBitcode(mb))
1742     return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/true);
1743 
1744   auto *file =
1745       cast<ELFFileBase>(createObjectFile(mb, archiveName, offsetInArchive));
1746   file->lazy = true;
1747   return file;
1748 }
1749 
1750 template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1751   const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
1752   SymbolTable &symtab = *elf::symtab;
1753 
1754   symbols.resize(eSyms.size());
1755   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1756     if (eSyms[i].st_shndx != SHN_UNDEF)
1757       symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1758 
1759   // Replace existing symbols with LazyObject symbols.
1760   //
1761   // resolve() may trigger this->extract() if an existing symbol is an undefined
1762   // symbol. If that happens, this function has served its purpose, and we can
1763   // exit from the loop early.
1764   for (Symbol *sym : makeArrayRef(symbols).slice(firstGlobal))
1765     if (sym) {
1766       sym->resolve(LazyObject{*this});
1767       if (!lazy)
1768         return;
1769     }
1770 }
1771 
1772 bool InputFile::shouldExtractForCommon(StringRef name) {
1773   if (isBitcode(mb))
1774     return isBitcodeNonCommonDef(mb, name, archiveName);
1775 
1776   return isNonCommonDef(mb, name, archiveName);
1777 }
1778 
1779 std::string elf::replaceThinLTOSuffix(StringRef path) {
1780   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1781   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1782 
1783   if (path.consume_back(suffix))
1784     return (path + repl).str();
1785   return std::string(path);
1786 }
1787 
1788 template void BitcodeFile::parse<ELF32LE>();
1789 template void BitcodeFile::parse<ELF32BE>();
1790 template void BitcodeFile::parse<ELF64LE>();
1791 template void BitcodeFile::parse<ELF64BE>();
1792 
1793 template class elf::ObjFile<ELF32LE>;
1794 template class elf::ObjFile<ELF32BE>;
1795 template class elf::ObjFile<ELF64LE>;
1796 template class elf::ObjFile<ELF64BE>;
1797 
1798 template void SharedFile::parse<ELF32LE>();
1799 template void SharedFile::parse<ELF32BE>();
1800 template void SharedFile::parse<ELF64LE>();
1801 template void SharedFile::parse<ELF64BE>();
1802