1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Error.h" 12 #include "InputSection.h" 13 #include "LinkerScript.h" 14 #include "Memory.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/TarWriter.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::sys::fs; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 TarWriter *elf::Tar; 39 40 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 41 42 namespace { 43 // In ELF object file all section addresses are zero. If we have multiple 44 // .text sections (when using -ffunction-section or comdat group) then 45 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless 46 // we assign each section some unique address. This callback method assigns 47 // each section an address equal to its offset in ELF object file. 48 class ObjectInfo : public LoadedObjectInfo { 49 public: 50 uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override { 51 return static_cast<const ELFSectionRef &>(Sec).getOffset(); 52 } 53 std::unique_ptr<LoadedObjectInfo> clone() const override { 54 return std::unique_ptr<LoadedObjectInfo>(); 55 } 56 }; 57 } 58 59 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 60 log(Path); 61 auto MBOrErr = MemoryBuffer::getFile(Path); 62 if (auto EC = MBOrErr.getError()) { 63 error("cannot open " + Path + ": " + EC.message()); 64 return None; 65 } 66 67 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 68 MemoryBufferRef MBRef = MB->getMemBufferRef(); 69 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 70 71 if (Tar) 72 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 73 return MBRef; 74 } 75 76 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() { 77 std::unique_ptr<object::ObjectFile> Obj = 78 check(object::ObjectFile::createObjectFile(this->MB), toString(this)); 79 80 ObjectInfo ObjInfo; 81 DWARFContextInMemory Dwarf(*Obj, &ObjInfo); 82 DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs)); 83 DataExtractor LineData(Dwarf.getLineSection().Data, Config->IsLE, 84 Config->Wordsize); 85 86 // The second parameter is offset in .debug_line section 87 // for compilation unit (CU) of interest. We have only one 88 // CU (object file), so offset is always 0. 89 DwarfLine->getOrParseLineTable(LineData, 0); 90 } 91 92 // Returns source line information for a given offset 93 // using DWARF debug info. 94 template <class ELFT> 95 Optional<DILineInfo> elf::ObjectFile<ELFT>::getDILineInfo(InputSectionBase *S, 96 uint64_t Offset) { 97 if (!DwarfLine) 98 initializeDwarfLine(); 99 100 // The offset to CU is 0. 101 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 102 if (!Tbl) 103 return None; 104 105 // Use fake address calcuated by adding section file offset and offset in 106 // section. See comments for ObjectInfo class. 107 DILineInfo Info; 108 Tbl->getFileLineInfoForAddress( 109 S->getOffsetInFile() + Offset, nullptr, 110 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 111 if (Info.Line == 0) 112 return None; 113 return Info; 114 } 115 116 // Returns source line information for a given offset 117 // using DWARF debug info. 118 template <class ELFT> 119 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase *S, 120 uint64_t Offset) { 121 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 122 return Info->FileName + ":" + std::to_string(Info->Line); 123 return ""; 124 } 125 126 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 127 std::string lld::toString(const InputFile *F) { 128 if (!F) 129 return "<internal>"; 130 131 if (F->ToStringCache.empty()) { 132 if (F->ArchiveName.empty()) 133 F->ToStringCache = F->getName(); 134 else 135 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 136 } 137 return F->ToStringCache; 138 } 139 140 template <class ELFT> 141 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 142 if (ELFT::TargetEndianness == support::little) 143 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 144 else 145 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 146 147 EMachine = getObj().getHeader()->e_machine; 148 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 149 } 150 151 template <class ELFT> 152 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() { 153 return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end()); 154 } 155 156 template <class ELFT> 157 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 158 return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX), 159 toString(this)); 160 } 161 162 template <class ELFT> 163 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 164 const Elf_Shdr *Symtab) { 165 FirstNonLocal = Symtab->sh_info; 166 Symbols = check(getObj().symbols(Symtab), toString(this)); 167 if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size()) 168 fatal(toString(this) + ": invalid sh_info in symbol table"); 169 170 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections), 171 toString(this)); 172 } 173 174 template <class ELFT> 175 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M, StringRef ArchiveName) 176 : ELFFileBase<ELFT>(Base::ObjectKind, M) { 177 this->ArchiveName = ArchiveName; 178 } 179 180 template <class ELFT> 181 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 182 if (this->SymbolBodies.empty()) 183 return this->SymbolBodies; 184 return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1); 185 } 186 187 template <class ELFT> 188 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 189 if (this->SymbolBodies.empty()) 190 return this->SymbolBodies; 191 return makeArrayRef(this->SymbolBodies).slice(1); 192 } 193 194 template <class ELFT> 195 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 196 // Read section and symbol tables. 197 initializeSections(ComdatGroups); 198 initializeSymbols(); 199 } 200 201 // Sections with SHT_GROUP and comdat bits define comdat section groups. 202 // They are identified and deduplicated by group name. This function 203 // returns a group name. 204 template <class ELFT> 205 StringRef 206 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 207 const Elf_Shdr &Sec) { 208 if (this->Symbols.empty()) 209 this->initSymtab( 210 Sections, 211 check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this))); 212 const Elf_Sym *Sym = check( 213 object::getSymbol<ELFT>(this->Symbols, Sec.sh_info), toString(this)); 214 return check(Sym->getName(this->StringTable), toString(this)); 215 } 216 217 template <class ELFT> 218 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 219 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 220 const ELFFile<ELFT> &Obj = this->getObj(); 221 ArrayRef<Elf_Word> Entries = check( 222 Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this)); 223 if (Entries.empty() || Entries[0] != GRP_COMDAT) 224 fatal(toString(this) + ": unsupported SHT_GROUP format"); 225 return Entries.slice(1); 226 } 227 228 template <class ELFT> 229 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 230 // We don't merge sections if -O0 (default is -O1). This makes sometimes 231 // the linker significantly faster, although the output will be bigger. 232 if (Config->Optimize == 0) 233 return false; 234 235 // Do not merge sections if generating a relocatable object. It makes 236 // the code simpler because we do not need to update relocation addends 237 // to reflect changes introduced by merging. Instead of that we write 238 // such "merge" sections into separate OutputSections and keep SHF_MERGE 239 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 240 // later during a final linking. 241 if (Config->Relocatable) 242 return false; 243 244 // A mergeable section with size 0 is useless because they don't have 245 // any data to merge. A mergeable string section with size 0 can be 246 // argued as invalid because it doesn't end with a null character. 247 // We'll avoid a mess by handling them as if they were non-mergeable. 248 if (Sec.sh_size == 0) 249 return false; 250 251 // Check for sh_entsize. The ELF spec is not clear about the zero 252 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 253 // the section does not hold a table of fixed-size entries". We know 254 // that Rust 1.13 produces a string mergeable section with a zero 255 // sh_entsize. Here we just accept it rather than being picky about it. 256 uint64_t EntSize = Sec.sh_entsize; 257 if (EntSize == 0) 258 return false; 259 if (Sec.sh_size % EntSize) 260 fatal(toString(this) + 261 ": SHF_MERGE section size must be a multiple of sh_entsize"); 262 263 uint64_t Flags = Sec.sh_flags; 264 if (!(Flags & SHF_MERGE)) 265 return false; 266 if (Flags & SHF_WRITE) 267 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 268 269 // Don't try to merge if the alignment is larger than the sh_entsize and this 270 // is not SHF_STRINGS. 271 // 272 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 273 // It would be equivalent for the producer of the .o to just set a larger 274 // sh_entsize. 275 if (Flags & SHF_STRINGS) 276 return true; 277 278 return Sec.sh_addralign <= EntSize; 279 } 280 281 template <class ELFT> 282 void elf::ObjectFile<ELFT>::initializeSections( 283 DenseSet<CachedHashStringRef> &ComdatGroups) { 284 ArrayRef<Elf_Shdr> ObjSections = 285 check(this->getObj().sections(), toString(this)); 286 const ELFFile<ELFT> &Obj = this->getObj(); 287 uint64_t Size = ObjSections.size(); 288 this->Sections.resize(Size); 289 unsigned I = -1; 290 StringRef SectionStringTable = 291 check(Obj.getSectionStringTable(ObjSections), toString(this)); 292 for (const Elf_Shdr &Sec : ObjSections) { 293 ++I; 294 if (this->Sections[I] == &InputSection::Discarded) 295 continue; 296 297 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 298 // if -r is given, we'll let the final link discard such sections. 299 // This is compatible with GNU. 300 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 301 this->Sections[I] = &InputSection::Discarded; 302 continue; 303 } 304 305 switch (Sec.sh_type) { 306 case SHT_GROUP: 307 this->Sections[I] = &InputSection::Discarded; 308 if (ComdatGroups 309 .insert( 310 CachedHashStringRef(getShtGroupSignature(ObjSections, Sec))) 311 .second) 312 continue; 313 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 314 if (SecIndex >= Size) 315 fatal(toString(this) + 316 ": invalid section index in group: " + Twine(SecIndex)); 317 this->Sections[SecIndex] = &InputSection::Discarded; 318 } 319 break; 320 case SHT_SYMTAB: 321 this->initSymtab(ObjSections, &Sec); 322 break; 323 case SHT_SYMTAB_SHNDX: 324 this->SymtabSHNDX = 325 check(Obj.getSHNDXTable(Sec, ObjSections), toString(this)); 326 break; 327 case SHT_STRTAB: 328 case SHT_NULL: 329 break; 330 default: 331 this->Sections[I] = createInputSection(Sec, SectionStringTable); 332 } 333 334 // .ARM.exidx sections have a reverse dependency on the InputSection they 335 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 336 if (Sec.sh_flags & SHF_LINK_ORDER) { 337 if (Sec.sh_link >= this->Sections.size()) 338 fatal(toString(this) + ": invalid sh_link index: " + 339 Twine(Sec.sh_link)); 340 this->Sections[Sec.sh_link]->DependentSections.push_back( 341 this->Sections[I]); 342 } 343 } 344 } 345 346 template <class ELFT> 347 InputSectionBase *elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 348 uint32_t Idx = Sec.sh_info; 349 if (Idx >= this->Sections.size()) 350 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 351 InputSectionBase *Target = this->Sections[Idx]; 352 353 // Strictly speaking, a relocation section must be included in the 354 // group of the section it relocates. However, LLVM 3.3 and earlier 355 // would fail to do so, so we gracefully handle that case. 356 if (Target == &InputSection::Discarded) 357 return nullptr; 358 359 if (!Target) 360 fatal(toString(this) + ": unsupported relocation reference"); 361 return Target; 362 } 363 364 // Create a regular InputSection class that has the same contents 365 // as a given section. 366 InputSectionBase *toRegularSection(MergeInputSection *Sec) { 367 auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, 368 Sec->Data, Sec->Name); 369 Ret->File = Sec->File; 370 return Ret; 371 } 372 373 template <class ELFT> 374 InputSectionBase * 375 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec, 376 StringRef SectionStringTable) { 377 StringRef Name = check( 378 this->getObj().getSectionName(&Sec, SectionStringTable), toString(this)); 379 380 switch (Sec.sh_type) { 381 case SHT_ARM_ATTRIBUTES: 382 // FIXME: ARM meta-data section. Retain the first attribute section 383 // we see. The eglibc ARM dynamic loaders require the presence of an 384 // attribute section for dlopen to work. 385 // In a full implementation we would merge all attribute sections. 386 if (In<ELFT>::ARMAttributes == nullptr) { 387 In<ELFT>::ARMAttributes = make<InputSection>(this, &Sec, Name); 388 return In<ELFT>::ARMAttributes; 389 } 390 return &InputSection::Discarded; 391 case SHT_RELA: 392 case SHT_REL: { 393 // Find the relocation target section and associate this 394 // section with it. Target can be discarded, for example 395 // if it is a duplicated member of SHT_GROUP section, we 396 // do not create or proccess relocatable sections then. 397 InputSectionBase *Target = getRelocTarget(Sec); 398 if (!Target) 399 return nullptr; 400 401 // This section contains relocation information. 402 // If -r is given, we do not interpret or apply relocation 403 // but just copy relocation sections to output. 404 if (Config->Relocatable) 405 return make<InputSection>(this, &Sec, Name); 406 407 if (Target->FirstRelocation) 408 fatal(toString(this) + 409 ": multiple relocation sections to one section are not supported"); 410 411 // Mergeable sections with relocations are tricky because relocations 412 // need to be taken into account when comparing section contents for 413 // merging. It's not worth supporting such mergeable sections because 414 // they are rare and it'd complicates the internal design (we usually 415 // have to determine if two sections are mergeable early in the link 416 // process much before applying relocations). We simply handle mergeable 417 // sections with relocations as non-mergeable. 418 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 419 Target = toRegularSection(MS); 420 this->Sections[Sec.sh_info] = Target; 421 } 422 423 size_t NumRelocations; 424 if (Sec.sh_type == SHT_RELA) { 425 ArrayRef<Elf_Rela> Rels = 426 check(this->getObj().relas(&Sec), toString(this)); 427 Target->FirstRelocation = Rels.begin(); 428 NumRelocations = Rels.size(); 429 Target->AreRelocsRela = true; 430 } else { 431 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this)); 432 Target->FirstRelocation = Rels.begin(); 433 NumRelocations = Rels.size(); 434 Target->AreRelocsRela = false; 435 } 436 assert(isUInt<31>(NumRelocations)); 437 Target->NumRelocations = NumRelocations; 438 439 // Relocation sections processed by the linker are usually removed 440 // from the output, so returning `nullptr` for the normal case. 441 // However, if -emit-relocs is given, we need to leave them in the output. 442 // (Some post link analysis tools need this information.) 443 if (Config->EmitRelocs) { 444 InputSection *RelocSec = make<InputSection>(this, &Sec, Name); 445 // We will not emit relocation section if target was discarded. 446 Target->DependentSections.push_back(RelocSec); 447 return RelocSec; 448 } 449 return nullptr; 450 } 451 } 452 453 // The GNU linker uses .note.GNU-stack section as a marker indicating 454 // that the code in the object file does not expect that the stack is 455 // executable (in terms of NX bit). If all input files have the marker, 456 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 457 // make the stack non-executable. Most object files have this section as 458 // of 2017. 459 // 460 // But making the stack non-executable is a norm today for security 461 // reasons. Failure to do so may result in a serious security issue. 462 // Therefore, we make LLD always add PT_GNU_STACK unless it is 463 // explicitly told to do otherwise (by -z execstack). Because the stack 464 // executable-ness is controlled solely by command line options, 465 // .note.GNU-stack sections are simply ignored. 466 if (Name == ".note.GNU-stack") 467 return &InputSection::Discarded; 468 469 // Split stacks is a feature to support a discontiguous stack. At least 470 // as of 2017, it seems that the feature is not being used widely. 471 // Only GNU gold supports that. We don't. For the details about that, 472 // see https://gcc.gnu.org/wiki/SplitStacks 473 if (Name == ".note.GNU-split-stack") { 474 error(toString(this) + 475 ": object file compiled with -fsplit-stack is not supported"); 476 return &InputSection::Discarded; 477 } 478 479 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 480 return &InputSection::Discarded; 481 482 // If -gdb-index is given, LLD creates .gdb_index section, and that 483 // section serves the same purpose as .debug_gnu_pub{names,types} sections. 484 // If that's the case, we want to eliminate .debug_gnu_pub{names,types} 485 // because they are redundant and can waste large amount of disk space 486 // (for example, they are about 400 MiB in total for a clang debug build.) 487 if (Config->GdbIndex && 488 (Name == ".debug_gnu_pubnames" || Name == ".debug_gnu_pubtypes")) 489 return &InputSection::Discarded; 490 491 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 492 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 493 // sections. Drop those sections to avoid duplicate symbol errors. 494 // FIXME: This is glibc PR20543, we should remove this hack once that has been 495 // fixed for a while. 496 if (Name.startswith(".gnu.linkonce.")) 497 return &InputSection::Discarded; 498 499 // The linker merges EH (exception handling) frames and creates a 500 // .eh_frame_hdr section for runtime. So we handle them with a special 501 // class. For relocatable outputs, they are just passed through. 502 if (Name == ".eh_frame" && !Config->Relocatable) 503 return make<EhInputSection>(this, &Sec, Name); 504 505 if (shouldMerge(Sec)) 506 return make<MergeInputSection>(this, &Sec, Name); 507 return make<InputSection>(this, &Sec, Name); 508 } 509 510 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 511 SymbolBodies.reserve(this->Symbols.size()); 512 for (const Elf_Sym &Sym : this->Symbols) 513 SymbolBodies.push_back(createSymbolBody(&Sym)); 514 } 515 516 template <class ELFT> 517 InputSectionBase *elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 518 uint32_t Index = this->getSectionIndex(Sym); 519 if (Index >= this->Sections.size()) 520 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 521 InputSectionBase *S = this->Sections[Index]; 522 523 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could 524 // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be 525 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 526 // In this case it is fine for section to be null here as we do not 527 // allocate sections of these types. 528 if (!S) { 529 if (Index == 0 || Sym.getType() == STT_SECTION || 530 Sym.getType() == STT_NOTYPE) 531 return nullptr; 532 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 533 } 534 535 if (S == &InputSection::Discarded) 536 return S; 537 return S->Repl; 538 } 539 540 template <class ELFT> 541 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 542 int Binding = Sym->getBinding(); 543 InputSectionBase *Sec = getSection(*Sym); 544 545 uint8_t StOther = Sym->st_other; 546 uint8_t Type = Sym->getType(); 547 uint64_t Value = Sym->st_value; 548 uint64_t Size = Sym->st_size; 549 550 if (Binding == STB_LOCAL) { 551 if (Sym->getType() == STT_FILE) 552 SourceFile = check(Sym->getName(this->StringTable), toString(this)); 553 554 if (this->StringTable.size() <= Sym->st_name) 555 fatal(toString(this) + ": invalid symbol name offset"); 556 557 StringRefZ Name = this->StringTable.data() + Sym->st_name; 558 if (Sym->st_shndx == SHN_UNDEF) 559 return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type, this); 560 561 return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value, 562 Size, Sec, this); 563 } 564 565 StringRef Name = check(Sym->getName(this->StringTable), toString(this)); 566 567 switch (Sym->st_shndx) { 568 case SHN_UNDEF: 569 return elf::Symtab<ELFT>::X 570 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 571 /*CanOmitFromDynSym=*/false, this) 572 ->body(); 573 case SHN_COMMON: 574 if (Value == 0 || Value >= UINT32_MAX) 575 fatal(toString(this) + ": common symbol '" + Name + 576 "' has invalid alignment: " + Twine(Value)); 577 return elf::Symtab<ELFT>::X 578 ->addCommon(Name, Size, Value, Binding, StOther, Type, this) 579 ->body(); 580 } 581 582 switch (Binding) { 583 default: 584 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 585 case STB_GLOBAL: 586 case STB_WEAK: 587 case STB_GNU_UNIQUE: 588 if (Sec == &InputSection::Discarded) 589 return elf::Symtab<ELFT>::X 590 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 591 /*CanOmitFromDynSym=*/false, this) 592 ->body(); 593 return elf::Symtab<ELFT>::X 594 ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this) 595 ->body(); 596 } 597 } 598 599 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 600 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 601 File(std::move(File)) {} 602 603 template <class ELFT> void ArchiveFile::parse() { 604 for (const Archive::Symbol &Sym : File->symbols()) 605 Symtab<ELFT>::X->addLazyArchive(this, Sym); 606 } 607 608 // Returns a buffer pointing to a member file containing a given symbol. 609 std::pair<MemoryBufferRef, uint64_t> 610 ArchiveFile::getMember(const Archive::Symbol *Sym) { 611 Archive::Child C = 612 check(Sym->getMember(), toString(this) + 613 ": could not get the member for symbol " + 614 Sym->getName()); 615 616 if (!Seen.insert(C.getChildOffset()).second) 617 return {MemoryBufferRef(), 0}; 618 619 MemoryBufferRef Ret = 620 check(C.getMemoryBufferRef(), 621 toString(this) + 622 ": could not get the buffer for the member defining symbol " + 623 Sym->getName()); 624 625 if (C.getParent()->isThin() && Tar) 626 Tar->append(relativeToRoot(check(C.getFullName(), toString(this))), 627 Ret.getBuffer()); 628 if (C.getParent()->isThin()) 629 return {Ret, 0}; 630 return {Ret, C.getChildOffset()}; 631 } 632 633 template <class ELFT> 634 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 635 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 636 AsNeeded(Config->AsNeeded) {} 637 638 template <class ELFT> 639 const typename ELFT::Shdr * 640 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 641 return check( 642 this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX), 643 toString(this)); 644 } 645 646 // Partially parse the shared object file so that we can call 647 // getSoName on this object. 648 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 649 const Elf_Shdr *DynamicSec = nullptr; 650 const ELFFile<ELFT> Obj = this->getObj(); 651 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 652 653 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 654 for (const Elf_Shdr &Sec : Sections) { 655 switch (Sec.sh_type) { 656 default: 657 continue; 658 case SHT_DYNSYM: 659 this->initSymtab(Sections, &Sec); 660 break; 661 case SHT_DYNAMIC: 662 DynamicSec = &Sec; 663 break; 664 case SHT_SYMTAB_SHNDX: 665 this->SymtabSHNDX = 666 check(Obj.getSHNDXTable(Sec, Sections), toString(this)); 667 break; 668 case SHT_GNU_versym: 669 this->VersymSec = &Sec; 670 break; 671 case SHT_GNU_verdef: 672 this->VerdefSec = &Sec; 673 break; 674 } 675 } 676 677 if (this->VersymSec && this->Symbols.empty()) 678 error("SHT_GNU_versym should be associated with symbol table"); 679 680 // Search for a DT_SONAME tag to initialize this->SoName. 681 if (!DynamicSec) 682 return; 683 ArrayRef<Elf_Dyn> Arr = 684 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 685 toString(this)); 686 for (const Elf_Dyn &Dyn : Arr) { 687 if (Dyn.d_tag == DT_SONAME) { 688 uint64_t Val = Dyn.getVal(); 689 if (Val >= this->StringTable.size()) 690 fatal(toString(this) + ": invalid DT_SONAME entry"); 691 SoName = this->StringTable.data() + Val; 692 return; 693 } 694 } 695 } 696 697 // Parse the version definitions in the object file if present. Returns a vector 698 // whose nth element contains a pointer to the Elf_Verdef for version identifier 699 // n. Version identifiers that are not definitions map to nullptr. The array 700 // always has at least length 1. 701 template <class ELFT> 702 std::vector<const typename ELFT::Verdef *> 703 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 704 std::vector<const Elf_Verdef *> Verdefs(1); 705 // We only need to process symbol versions for this DSO if it has both a 706 // versym and a verdef section, which indicates that the DSO contains symbol 707 // version definitions. 708 if (!VersymSec || !VerdefSec) 709 return Verdefs; 710 711 // The location of the first global versym entry. 712 const char *Base = this->MB.getBuffer().data(); 713 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 714 this->FirstNonLocal; 715 716 // We cannot determine the largest verdef identifier without inspecting 717 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 718 // sequentially starting from 1, so we predict that the largest identifier 719 // will be VerdefCount. 720 unsigned VerdefCount = VerdefSec->sh_info; 721 Verdefs.resize(VerdefCount + 1); 722 723 // Build the Verdefs array by following the chain of Elf_Verdef objects 724 // from the start of the .gnu.version_d section. 725 const char *Verdef = Base + VerdefSec->sh_offset; 726 for (unsigned I = 0; I != VerdefCount; ++I) { 727 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 728 Verdef += CurVerdef->vd_next; 729 unsigned VerdefIndex = CurVerdef->vd_ndx; 730 if (Verdefs.size() <= VerdefIndex) 731 Verdefs.resize(VerdefIndex + 1); 732 Verdefs[VerdefIndex] = CurVerdef; 733 } 734 735 return Verdefs; 736 } 737 738 // Fully parse the shared object file. This must be called after parseSoName(). 739 template <class ELFT> void SharedFile<ELFT>::parseRest() { 740 // Create mapping from version identifiers to Elf_Verdef entries. 741 const Elf_Versym *Versym = nullptr; 742 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 743 744 Elf_Sym_Range Syms = this->getGlobalSymbols(); 745 for (const Elf_Sym &Sym : Syms) { 746 unsigned VersymIndex = 0; 747 if (Versym) { 748 VersymIndex = Versym->vs_index; 749 ++Versym; 750 } 751 bool Hidden = VersymIndex & VERSYM_HIDDEN; 752 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 753 754 StringRef Name = check(Sym.getName(this->StringTable), toString(this)); 755 if (Sym.isUndefined()) { 756 Undefs.push_back(Name); 757 continue; 758 } 759 760 // Ignore local symbols. 761 if (Versym && VersymIndex == VER_NDX_LOCAL) 762 continue; 763 764 const Elf_Verdef *V = 765 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 766 767 if (!Hidden) 768 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 769 770 // Also add the symbol with the versioned name to handle undefined symbols 771 // with explicit versions. 772 if (V) { 773 StringRef VerName = this->StringTable.data() + V->getAux()->vda_name; 774 Name = Saver.save(Name + "@" + VerName); 775 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 776 } 777 } 778 } 779 780 static ELFKind getBitcodeELFKind(const Triple &T) { 781 if (T.isLittleEndian()) 782 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 783 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 784 } 785 786 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 787 switch (T.getArch()) { 788 case Triple::aarch64: 789 return EM_AARCH64; 790 case Triple::arm: 791 case Triple::thumb: 792 return EM_ARM; 793 case Triple::mips: 794 case Triple::mipsel: 795 case Triple::mips64: 796 case Triple::mips64el: 797 return EM_MIPS; 798 case Triple::ppc: 799 return EM_PPC; 800 case Triple::ppc64: 801 return EM_PPC64; 802 case Triple::x86: 803 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 804 case Triple::x86_64: 805 return EM_X86_64; 806 default: 807 fatal(Path + ": could not infer e_machine from bitcode target triple " + 808 T.str()); 809 } 810 } 811 812 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 813 uint64_t OffsetInArchive) 814 : InputFile(BitcodeKind, MB) { 815 this->ArchiveName = ArchiveName; 816 817 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 818 // (the fully resolved path of the archive) + member name + offset of the 819 // member in the archive. 820 // ThinLTO uses the MemoryBufferRef identifier to access its internal 821 // data structures and if two archives define two members with the same name, 822 // this causes a collision which result in only one of the objects being 823 // taken into consideration at LTO time (which very likely causes undefined 824 // symbols later in the link stage). 825 MemoryBufferRef MBRef(MB.getBuffer(), 826 Saver.save(ArchiveName + MB.getBufferIdentifier() + 827 utostr(OffsetInArchive))); 828 Obj = check(lto::InputFile::create(MBRef), toString(this)); 829 830 Triple T(Obj->getTargetTriple()); 831 EKind = getBitcodeELFKind(T); 832 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 833 } 834 835 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 836 switch (GvVisibility) { 837 case GlobalValue::DefaultVisibility: 838 return STV_DEFAULT; 839 case GlobalValue::HiddenVisibility: 840 return STV_HIDDEN; 841 case GlobalValue::ProtectedVisibility: 842 return STV_PROTECTED; 843 } 844 llvm_unreachable("unknown visibility"); 845 } 846 847 template <class ELFT> 848 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 849 const lto::InputFile::Symbol &ObjSym, 850 BitcodeFile *F) { 851 StringRef NameRef = Saver.save(ObjSym.getName()); 852 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 853 854 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 855 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 856 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 857 858 int C = ObjSym.getComdatIndex(); 859 if (C != -1 && !KeptComdats[C]) 860 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 861 Visibility, Type, CanOmitFromDynSym, 862 F); 863 864 if (ObjSym.isUndefined()) 865 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 866 Visibility, Type, CanOmitFromDynSym, 867 F); 868 869 if (ObjSym.isCommon()) 870 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 871 ObjSym.getCommonAlignment(), Binding, 872 Visibility, STT_OBJECT, F); 873 874 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 875 CanOmitFromDynSym, F); 876 } 877 878 template <class ELFT> 879 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 880 std::vector<bool> KeptComdats; 881 for (StringRef S : Obj->getComdatTable()) 882 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 883 884 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 885 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 886 } 887 888 static ELFKind getELFKind(MemoryBufferRef MB) { 889 unsigned char Size; 890 unsigned char Endian; 891 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 892 893 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 894 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 895 if (Size != ELFCLASS32 && Size != ELFCLASS64) 896 fatal(MB.getBufferIdentifier() + ": invalid file class"); 897 898 size_t BufSize = MB.getBuffer().size(); 899 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 900 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 901 fatal(MB.getBufferIdentifier() + ": file is too short"); 902 903 if (Size == ELFCLASS32) 904 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 905 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 906 } 907 908 template <class ELFT> void BinaryFile::parse() { 909 ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); 910 auto *Section = 911 make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); 912 Sections.push_back(Section); 913 914 // For each input file foo that is embedded to a result as a binary 915 // blob, we define _binary_foo_{start,end,size} symbols, so that 916 // user programs can access blobs by name. Non-alphanumeric 917 // characters in a filename are replaced with underscore. 918 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 919 for (size_t I = 0; I < S.size(); ++I) 920 if (!isalnum(S[I])) 921 S[I] = '_'; 922 923 elf::Symtab<ELFT>::X->addRegular(Saver.save(S + "_start"), STV_DEFAULT, 924 STT_OBJECT, 0, 0, STB_GLOBAL, Section, 925 nullptr); 926 elf::Symtab<ELFT>::X->addRegular(Saver.save(S + "_end"), STV_DEFAULT, 927 STT_OBJECT, Data.size(), 0, STB_GLOBAL, 928 Section, nullptr); 929 elf::Symtab<ELFT>::X->addRegular(Saver.save(S + "_size"), STV_DEFAULT, 930 STT_OBJECT, Data.size(), 0, STB_GLOBAL, 931 nullptr, nullptr); 932 } 933 934 static bool isBitcode(MemoryBufferRef MB) { 935 using namespace sys::fs; 936 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 937 } 938 939 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 940 uint64_t OffsetInArchive) { 941 if (isBitcode(MB)) 942 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 943 944 switch (getELFKind(MB)) { 945 case ELF32LEKind: 946 return make<ObjectFile<ELF32LE>>(MB, ArchiveName); 947 case ELF32BEKind: 948 return make<ObjectFile<ELF32BE>>(MB, ArchiveName); 949 case ELF64LEKind: 950 return make<ObjectFile<ELF64LE>>(MB, ArchiveName); 951 case ELF64BEKind: 952 return make<ObjectFile<ELF64BE>>(MB, ArchiveName); 953 default: 954 llvm_unreachable("getELFKind"); 955 } 956 } 957 958 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 959 switch (getELFKind(MB)) { 960 case ELF32LEKind: 961 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 962 case ELF32BEKind: 963 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 964 case ELF64LEKind: 965 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 966 case ELF64BEKind: 967 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 968 default: 969 llvm_unreachable("getELFKind"); 970 } 971 } 972 973 MemoryBufferRef LazyObjectFile::getBuffer() { 974 if (Seen) 975 return MemoryBufferRef(); 976 Seen = true; 977 return MB; 978 } 979 980 InputFile *LazyObjectFile::fetch() { 981 MemoryBufferRef MBRef = getBuffer(); 982 if (MBRef.getBuffer().empty()) 983 return nullptr; 984 return createObjectFile(MBRef, ArchiveName, OffsetInArchive); 985 } 986 987 template <class ELFT> void LazyObjectFile::parse() { 988 for (StringRef Sym : getSymbols()) 989 Symtab<ELFT>::X->addLazyObject(Sym, *this); 990 } 991 992 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 993 typedef typename ELFT::Shdr Elf_Shdr; 994 typedef typename ELFT::Sym Elf_Sym; 995 typedef typename ELFT::SymRange Elf_Sym_Range; 996 997 const ELFFile<ELFT> Obj(this->MB.getBuffer()); 998 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 999 for (const Elf_Shdr &Sec : Sections) { 1000 if (Sec.sh_type != SHT_SYMTAB) 1001 continue; 1002 1003 Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this)); 1004 uint32_t FirstNonLocal = Sec.sh_info; 1005 StringRef StringTable = 1006 check(Obj.getStringTableForSymtab(Sec, Sections), toString(this)); 1007 std::vector<StringRef> V; 1008 1009 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 1010 if (Sym.st_shndx != SHN_UNDEF) 1011 V.push_back(check(Sym.getName(StringTable), toString(this))); 1012 return V; 1013 } 1014 return {}; 1015 } 1016 1017 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 1018 std::unique_ptr<lto::InputFile> Obj = 1019 check(lto::InputFile::create(this->MB), toString(this)); 1020 std::vector<StringRef> V; 1021 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1022 if (!Sym.isUndefined()) 1023 V.push_back(Saver.save(Sym.getName())); 1024 return V; 1025 } 1026 1027 // Returns a vector of globally-visible defined symbol names. 1028 std::vector<StringRef> LazyObjectFile::getSymbols() { 1029 if (isBitcode(this->MB)) 1030 return getBitcodeSymbols(); 1031 1032 switch (getELFKind(this->MB)) { 1033 case ELF32LEKind: 1034 return getElfSymbols<ELF32LE>(); 1035 case ELF32BEKind: 1036 return getElfSymbols<ELF32BE>(); 1037 case ELF64LEKind: 1038 return getElfSymbols<ELF64LE>(); 1039 case ELF64BEKind: 1040 return getElfSymbols<ELF64BE>(); 1041 default: 1042 llvm_unreachable("getELFKind"); 1043 } 1044 } 1045 1046 template void ArchiveFile::parse<ELF32LE>(); 1047 template void ArchiveFile::parse<ELF32BE>(); 1048 template void ArchiveFile::parse<ELF64LE>(); 1049 template void ArchiveFile::parse<ELF64BE>(); 1050 1051 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1052 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1053 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1054 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1055 1056 template void LazyObjectFile::parse<ELF32LE>(); 1057 template void LazyObjectFile::parse<ELF32BE>(); 1058 template void LazyObjectFile::parse<ELF64LE>(); 1059 template void LazyObjectFile::parse<ELF64BE>(); 1060 1061 template class elf::ELFFileBase<ELF32LE>; 1062 template class elf::ELFFileBase<ELF32BE>; 1063 template class elf::ELFFileBase<ELF64LE>; 1064 template class elf::ELFFileBase<ELF64BE>; 1065 1066 template class elf::ObjectFile<ELF32LE>; 1067 template class elf::ObjectFile<ELF32BE>; 1068 template class elf::ObjectFile<ELF64LE>; 1069 template class elf::ObjectFile<ELF64BE>; 1070 1071 template class elf::SharedFile<ELF32LE>; 1072 template class elf::SharedFile<ELF32BE>; 1073 template class elf::SharedFile<ELF64LE>; 1074 template class elf::SharedFile<ELF64BE>; 1075 1076 template void BinaryFile::parse<ELF32LE>(); 1077 template void BinaryFile::parse<ELF32BE>(); 1078 template void BinaryFile::parse<ELF64LE>(); 1079 template void BinaryFile::parse<ELF64BE>(); 1080