1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = std::string(f->getName());
63     else
64       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
65   }
66   return f->toStringCache;
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   // The --chroot option changes our virtual root directory.
109   // This is useful when you are dealing with files created by --reproduce.
110   if (!config->chroot.empty() && path.startswith("/"))
111     path = saver.save(config->chroot + path);
112 
113   log(path);
114   config->dependencyFiles.insert(llvm::CachedHashString(path));
115 
116   auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
117   if (auto ec = mbOrErr.getError()) {
118     error("cannot open " + path + ": " + ec.message());
119     return None;
120   }
121 
122   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
123   MemoryBufferRef mbref = mb->getMemBufferRef();
124   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
125 
126   if (tar)
127     tar->append(relativeToRoot(path), mbref.getBuffer());
128   return mbref;
129 }
130 
131 // All input object files must be for the same architecture
132 // (e.g. it does not make sense to link x86 object files with
133 // MIPS object files.) This function checks for that error.
134 static bool isCompatible(InputFile *file) {
135   if (!file->isElf() && !isa<BitcodeFile>(file))
136     return true;
137 
138   if (file->ekind == config->ekind && file->emachine == config->emachine) {
139     if (config->emachine != EM_MIPS)
140       return true;
141     if (isMipsN32Abi(file) == config->mipsN32Abi)
142       return true;
143   }
144 
145   StringRef target =
146       !config->bfdname.empty() ? config->bfdname : config->emulation;
147   if (!target.empty()) {
148     error(toString(file) + " is incompatible with " + target);
149     return false;
150   }
151 
152   InputFile *existing;
153   if (!objectFiles.empty())
154     existing = objectFiles[0];
155   else if (!sharedFiles.empty())
156     existing = sharedFiles[0];
157   else if (!bitcodeFiles.empty())
158     existing = bitcodeFiles[0];
159   else
160     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
161                      "determine target emulation");
162 
163   error(toString(file) + " is incompatible with " + toString(existing));
164   return false;
165 }
166 
167 template <class ELFT> static void doParseFile(InputFile *file) {
168   if (!isCompatible(file))
169     return;
170 
171   // Binary file
172   if (auto *f = dyn_cast<BinaryFile>(file)) {
173     binaryFiles.push_back(f);
174     f->parse();
175     return;
176   }
177 
178   // .a file
179   if (auto *f = dyn_cast<ArchiveFile>(file)) {
180     archiveFiles.push_back(f);
181     f->parse();
182     return;
183   }
184 
185   // Lazy object file
186   if (auto *f = dyn_cast<LazyObjFile>(file)) {
187     lazyObjFiles.push_back(f);
188     f->parse<ELFT>();
189     return;
190   }
191 
192   if (config->trace)
193     message(toString(file));
194 
195   // .so file
196   if (auto *f = dyn_cast<SharedFile>(file)) {
197     f->parse<ELFT>();
198     return;
199   }
200 
201   // LLVM bitcode file
202   if (auto *f = dyn_cast<BitcodeFile>(file)) {
203     bitcodeFiles.push_back(f);
204     f->parse<ELFT>();
205     return;
206   }
207 
208   // Regular object file
209   objectFiles.push_back(file);
210   cast<ObjFile<ELFT>>(file)->parse();
211 }
212 
213 // Add symbols in File to the symbol table.
214 void elf::parseFile(InputFile *file) {
215   switch (config->ekind) {
216   case ELF32LEKind:
217     doParseFile<ELF32LE>(file);
218     return;
219   case ELF32BEKind:
220     doParseFile<ELF32BE>(file);
221     return;
222   case ELF64LEKind:
223     doParseFile<ELF64LE>(file);
224     return;
225   case ELF64BEKind:
226     doParseFile<ELF64BE>(file);
227     return;
228   default:
229     llvm_unreachable("unknown ELFT");
230   }
231 }
232 
233 // Concatenates arguments to construct a string representing an error location.
234 static std::string createFileLineMsg(StringRef path, unsigned line) {
235   std::string filename = std::string(path::filename(path));
236   std::string lineno = ":" + std::to_string(line);
237   if (filename == path)
238     return filename + lineno;
239   return filename + lineno + " (" + path.str() + lineno + ")";
240 }
241 
242 template <class ELFT>
243 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
244                                 InputSectionBase &sec, uint64_t offset) {
245   // In DWARF, functions and variables are stored to different places.
246   // First, lookup a function for a given offset.
247   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
248     return createFileLineMsg(info->FileName, info->Line);
249 
250   // If it failed, lookup again as a variable.
251   if (Optional<std::pair<std::string, unsigned>> fileLine =
252           file.getVariableLoc(sym.getName()))
253     return createFileLineMsg(fileLine->first, fileLine->second);
254 
255   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
256   return std::string(file.sourceFile);
257 }
258 
259 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
260                                  uint64_t offset) {
261   if (kind() != ObjKind)
262     return "";
263   switch (config->ekind) {
264   default:
265     llvm_unreachable("Invalid kind");
266   case ELF32LEKind:
267     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
268   case ELF32BEKind:
269     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
270   case ELF64LEKind:
271     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
272   case ELF64BEKind:
273     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
274   }
275 }
276 
277 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
278   llvm::call_once(initDwarf, [this]() {
279     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
280         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
281         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
282         [&](Error warning) {
283           warn(getName() + ": " + toString(std::move(warning)));
284         }));
285   });
286 
287   return dwarf.get();
288 }
289 
290 // Returns the pair of file name and line number describing location of data
291 // object (variable, array, etc) definition.
292 template <class ELFT>
293 Optional<std::pair<std::string, unsigned>>
294 ObjFile<ELFT>::getVariableLoc(StringRef name) {
295   return getDwarf()->getVariableLoc(name);
296 }
297 
298 // Returns source line information for a given offset
299 // using DWARF debug info.
300 template <class ELFT>
301 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
302                                                   uint64_t offset) {
303   // Detect SectionIndex for specified section.
304   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
305   ArrayRef<InputSectionBase *> sections = s->file->getSections();
306   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
307     if (s == sections[curIndex]) {
308       sectionIndex = curIndex;
309       break;
310     }
311   }
312 
313   return getDwarf()->getDILineInfo(offset, sectionIndex);
314 }
315 
316 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
317   ekind = getELFKind(mb, "");
318 
319   switch (ekind) {
320   case ELF32LEKind:
321     init<ELF32LE>();
322     break;
323   case ELF32BEKind:
324     init<ELF32BE>();
325     break;
326   case ELF64LEKind:
327     init<ELF64LE>();
328     break;
329   case ELF64BEKind:
330     init<ELF64BE>();
331     break;
332   default:
333     llvm_unreachable("getELFKind");
334   }
335 }
336 
337 template <typename Elf_Shdr>
338 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
339   for (const Elf_Shdr &sec : sections)
340     if (sec.sh_type == type)
341       return &sec;
342   return nullptr;
343 }
344 
345 template <class ELFT> void ELFFileBase::init() {
346   using Elf_Shdr = typename ELFT::Shdr;
347   using Elf_Sym = typename ELFT::Sym;
348 
349   // Initialize trivial attributes.
350   const ELFFile<ELFT> &obj = getObj<ELFT>();
351   emachine = obj.getHeader().e_machine;
352   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
353   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
354 
355   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
356 
357   // Find a symbol table.
358   bool isDSO =
359       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
360   const Elf_Shdr *symtabSec =
361       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
362 
363   if (!symtabSec)
364     return;
365 
366   // Initialize members corresponding to a symbol table.
367   firstGlobal = symtabSec->sh_info;
368 
369   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
370   if (firstGlobal == 0 || firstGlobal > eSyms.size())
371     fatal(toString(this) + ": invalid sh_info in symbol table");
372 
373   elfSyms = reinterpret_cast<const void *>(eSyms.data());
374   numELFSyms = eSyms.size();
375   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
376 }
377 
378 template <class ELFT>
379 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
380   return CHECK(
381       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
382       this);
383 }
384 
385 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
386   if (this->symbols.empty())
387     return {};
388   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
389 }
390 
391 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
392   return makeArrayRef(this->symbols).slice(this->firstGlobal);
393 }
394 
395 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
396   // Read a section table. justSymbols is usually false.
397   if (this->justSymbols)
398     initializeJustSymbols();
399   else
400     initializeSections(ignoreComdats);
401 
402   // Read a symbol table.
403   initializeSymbols();
404 }
405 
406 // Sections with SHT_GROUP and comdat bits define comdat section groups.
407 // They are identified and deduplicated by group name. This function
408 // returns a group name.
409 template <class ELFT>
410 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
411                                               const Elf_Shdr &sec) {
412   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
413   if (sec.sh_info >= symbols.size())
414     fatal(toString(this) + ": invalid symbol index");
415   const typename ELFT::Sym &sym = symbols[sec.sh_info];
416   StringRef signature = CHECK(sym.getName(this->stringTable), this);
417 
418   // As a special case, if a symbol is a section symbol and has no name,
419   // we use a section name as a signature.
420   //
421   // Such SHT_GROUP sections are invalid from the perspective of the ELF
422   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
423   // older produce such sections as outputs for the -r option, so we need
424   // a bug-compatibility.
425   if (signature.empty() && sym.getType() == STT_SECTION)
426     return getSectionName(sec);
427   return signature;
428 }
429 
430 template <class ELFT>
431 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
432   if (!(sec.sh_flags & SHF_MERGE))
433     return false;
434 
435   // On a regular link we don't merge sections if -O0 (default is -O1). This
436   // sometimes makes the linker significantly faster, although the output will
437   // be bigger.
438   //
439   // Doing the same for -r would create a problem as it would combine sections
440   // with different sh_entsize. One option would be to just copy every SHF_MERGE
441   // section as is to the output. While this would produce a valid ELF file with
442   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
443   // they see two .debug_str. We could have separate logic for combining
444   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
445   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
446   // logic for -r.
447   if (config->optimize == 0 && !config->relocatable)
448     return false;
449 
450   // A mergeable section with size 0 is useless because they don't have
451   // any data to merge. A mergeable string section with size 0 can be
452   // argued as invalid because it doesn't end with a null character.
453   // We'll avoid a mess by handling them as if they were non-mergeable.
454   if (sec.sh_size == 0)
455     return false;
456 
457   // Check for sh_entsize. The ELF spec is not clear about the zero
458   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
459   // the section does not hold a table of fixed-size entries". We know
460   // that Rust 1.13 produces a string mergeable section with a zero
461   // sh_entsize. Here we just accept it rather than being picky about it.
462   uint64_t entSize = sec.sh_entsize;
463   if (entSize == 0)
464     return false;
465   if (sec.sh_size % entSize)
466     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
467           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
468           Twine(entSize) + ")");
469 
470   if (sec.sh_flags & SHF_WRITE)
471     fatal(toString(this) + ":(" + name +
472           "): writable SHF_MERGE section is not supported");
473 
474   return true;
475 }
476 
477 // This is for --just-symbols.
478 //
479 // --just-symbols is a very minor feature that allows you to link your
480 // output against other existing program, so that if you load both your
481 // program and the other program into memory, your output can refer the
482 // other program's symbols.
483 //
484 // When the option is given, we link "just symbols". The section table is
485 // initialized with null pointers.
486 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
487   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
488   this->sections.resize(sections.size());
489 }
490 
491 // An ELF object file may contain a `.deplibs` section. If it exists, the
492 // section contains a list of library specifiers such as `m` for libm. This
493 // function resolves a given name by finding the first matching library checking
494 // the various ways that a library can be specified to LLD. This ELF extension
495 // is a form of autolinking and is called `dependent libraries`. It is currently
496 // unique to LLVM and lld.
497 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
498   if (!config->dependentLibraries)
499     return;
500   if (fs::exists(specifier))
501     driver->addFile(specifier, /*withLOption=*/false);
502   else if (Optional<std::string> s = findFromSearchPaths(specifier))
503     driver->addFile(*s, /*withLOption=*/true);
504   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
505     driver->addFile(*s, /*withLOption=*/true);
506   else
507     error(toString(f) +
508           ": unable to find library from dependent library specifier: " +
509           specifier);
510 }
511 
512 // Record the membership of a section group so that in the garbage collection
513 // pass, section group members are kept or discarded as a unit.
514 template <class ELFT>
515 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
516                                ArrayRef<typename ELFT::Word> entries) {
517   bool hasAlloc = false;
518   for (uint32_t index : entries.slice(1)) {
519     if (index >= sections.size())
520       return;
521     if (InputSectionBase *s = sections[index])
522       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
523         hasAlloc = true;
524   }
525 
526   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
527   // collection. See the comment in markLive(). This rule retains .debug_types
528   // and .rela.debug_types.
529   if (!hasAlloc)
530     return;
531 
532   // Connect the members in a circular doubly-linked list via
533   // nextInSectionGroup.
534   InputSectionBase *head;
535   InputSectionBase *prev = nullptr;
536   for (uint32_t index : entries.slice(1)) {
537     InputSectionBase *s = sections[index];
538     if (!s || s == &InputSection::discarded)
539       continue;
540     if (prev)
541       prev->nextInSectionGroup = s;
542     else
543       head = s;
544     prev = s;
545   }
546   if (prev)
547     prev->nextInSectionGroup = head;
548 }
549 
550 template <class ELFT>
551 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
552   const ELFFile<ELFT> &obj = this->getObj();
553 
554   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
555   uint64_t size = objSections.size();
556   this->sections.resize(size);
557   this->sectionStringTable =
558       CHECK(obj.getSectionStringTable(objSections), this);
559 
560   std::vector<ArrayRef<Elf_Word>> selectedGroups;
561 
562   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
563     if (this->sections[i] == &InputSection::discarded)
564       continue;
565     const Elf_Shdr &sec = objSections[i];
566 
567     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
568       cgProfile =
569           check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec));
570 
571     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
572     // if -r is given, we'll let the final link discard such sections.
573     // This is compatible with GNU.
574     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
575       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
576         // We ignore the address-significance table if we know that the object
577         // file was created by objcopy or ld -r. This is because these tools
578         // will reorder the symbols in the symbol table, invalidating the data
579         // in the address-significance table, which refers to symbols by index.
580         if (sec.sh_link != 0)
581           this->addrsigSec = &sec;
582         else if (config->icf == ICFLevel::Safe)
583           warn(toString(this) + ": --icf=safe is incompatible with object "
584                                 "files created using objcopy or ld -r");
585       }
586       this->sections[i] = &InputSection::discarded;
587       continue;
588     }
589 
590     switch (sec.sh_type) {
591     case SHT_GROUP: {
592       // De-duplicate section groups by their signatures.
593       StringRef signature = getShtGroupSignature(objSections, sec);
594       this->sections[i] = &InputSection::discarded;
595 
596 
597       ArrayRef<Elf_Word> entries =
598           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
599       if (entries.empty())
600         fatal(toString(this) + ": empty SHT_GROUP");
601 
602       // The first word of a SHT_GROUP section contains flags. Currently,
603       // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
604       // An group with the empty flag doesn't define anything; such sections
605       // are just skipped.
606       if (entries[0] == 0)
607         continue;
608 
609       if (entries[0] != GRP_COMDAT)
610         fatal(toString(this) + ": unsupported SHT_GROUP format");
611 
612       bool isNew =
613           ignoreComdats ||
614           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
615               .second;
616       if (isNew) {
617         if (config->relocatable)
618           this->sections[i] = createInputSection(sec);
619         selectedGroups.push_back(entries);
620         continue;
621       }
622 
623       // Otherwise, discard group members.
624       for (uint32_t secIndex : entries.slice(1)) {
625         if (secIndex >= size)
626           fatal(toString(this) +
627                 ": invalid section index in group: " + Twine(secIndex));
628         this->sections[secIndex] = &InputSection::discarded;
629       }
630       break;
631     }
632     case SHT_SYMTAB_SHNDX:
633       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
634       break;
635     case SHT_SYMTAB:
636     case SHT_STRTAB:
637     case SHT_REL:
638     case SHT_RELA:
639     case SHT_NULL:
640       break;
641     default:
642       this->sections[i] = createInputSection(sec);
643     }
644   }
645 
646   // We have a second loop. It is used to:
647   // 1) handle SHF_LINK_ORDER sections.
648   // 2) create SHT_REL[A] sections. In some cases the section header index of a
649   //    relocation section may be smaller than that of the relocated section. In
650   //    such cases, the relocation section would attempt to reference a target
651   //    section that has not yet been created. For simplicity, delay creation of
652   //    relocation sections until now.
653   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
654     if (this->sections[i] == &InputSection::discarded)
655       continue;
656     const Elf_Shdr &sec = objSections[i];
657 
658     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
659       this->sections[i] = createInputSection(sec);
660 
661     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
662     // the flag.
663     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
664       continue;
665 
666     InputSectionBase *linkSec = nullptr;
667     if (sec.sh_link < this->sections.size())
668       linkSec = this->sections[sec.sh_link];
669     if (!linkSec)
670       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
671 
672     // A SHF_LINK_ORDER section is discarded if its linked-to section is
673     // discarded.
674     InputSection *isec = cast<InputSection>(this->sections[i]);
675     linkSec->dependentSections.push_back(isec);
676     if (!isa<InputSection>(linkSec))
677       error("a section " + isec->name +
678             " with SHF_LINK_ORDER should not refer a non-regular section: " +
679             toString(linkSec));
680   }
681 
682   for (ArrayRef<Elf_Word> entries : selectedGroups)
683     handleSectionGroup<ELFT>(this->sections, entries);
684 }
685 
686 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
687 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
688 // the input objects have been compiled.
689 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
690                              const InputFile *f) {
691   Optional<unsigned> attr =
692       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
693   if (!attr.hasValue())
694     // If an ABI tag isn't present then it is implicitly given the value of 0
695     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
696     // including some in glibc that don't use FP args (and should have value 3)
697     // don't have the attribute so we do not consider an implicit value of 0
698     // as a clash.
699     return;
700 
701   unsigned vfpArgs = attr.getValue();
702   ARMVFPArgKind arg;
703   switch (vfpArgs) {
704   case ARMBuildAttrs::BaseAAPCS:
705     arg = ARMVFPArgKind::Base;
706     break;
707   case ARMBuildAttrs::HardFPAAPCS:
708     arg = ARMVFPArgKind::VFP;
709     break;
710   case ARMBuildAttrs::ToolChainFPPCS:
711     // Tool chain specific convention that conforms to neither AAPCS variant.
712     arg = ARMVFPArgKind::ToolChain;
713     break;
714   case ARMBuildAttrs::CompatibleFPAAPCS:
715     // Object compatible with all conventions.
716     return;
717   default:
718     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
719     return;
720   }
721   // Follow ld.bfd and error if there is a mix of calling conventions.
722   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
723     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
724   else
725     config->armVFPArgs = arg;
726 }
727 
728 // The ARM support in lld makes some use of instructions that are not available
729 // on all ARM architectures. Namely:
730 // - Use of BLX instruction for interworking between ARM and Thumb state.
731 // - Use of the extended Thumb branch encoding in relocation.
732 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
733 // The ARM Attributes section contains information about the architecture chosen
734 // at compile time. We follow the convention that if at least one input object
735 // is compiled with an architecture that supports these features then lld is
736 // permitted to use them.
737 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
738   Optional<unsigned> attr =
739       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
740   if (!attr.hasValue())
741     return;
742   auto arch = attr.getValue();
743   switch (arch) {
744   case ARMBuildAttrs::Pre_v4:
745   case ARMBuildAttrs::v4:
746   case ARMBuildAttrs::v4T:
747     // Architectures prior to v5 do not support BLX instruction
748     break;
749   case ARMBuildAttrs::v5T:
750   case ARMBuildAttrs::v5TE:
751   case ARMBuildAttrs::v5TEJ:
752   case ARMBuildAttrs::v6:
753   case ARMBuildAttrs::v6KZ:
754   case ARMBuildAttrs::v6K:
755     config->armHasBlx = true;
756     // Architectures used in pre-Cortex processors do not support
757     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
758     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
759     break;
760   default:
761     // All other Architectures have BLX and extended branch encoding
762     config->armHasBlx = true;
763     config->armJ1J2BranchEncoding = true;
764     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
765       // All Architectures used in Cortex processors with the exception
766       // of v6-M and v6S-M have the MOVT and MOVW instructions.
767       config->armHasMovtMovw = true;
768     break;
769   }
770 }
771 
772 // If a source file is compiled with x86 hardware-assisted call flow control
773 // enabled, the generated object file contains feature flags indicating that
774 // fact. This function reads the feature flags and returns it.
775 //
776 // Essentially we want to read a single 32-bit value in this function, but this
777 // function is rather complicated because the value is buried deep inside a
778 // .note.gnu.property section.
779 //
780 // The section consists of one or more NOTE records. Each NOTE record consists
781 // of zero or more type-length-value fields. We want to find a field of a
782 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
783 // the ABI is unnecessarily complicated.
784 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
785   using Elf_Nhdr = typename ELFT::Nhdr;
786   using Elf_Note = typename ELFT::Note;
787 
788   uint32_t featuresSet = 0;
789   ArrayRef<uint8_t> data = sec.data();
790   auto reportFatal = [&](const uint8_t *place, const char *msg) {
791     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
792           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
793   };
794   while (!data.empty()) {
795     // Read one NOTE record.
796     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
797     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
798       reportFatal(data.data(), "data is too short");
799 
800     Elf_Note note(*nhdr);
801     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
802       data = data.slice(nhdr->getSize());
803       continue;
804     }
805 
806     uint32_t featureAndType = config->emachine == EM_AARCH64
807                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
808                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
809 
810     // Read a body of a NOTE record, which consists of type-length-value fields.
811     ArrayRef<uint8_t> desc = note.getDesc();
812     while (!desc.empty()) {
813       const uint8_t *place = desc.data();
814       if (desc.size() < 8)
815         reportFatal(place, "program property is too short");
816       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
817       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
818       desc = desc.slice(8);
819       if (desc.size() < size)
820         reportFatal(place, "program property is too short");
821 
822       if (type == featureAndType) {
823         // We found a FEATURE_1_AND field. There may be more than one of these
824         // in a .note.gnu.property section, for a relocatable object we
825         // accumulate the bits set.
826         if (size < 4)
827           reportFatal(place, "FEATURE_1_AND entry is too short");
828         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
829       }
830 
831       // Padding is present in the note descriptor, if necessary.
832       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
833     }
834 
835     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
836     data = data.slice(nhdr->getSize());
837   }
838 
839   return featuresSet;
840 }
841 
842 template <class ELFT>
843 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
844   uint32_t idx = sec.sh_info;
845   if (idx >= this->sections.size())
846     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
847   InputSectionBase *target = this->sections[idx];
848 
849   // Strictly speaking, a relocation section must be included in the
850   // group of the section it relocates. However, LLVM 3.3 and earlier
851   // would fail to do so, so we gracefully handle that case.
852   if (target == &InputSection::discarded)
853     return nullptr;
854 
855   if (!target)
856     fatal(toString(this) + ": unsupported relocation reference");
857   return target;
858 }
859 
860 // Create a regular InputSection class that has the same contents
861 // as a given section.
862 static InputSection *toRegularSection(MergeInputSection *sec) {
863   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
864                             sec->data(), sec->name);
865 }
866 
867 template <class ELFT>
868 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
869   StringRef name = getSectionName(sec);
870 
871   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
872     ARMAttributeParser attributes;
873     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
874     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
875                                                  ? support::little
876                                                  : support::big)) {
877       auto *isec = make<InputSection>(*this, sec, name);
878       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
879     } else {
880       updateSupportedARMFeatures(attributes);
881       updateARMVFPArgs(attributes, this);
882 
883       // FIXME: Retain the first attribute section we see. The eglibc ARM
884       // dynamic loaders require the presence of an attribute section for dlopen
885       // to work. In a full implementation we would merge all attribute
886       // sections.
887       if (in.attributes == nullptr) {
888         in.attributes = make<InputSection>(*this, sec, name);
889         return in.attributes;
890       }
891       return &InputSection::discarded;
892     }
893   }
894 
895   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
896     RISCVAttributeParser attributes;
897     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
898     if (Error e = attributes.parse(contents, support::little)) {
899       auto *isec = make<InputSection>(*this, sec, name);
900       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
901     } else {
902       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
903       // present.
904 
905       // FIXME: Retain the first attribute section we see. Tools such as
906       // llvm-objdump make use of the attribute section to determine which
907       // standard extensions to enable. In a full implementation we would merge
908       // all attribute sections.
909       if (in.attributes == nullptr) {
910         in.attributes = make<InputSection>(*this, sec, name);
911         return in.attributes;
912       }
913       return &InputSection::discarded;
914     }
915   }
916 
917   switch (sec.sh_type) {
918   case SHT_LLVM_DEPENDENT_LIBRARIES: {
919     if (config->relocatable)
920       break;
921     ArrayRef<char> data =
922         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
923     if (!data.empty() && data.back() != '\0') {
924       error(toString(this) +
925             ": corrupted dependent libraries section (unterminated string): " +
926             name);
927       return &InputSection::discarded;
928     }
929     for (const char *d = data.begin(), *e = data.end(); d < e;) {
930       StringRef s(d);
931       addDependentLibrary(s, this);
932       d += s.size() + 1;
933     }
934     return &InputSection::discarded;
935   }
936   case SHT_RELA:
937   case SHT_REL: {
938     // Find a relocation target section and associate this section with that.
939     // Target may have been discarded if it is in a different section group
940     // and the group is discarded, even though it's a violation of the
941     // spec. We handle that situation gracefully by discarding dangling
942     // relocation sections.
943     InputSectionBase *target = getRelocTarget(sec);
944     if (!target)
945       return nullptr;
946 
947     // ELF spec allows mergeable sections with relocations, but they are
948     // rare, and it is in practice hard to merge such sections by contents,
949     // because applying relocations at end of linking changes section
950     // contents. So, we simply handle such sections as non-mergeable ones.
951     // Degrading like this is acceptable because section merging is optional.
952     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
953       target = toRegularSection(ms);
954       this->sections[sec.sh_info] = target;
955     }
956 
957     if (target->firstRelocation)
958       fatal(toString(this) +
959             ": multiple relocation sections to one section are not supported");
960 
961     if (sec.sh_type == SHT_RELA) {
962       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this);
963       target->firstRelocation = rels.begin();
964       target->numRelocations = rels.size();
965       target->areRelocsRela = true;
966     } else {
967       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this);
968       target->firstRelocation = rels.begin();
969       target->numRelocations = rels.size();
970       target->areRelocsRela = false;
971     }
972     assert(isUInt<31>(target->numRelocations));
973 
974     // Relocation sections are usually removed from the output, so return
975     // `nullptr` for the normal case. However, if -r or --emit-relocs is
976     // specified, we need to copy them to the output. (Some post link analysis
977     // tools specify --emit-relocs to obtain the information.)
978     if (!config->relocatable && !config->emitRelocs)
979       return nullptr;
980     InputSection *relocSec = make<InputSection>(*this, sec, name);
981     // If the relocated section is discarded (due to /DISCARD/ or
982     // --gc-sections), the relocation section should be discarded as well.
983     target->dependentSections.push_back(relocSec);
984     return relocSec;
985   }
986   }
987 
988   // The GNU linker uses .note.GNU-stack section as a marker indicating
989   // that the code in the object file does not expect that the stack is
990   // executable (in terms of NX bit). If all input files have the marker,
991   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
992   // make the stack non-executable. Most object files have this section as
993   // of 2017.
994   //
995   // But making the stack non-executable is a norm today for security
996   // reasons. Failure to do so may result in a serious security issue.
997   // Therefore, we make LLD always add PT_GNU_STACK unless it is
998   // explicitly told to do otherwise (by -z execstack). Because the stack
999   // executable-ness is controlled solely by command line options,
1000   // .note.GNU-stack sections are simply ignored.
1001   if (name == ".note.GNU-stack")
1002     return &InputSection::discarded;
1003 
1004   // Object files that use processor features such as Intel Control-Flow
1005   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1006   // .note.gnu.property section containing a bitfield of feature bits like the
1007   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1008   //
1009   // Since we merge bitmaps from multiple object files to create a new
1010   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1011   // file's .note.gnu.property section.
1012   if (name == ".note.gnu.property") {
1013     this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1014     return &InputSection::discarded;
1015   }
1016 
1017   // Split stacks is a feature to support a discontiguous stack,
1018   // commonly used in the programming language Go. For the details,
1019   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1020   // for split stack will include a .note.GNU-split-stack section.
1021   if (name == ".note.GNU-split-stack") {
1022     if (config->relocatable) {
1023       error("cannot mix split-stack and non-split-stack in a relocatable link");
1024       return &InputSection::discarded;
1025     }
1026     this->splitStack = true;
1027     return &InputSection::discarded;
1028   }
1029 
1030   // An object file cmpiled for split stack, but where some of the
1031   // functions were compiled with the no_split_stack_attribute will
1032   // include a .note.GNU-no-split-stack section.
1033   if (name == ".note.GNU-no-split-stack") {
1034     this->someNoSplitStack = true;
1035     return &InputSection::discarded;
1036   }
1037 
1038   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1039   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1040   // sections. Drop those sections to avoid duplicate symbol errors.
1041   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1042   // fixed for a while.
1043   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1044       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1045     return &InputSection::discarded;
1046 
1047   // If we are creating a new .build-id section, strip existing .build-id
1048   // sections so that the output won't have more than one .build-id.
1049   // This is not usually a problem because input object files normally don't
1050   // have .build-id sections, but you can create such files by
1051   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1052   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1053     return &InputSection::discarded;
1054 
1055   // The linker merges EH (exception handling) frames and creates a
1056   // .eh_frame_hdr section for runtime. So we handle them with a special
1057   // class. For relocatable outputs, they are just passed through.
1058   if (name == ".eh_frame" && !config->relocatable)
1059     return make<EhInputSection>(*this, sec, name);
1060 
1061   if (shouldMerge(sec, name))
1062     return make<MergeInputSection>(*this, sec, name);
1063   return make<InputSection>(*this, sec, name);
1064 }
1065 
1066 template <class ELFT>
1067 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1068   return CHECK(getObj().getSectionName(sec, sectionStringTable), this);
1069 }
1070 
1071 // Initialize this->Symbols. this->Symbols is a parallel array as
1072 // its corresponding ELF symbol table.
1073 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1074   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1075   this->symbols.resize(eSyms.size());
1076 
1077   // Fill in InputFile::symbols. Some entries have been initialized
1078   // because of LazyObjFile.
1079   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1080     if (this->symbols[i])
1081       continue;
1082     const Elf_Sym &eSym = eSyms[i];
1083     uint32_t secIdx = getSectionIndex(eSym);
1084     if (secIdx >= this->sections.size())
1085       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1086     if (eSym.getBinding() != STB_LOCAL) {
1087       if (i < firstGlobal)
1088         error(toString(this) + ": non-local symbol (" + Twine(i) +
1089               ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1090               ")");
1091       this->symbols[i] =
1092           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1093       continue;
1094     }
1095 
1096     // Handle local symbols. Local symbols are not added to the symbol
1097     // table because they are not visible from other object files. We
1098     // allocate symbol instances and add their pointers to symbols.
1099     if (i >= firstGlobal)
1100       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1101                   ") found at index >= .symtab's sh_info (" +
1102                   Twine(firstGlobal) + ")");
1103 
1104     InputSectionBase *sec = this->sections[secIdx];
1105     uint8_t type = eSym.getType();
1106     if (type == STT_FILE)
1107       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1108     if (this->stringTable.size() <= eSym.st_name)
1109       fatal(toString(this) + ": invalid symbol name offset");
1110     StringRefZ name = this->stringTable.data() + eSym.st_name;
1111 
1112     if (eSym.st_shndx == SHN_UNDEF)
1113       this->symbols[i] =
1114           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1115     else if (sec == &InputSection::discarded)
1116       this->symbols[i] =
1117           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1118                           /*discardedSecIdx=*/secIdx);
1119     else
1120       this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1121                                        type, eSym.st_value, eSym.st_size, sec);
1122   }
1123 
1124   // Symbol resolution of non-local symbols.
1125   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1126     const Elf_Sym &eSym = eSyms[i];
1127     uint8_t binding = eSym.getBinding();
1128     if (binding == STB_LOCAL)
1129       continue; // Errored above.
1130 
1131     uint32_t secIdx = getSectionIndex(eSym);
1132     InputSectionBase *sec = this->sections[secIdx];
1133     uint8_t stOther = eSym.st_other;
1134     uint8_t type = eSym.getType();
1135     uint64_t value = eSym.st_value;
1136     uint64_t size = eSym.st_size;
1137     StringRefZ name = this->stringTable.data() + eSym.st_name;
1138 
1139     // Handle global undefined symbols.
1140     if (eSym.st_shndx == SHN_UNDEF) {
1141       this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
1142       this->symbols[i]->referenced = true;
1143       continue;
1144     }
1145 
1146     // Handle global common symbols.
1147     if (eSym.st_shndx == SHN_COMMON) {
1148       if (value == 0 || value >= UINT32_MAX)
1149         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1150               "' has invalid alignment: " + Twine(value));
1151       this->symbols[i]->resolve(
1152           CommonSymbol{this, name, binding, stOther, type, value, size});
1153       continue;
1154     }
1155 
1156     // If a defined symbol is in a discarded section, handle it as if it
1157     // were an undefined symbol. Such symbol doesn't comply with the
1158     // standard, but in practice, a .eh_frame often directly refer
1159     // COMDAT member sections, and if a comdat group is discarded, some
1160     // defined symbol in a .eh_frame becomes dangling symbols.
1161     if (sec == &InputSection::discarded) {
1162       Undefined und{this, name, binding, stOther, type, secIdx};
1163       Symbol *sym = this->symbols[i];
1164       // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
1165       // containing this object has not finished processing, i.e. this symbol is
1166       // a result of a lazy symbol fetch. We should demote the lazy symbol to an
1167       // Undefined so that any relocations outside of the group to it will
1168       // trigger a discarded section error.
1169       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1170            !cast<ArchiveFile>(sym->file)->parsed) ||
1171           (sym->symbolKind == Symbol::LazyObjectKind &&
1172            cast<LazyObjFile>(sym->file)->fetched))
1173         sym->replace(und);
1174       else
1175         sym->resolve(und);
1176       continue;
1177     }
1178 
1179     // Handle global defined symbols.
1180     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1181         binding == STB_GNU_UNIQUE) {
1182       this->symbols[i]->resolve(
1183           Defined{this, name, binding, stOther, type, value, size, sec});
1184       continue;
1185     }
1186 
1187     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1188   }
1189 }
1190 
1191 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1192     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1193       file(std::move(file)) {}
1194 
1195 void ArchiveFile::parse() {
1196   for (const Archive::Symbol &sym : file->symbols())
1197     symtab->addSymbol(LazyArchive{*this, sym});
1198 
1199   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1200   // archive has been processed.
1201   parsed = true;
1202 }
1203 
1204 // Returns a buffer pointing to a member file containing a given symbol.
1205 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1206   Archive::Child c =
1207       CHECK(sym.getMember(), toString(this) +
1208                                  ": could not get the member for symbol " +
1209                                  toELFString(sym));
1210 
1211   if (!seen.insert(c.getChildOffset()).second)
1212     return;
1213 
1214   MemoryBufferRef mb =
1215       CHECK(c.getMemoryBufferRef(),
1216             toString(this) +
1217                 ": could not get the buffer for the member defining symbol " +
1218                 toELFString(sym));
1219 
1220   if (tar && c.getParent()->isThin())
1221     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1222 
1223   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1224   file->groupId = groupId;
1225   parseFile(file);
1226 }
1227 
1228 size_t ArchiveFile::getMemberCount() const {
1229   size_t count = 0;
1230   Error err = Error::success();
1231   for (const Archive::Child &c : file->children(err)) {
1232     (void)c;
1233     ++count;
1234   }
1235   // This function is used by --print-archive-stats=, where an error does not
1236   // really matter.
1237   consumeError(std::move(err));
1238   return count;
1239 }
1240 
1241 unsigned SharedFile::vernauxNum;
1242 
1243 // Parse the version definitions in the object file if present, and return a
1244 // vector whose nth element contains a pointer to the Elf_Verdef for version
1245 // identifier n. Version identifiers that are not definitions map to nullptr.
1246 template <typename ELFT>
1247 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1248                                               const typename ELFT::Shdr *sec) {
1249   if (!sec)
1250     return {};
1251 
1252   // We cannot determine the largest verdef identifier without inspecting
1253   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1254   // sequentially starting from 1, so we predict that the largest identifier
1255   // will be verdefCount.
1256   unsigned verdefCount = sec->sh_info;
1257   std::vector<const void *> verdefs(verdefCount + 1);
1258 
1259   // Build the Verdefs array by following the chain of Elf_Verdef objects
1260   // from the start of the .gnu.version_d section.
1261   const uint8_t *verdef = base + sec->sh_offset;
1262   for (unsigned i = 0; i != verdefCount; ++i) {
1263     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1264     verdef += curVerdef->vd_next;
1265     unsigned verdefIndex = curVerdef->vd_ndx;
1266     verdefs.resize(verdefIndex + 1);
1267     verdefs[verdefIndex] = curVerdef;
1268   }
1269   return verdefs;
1270 }
1271 
1272 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1273 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1274 // implement sophisticated error checking like in llvm-readobj because the value
1275 // of such diagnostics is low.
1276 template <typename ELFT>
1277 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1278                                                const typename ELFT::Shdr *sec) {
1279   if (!sec)
1280     return {};
1281   std::vector<uint32_t> verneeds;
1282   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1283   const uint8_t *verneedBuf = data.begin();
1284   for (unsigned i = 0; i != sec->sh_info; ++i) {
1285     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1286       fatal(toString(this) + " has an invalid Verneed");
1287     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1288     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1289     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1290       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1291         fatal(toString(this) + " has an invalid Vernaux");
1292       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1293       if (aux->vna_name >= this->stringTable.size())
1294         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1295       uint16_t version = aux->vna_other & VERSYM_VERSION;
1296       if (version >= verneeds.size())
1297         verneeds.resize(version + 1);
1298       verneeds[version] = aux->vna_name;
1299       vernauxBuf += aux->vna_next;
1300     }
1301     verneedBuf += vn->vn_next;
1302   }
1303   return verneeds;
1304 }
1305 
1306 // We do not usually care about alignments of data in shared object
1307 // files because the loader takes care of it. However, if we promote a
1308 // DSO symbol to point to .bss due to copy relocation, we need to keep
1309 // the original alignment requirements. We infer it in this function.
1310 template <typename ELFT>
1311 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1312                              const typename ELFT::Sym &sym) {
1313   uint64_t ret = UINT64_MAX;
1314   if (sym.st_value)
1315     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1316   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1317     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1318   return (ret > UINT32_MAX) ? 0 : ret;
1319 }
1320 
1321 // Fully parse the shared object file.
1322 //
1323 // This function parses symbol versions. If a DSO has version information,
1324 // the file has a ".gnu.version_d" section which contains symbol version
1325 // definitions. Each symbol is associated to one version through a table in
1326 // ".gnu.version" section. That table is a parallel array for the symbol
1327 // table, and each table entry contains an index in ".gnu.version_d".
1328 //
1329 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1330 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1331 // ".gnu.version_d".
1332 //
1333 // The file format for symbol versioning is perhaps a bit more complicated
1334 // than necessary, but you can easily understand the code if you wrap your
1335 // head around the data structure described above.
1336 template <class ELFT> void SharedFile::parse() {
1337   using Elf_Dyn = typename ELFT::Dyn;
1338   using Elf_Shdr = typename ELFT::Shdr;
1339   using Elf_Sym = typename ELFT::Sym;
1340   using Elf_Verdef = typename ELFT::Verdef;
1341   using Elf_Versym = typename ELFT::Versym;
1342 
1343   ArrayRef<Elf_Dyn> dynamicTags;
1344   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1345   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1346 
1347   const Elf_Shdr *versymSec = nullptr;
1348   const Elf_Shdr *verdefSec = nullptr;
1349   const Elf_Shdr *verneedSec = nullptr;
1350 
1351   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1352   for (const Elf_Shdr &sec : sections) {
1353     switch (sec.sh_type) {
1354     default:
1355       continue;
1356     case SHT_DYNAMIC:
1357       dynamicTags =
1358           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1359       break;
1360     case SHT_GNU_versym:
1361       versymSec = &sec;
1362       break;
1363     case SHT_GNU_verdef:
1364       verdefSec = &sec;
1365       break;
1366     case SHT_GNU_verneed:
1367       verneedSec = &sec;
1368       break;
1369     }
1370   }
1371 
1372   if (versymSec && numELFSyms == 0) {
1373     error("SHT_GNU_versym should be associated with symbol table");
1374     return;
1375   }
1376 
1377   // Search for a DT_SONAME tag to initialize this->soName.
1378   for (const Elf_Dyn &dyn : dynamicTags) {
1379     if (dyn.d_tag == DT_NEEDED) {
1380       uint64_t val = dyn.getVal();
1381       if (val >= this->stringTable.size())
1382         fatal(toString(this) + ": invalid DT_NEEDED entry");
1383       dtNeeded.push_back(this->stringTable.data() + val);
1384     } else if (dyn.d_tag == DT_SONAME) {
1385       uint64_t val = dyn.getVal();
1386       if (val >= this->stringTable.size())
1387         fatal(toString(this) + ": invalid DT_SONAME entry");
1388       soName = this->stringTable.data() + val;
1389     }
1390   }
1391 
1392   // DSOs are uniquified not by filename but by soname.
1393   DenseMap<StringRef, SharedFile *>::iterator it;
1394   bool wasInserted;
1395   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1396 
1397   // If a DSO appears more than once on the command line with and without
1398   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1399   // user can add an extra DSO with --no-as-needed to force it to be added to
1400   // the dependency list.
1401   it->second->isNeeded |= isNeeded;
1402   if (!wasInserted)
1403     return;
1404 
1405   sharedFiles.push_back(this);
1406 
1407   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1408   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1409 
1410   // Parse ".gnu.version" section which is a parallel array for the symbol
1411   // table. If a given file doesn't have a ".gnu.version" section, we use
1412   // VER_NDX_GLOBAL.
1413   size_t size = numELFSyms - firstGlobal;
1414   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1415   if (versymSec) {
1416     ArrayRef<Elf_Versym> versym =
1417         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1418               this)
1419             .slice(firstGlobal);
1420     for (size_t i = 0; i < size; ++i)
1421       versyms[i] = versym[i].vs_index;
1422   }
1423 
1424   // System libraries can have a lot of symbols with versions. Using a
1425   // fixed buffer for computing the versions name (foo@ver) can save a
1426   // lot of allocations.
1427   SmallString<0> versionedNameBuffer;
1428 
1429   // Add symbols to the symbol table.
1430   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1431   for (size_t i = 0; i < syms.size(); ++i) {
1432     const Elf_Sym &sym = syms[i];
1433 
1434     // ELF spec requires that all local symbols precede weak or global
1435     // symbols in each symbol table, and the index of first non-local symbol
1436     // is stored to sh_info. If a local symbol appears after some non-local
1437     // symbol, that's a violation of the spec.
1438     StringRef name = CHECK(sym.getName(this->stringTable), this);
1439     if (sym.getBinding() == STB_LOCAL) {
1440       warn("found local symbol '" + name +
1441            "' in global part of symbol table in file " + toString(this));
1442       continue;
1443     }
1444 
1445     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1446     if (sym.isUndefined()) {
1447       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1448       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1449       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1450         if (idx >= verneeds.size()) {
1451           error("corrupt input file: version need index " + Twine(idx) +
1452                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1453                 toString(this));
1454           continue;
1455         }
1456         StringRef verName = this->stringTable.data() + verneeds[idx];
1457         versionedNameBuffer.clear();
1458         name =
1459             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1460       }
1461       Symbol *s = symtab->addSymbol(
1462           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1463       s->exportDynamic = true;
1464       continue;
1465     }
1466 
1467     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1468     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1469     // workaround for this bug.
1470     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1471         name == "_gp_disp")
1472       continue;
1473 
1474     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1475     if (!(versyms[i] & VERSYM_HIDDEN)) {
1476       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1477                                      sym.st_other, sym.getType(), sym.st_value,
1478                                      sym.st_size, alignment, idx});
1479     }
1480 
1481     // Also add the symbol with the versioned name to handle undefined symbols
1482     // with explicit versions.
1483     if (idx == VER_NDX_GLOBAL)
1484       continue;
1485 
1486     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1487       error("corrupt input file: version definition index " + Twine(idx) +
1488             " for symbol " + name + " is out of bounds\n>>> defined in " +
1489             toString(this));
1490       continue;
1491     }
1492 
1493     StringRef verName =
1494         this->stringTable.data() +
1495         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1496     versionedNameBuffer.clear();
1497     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1498     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1499                                    sym.st_other, sym.getType(), sym.st_value,
1500                                    sym.st_size, alignment, idx});
1501   }
1502 }
1503 
1504 static ELFKind getBitcodeELFKind(const Triple &t) {
1505   if (t.isLittleEndian())
1506     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1507   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1508 }
1509 
1510 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1511   switch (t.getArch()) {
1512   case Triple::aarch64:
1513     return EM_AARCH64;
1514   case Triple::amdgcn:
1515   case Triple::r600:
1516     return EM_AMDGPU;
1517   case Triple::arm:
1518   case Triple::thumb:
1519     return EM_ARM;
1520   case Triple::avr:
1521     return EM_AVR;
1522   case Triple::mips:
1523   case Triple::mipsel:
1524   case Triple::mips64:
1525   case Triple::mips64el:
1526     return EM_MIPS;
1527   case Triple::msp430:
1528     return EM_MSP430;
1529   case Triple::ppc:
1530     return EM_PPC;
1531   case Triple::ppc64:
1532   case Triple::ppc64le:
1533     return EM_PPC64;
1534   case Triple::riscv32:
1535   case Triple::riscv64:
1536     return EM_RISCV;
1537   case Triple::x86:
1538     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1539   case Triple::x86_64:
1540     return EM_X86_64;
1541   default:
1542     error(path + ": could not infer e_machine from bitcode target triple " +
1543           t.str());
1544     return EM_NONE;
1545   }
1546 }
1547 
1548 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1549                          uint64_t offsetInArchive)
1550     : InputFile(BitcodeKind, mb) {
1551   this->archiveName = std::string(archiveName);
1552 
1553   std::string path = mb.getBufferIdentifier().str();
1554   if (config->thinLTOIndexOnly)
1555     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1556 
1557   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1558   // name. If two archives define two members with the same name, this
1559   // causes a collision which result in only one of the objects being taken
1560   // into consideration at LTO time (which very likely causes undefined
1561   // symbols later in the link stage). So we append file offset to make
1562   // filename unique.
1563   StringRef name =
1564       archiveName.empty()
1565           ? saver.save(path)
1566           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1567                        utostr(offsetInArchive) + ")");
1568   MemoryBufferRef mbref(mb.getBuffer(), name);
1569 
1570   obj = CHECK(lto::InputFile::create(mbref), this);
1571 
1572   Triple t(obj->getTargetTriple());
1573   ekind = getBitcodeELFKind(t);
1574   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1575 }
1576 
1577 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1578   switch (gvVisibility) {
1579   case GlobalValue::DefaultVisibility:
1580     return STV_DEFAULT;
1581   case GlobalValue::HiddenVisibility:
1582     return STV_HIDDEN;
1583   case GlobalValue::ProtectedVisibility:
1584     return STV_PROTECTED;
1585   }
1586   llvm_unreachable("unknown visibility");
1587 }
1588 
1589 template <class ELFT>
1590 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1591                                    const lto::InputFile::Symbol &objSym,
1592                                    BitcodeFile &f) {
1593   StringRef name = saver.save(objSym.getName());
1594   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1595   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1596   uint8_t visibility = mapVisibility(objSym.getVisibility());
1597   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1598 
1599   int c = objSym.getComdatIndex();
1600   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1601     Undefined newSym(&f, name, binding, visibility, type);
1602     if (canOmitFromDynSym)
1603       newSym.exportDynamic = false;
1604     Symbol *ret = symtab->addSymbol(newSym);
1605     ret->referenced = true;
1606     return ret;
1607   }
1608 
1609   if (objSym.isCommon())
1610     return symtab->addSymbol(
1611         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1612                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1613 
1614   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1615   if (canOmitFromDynSym)
1616     newSym.exportDynamic = false;
1617   return symtab->addSymbol(newSym);
1618 }
1619 
1620 template <class ELFT> void BitcodeFile::parse() {
1621   std::vector<bool> keptComdats;
1622   for (StringRef s : obj->getComdatTable())
1623     keptComdats.push_back(
1624         symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1625 
1626   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1627     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1628 
1629   for (auto l : obj->getDependentLibraries())
1630     addDependentLibrary(l, this);
1631 }
1632 
1633 void BinaryFile::parse() {
1634   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1635   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1636                                      8, data, ".data");
1637   sections.push_back(section);
1638 
1639   // For each input file foo that is embedded to a result as a binary
1640   // blob, we define _binary_foo_{start,end,size} symbols, so that
1641   // user programs can access blobs by name. Non-alphanumeric
1642   // characters in a filename are replaced with underscore.
1643   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1644   for (size_t i = 0; i < s.size(); ++i)
1645     if (!isAlnum(s[i]))
1646       s[i] = '_';
1647 
1648   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1649                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1650   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1651                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1652   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1653                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1654 }
1655 
1656 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1657                                  uint64_t offsetInArchive) {
1658   if (isBitcode(mb))
1659     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1660 
1661   switch (getELFKind(mb, archiveName)) {
1662   case ELF32LEKind:
1663     return make<ObjFile<ELF32LE>>(mb, archiveName);
1664   case ELF32BEKind:
1665     return make<ObjFile<ELF32BE>>(mb, archiveName);
1666   case ELF64LEKind:
1667     return make<ObjFile<ELF64LE>>(mb, archiveName);
1668   case ELF64BEKind:
1669     return make<ObjFile<ELF64BE>>(mb, archiveName);
1670   default:
1671     llvm_unreachable("getELFKind");
1672   }
1673 }
1674 
1675 void LazyObjFile::fetch() {
1676   if (fetched)
1677     return;
1678   fetched = true;
1679 
1680   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1681   file->groupId = groupId;
1682 
1683   // Copy symbol vector so that the new InputFile doesn't have to
1684   // insert the same defined symbols to the symbol table again.
1685   file->symbols = std::move(symbols);
1686 
1687   parseFile(file);
1688 }
1689 
1690 template <class ELFT> void LazyObjFile::parse() {
1691   using Elf_Sym = typename ELFT::Sym;
1692 
1693   // A lazy object file wraps either a bitcode file or an ELF file.
1694   if (isBitcode(this->mb)) {
1695     std::unique_ptr<lto::InputFile> obj =
1696         CHECK(lto::InputFile::create(this->mb), this);
1697     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1698       if (sym.isUndefined())
1699         continue;
1700       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1701     }
1702     return;
1703   }
1704 
1705   if (getELFKind(this->mb, archiveName) != config->ekind) {
1706     error("incompatible file: " + this->mb.getBufferIdentifier());
1707     return;
1708   }
1709 
1710   // Find a symbol table.
1711   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1712   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1713 
1714   for (const typename ELFT::Shdr &sec : sections) {
1715     if (sec.sh_type != SHT_SYMTAB)
1716       continue;
1717 
1718     // A symbol table is found.
1719     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1720     uint32_t firstGlobal = sec.sh_info;
1721     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1722     this->symbols.resize(eSyms.size());
1723 
1724     // Get existing symbols or insert placeholder symbols.
1725     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1726       if (eSyms[i].st_shndx != SHN_UNDEF)
1727         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1728 
1729     // Replace existing symbols with LazyObject symbols.
1730     //
1731     // resolve() may trigger this->fetch() if an existing symbol is an
1732     // undefined symbol. If that happens, this LazyObjFile has served
1733     // its purpose, and we can exit from the loop early.
1734     for (Symbol *sym : this->symbols) {
1735       if (!sym)
1736         continue;
1737       sym->resolve(LazyObject{*this, sym->getName()});
1738 
1739       // If fetched, stop iterating because this->symbols has been transferred
1740       // to the instantiated ObjFile.
1741       if (fetched)
1742         return;
1743     }
1744     return;
1745   }
1746 }
1747 
1748 std::string elf::replaceThinLTOSuffix(StringRef path) {
1749   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1750   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1751 
1752   if (path.consume_back(suffix))
1753     return (path + repl).str();
1754   return std::string(path);
1755 }
1756 
1757 template void BitcodeFile::parse<ELF32LE>();
1758 template void BitcodeFile::parse<ELF32BE>();
1759 template void BitcodeFile::parse<ELF64LE>();
1760 template void BitcodeFile::parse<ELF64BE>();
1761 
1762 template void LazyObjFile::parse<ELF32LE>();
1763 template void LazyObjFile::parse<ELF32BE>();
1764 template void LazyObjFile::parse<ELF64LE>();
1765 template void LazyObjFile::parse<ELF64BE>();
1766 
1767 template class elf::ObjFile<ELF32LE>;
1768 template class elf::ObjFile<ELF32BE>;
1769 template class elf::ObjFile<ELF64LE>;
1770 template class elf::ObjFile<ELF64BE>;
1771 
1772 template void SharedFile::parse<ELF32LE>();
1773 template void SharedFile::parse<ELF32BE>();
1774 template void SharedFile::parse<ELF64LE>();
1775 template void SharedFile::parse<ELF64BE>();
1776