1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys; 36 using namespace llvm::sys::fs; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 bool InputFile::IsInGroup; 42 uint32_t InputFile::NextGroupId; 43 std::vector<BinaryFile *> elf::BinaryFiles; 44 std::vector<BitcodeFile *> elf::BitcodeFiles; 45 std::vector<LazyObjFile *> elf::LazyObjFiles; 46 std::vector<InputFile *> elf::ObjectFiles; 47 std::vector<SharedFile *> elf::SharedFiles; 48 49 std::unique_ptr<TarWriter> elf::Tar; 50 51 static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) { 52 unsigned char Size; 53 unsigned char Endian; 54 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 55 56 auto Fatal = [&](StringRef Msg) { 57 StringRef Filename = MB.getBufferIdentifier(); 58 if (ArchiveName.empty()) 59 fatal(Filename + ": " + Msg); 60 else 61 fatal(ArchiveName + "(" + Filename + "): " + Msg); 62 }; 63 64 if (!MB.getBuffer().startswith(ElfMagic)) 65 Fatal("not an ELF file"); 66 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 67 Fatal("corrupted ELF file: invalid data encoding"); 68 if (Size != ELFCLASS32 && Size != ELFCLASS64) 69 Fatal("corrupted ELF file: invalid file class"); 70 71 size_t BufSize = MB.getBuffer().size(); 72 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 73 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 74 Fatal("corrupted ELF file: file is too short"); 75 76 if (Size == ELFCLASS32) 77 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 78 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 79 } 80 81 InputFile::InputFile(Kind K, MemoryBufferRef M) 82 : MB(M), GroupId(NextGroupId), FileKind(K) { 83 // All files within the same --{start,end}-group get the same group ID. 84 // Otherwise, a new file will get a new group ID. 85 if (!IsInGroup) 86 ++NextGroupId; 87 } 88 89 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 90 // The --chroot option changes our virtual root directory. 91 // This is useful when you are dealing with files created by --reproduce. 92 if (!Config->Chroot.empty() && Path.startswith("/")) 93 Path = Saver.save(Config->Chroot + Path); 94 95 log(Path); 96 97 auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); 98 if (auto EC = MBOrErr.getError()) { 99 error("cannot open " + Path + ": " + EC.message()); 100 return None; 101 } 102 103 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 104 MemoryBufferRef MBRef = MB->getMemBufferRef(); 105 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 106 107 if (Tar) 108 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 109 return MBRef; 110 } 111 112 // All input object files must be for the same architecture 113 // (e.g. it does not make sense to link x86 object files with 114 // MIPS object files.) This function checks for that error. 115 static bool isCompatible(InputFile *File) { 116 if (!File->isElf() && !isa<BitcodeFile>(File)) 117 return true; 118 119 if (File->EKind == Config->EKind && File->EMachine == Config->EMachine) { 120 if (Config->EMachine != EM_MIPS) 121 return true; 122 if (isMipsN32Abi(File) == Config->MipsN32Abi) 123 return true; 124 } 125 126 if (!Config->Emulation.empty()) { 127 error(toString(File) + " is incompatible with " + Config->Emulation); 128 } else { 129 InputFile *Existing; 130 if (!ObjectFiles.empty()) 131 Existing = ObjectFiles[0]; 132 else if (!SharedFiles.empty()) 133 Existing = SharedFiles[0]; 134 else 135 Existing = BitcodeFiles[0]; 136 137 error(toString(File) + " is incompatible with " + toString(Existing)); 138 } 139 140 return false; 141 } 142 143 template <class ELFT> static void doParseFile(InputFile *File) { 144 if (!isCompatible(File)) 145 return; 146 147 // Binary file 148 if (auto *F = dyn_cast<BinaryFile>(File)) { 149 BinaryFiles.push_back(F); 150 F->parse(); 151 return; 152 } 153 154 // .a file 155 if (auto *F = dyn_cast<ArchiveFile>(File)) { 156 F->parse(); 157 return; 158 } 159 160 // Lazy object file 161 if (auto *F = dyn_cast<LazyObjFile>(File)) { 162 LazyObjFiles.push_back(F); 163 F->parse<ELFT>(); 164 return; 165 } 166 167 if (Config->Trace) 168 message(toString(File)); 169 170 // .so file 171 if (auto *F = dyn_cast<SharedFile>(File)) { 172 F->parse<ELFT>(); 173 return; 174 } 175 176 // LLVM bitcode file 177 if (auto *F = dyn_cast<BitcodeFile>(File)) { 178 BitcodeFiles.push_back(F); 179 F->parse<ELFT>(Symtab->ComdatGroups); 180 return; 181 } 182 183 // Regular object file 184 ObjectFiles.push_back(File); 185 cast<ObjFile<ELFT>>(File)->parse(Symtab->ComdatGroups); 186 } 187 188 // Add symbols in File to the symbol table. 189 void elf::parseFile(InputFile *File) { 190 switch (Config->EKind) { 191 case ELF32LEKind: 192 doParseFile<ELF32LE>(File); 193 return; 194 case ELF32BEKind: 195 doParseFile<ELF32BE>(File); 196 return; 197 case ELF64LEKind: 198 doParseFile<ELF64LE>(File); 199 return; 200 case ELF64BEKind: 201 doParseFile<ELF64BE>(File); 202 return; 203 default: 204 llvm_unreachable("unknown ELFT"); 205 } 206 } 207 208 // Concatenates arguments to construct a string representing an error location. 209 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 210 std::string Filename = path::filename(Path); 211 std::string Lineno = ":" + std::to_string(Line); 212 if (Filename == Path) 213 return Filename + Lineno; 214 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 215 } 216 217 template <class ELFT> 218 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 219 InputSectionBase &Sec, uint64_t Offset) { 220 // In DWARF, functions and variables are stored to different places. 221 // First, lookup a function for a given offset. 222 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 223 return createFileLineMsg(Info->FileName, Info->Line); 224 225 // If it failed, lookup again as a variable. 226 if (Optional<std::pair<std::string, unsigned>> FileLine = 227 File.getVariableLoc(Sym.getName())) 228 return createFileLineMsg(FileLine->first, FileLine->second); 229 230 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 231 return File.SourceFile; 232 } 233 234 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 235 uint64_t Offset) { 236 if (kind() != ObjKind) 237 return ""; 238 switch (Config->EKind) { 239 default: 240 llvm_unreachable("Invalid kind"); 241 case ELF32LEKind: 242 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 243 case ELF32BEKind: 244 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 245 case ELF64LEKind: 246 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 247 case ELF64BEKind: 248 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 249 } 250 } 251 252 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 253 Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 254 for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) { 255 auto Report = [](Error Err) { 256 handleAllErrors(std::move(Err), 257 [](ErrorInfoBase &Info) { warn(Info.message()); }); 258 }; 259 Expected<const DWARFDebugLine::LineTable *> ExpectedLT = 260 Dwarf->getLineTableForUnit(CU.get(), Report); 261 const DWARFDebugLine::LineTable *LT = nullptr; 262 if (ExpectedLT) 263 LT = *ExpectedLT; 264 else 265 Report(ExpectedLT.takeError()); 266 if (!LT) 267 continue; 268 LineTables.push_back(LT); 269 270 // Loop over variable records and insert them to VariableLoc. 271 for (const auto &Entry : CU->dies()) { 272 DWARFDie Die(CU.get(), &Entry); 273 // Skip all tags that are not variables. 274 if (Die.getTag() != dwarf::DW_TAG_variable) 275 continue; 276 277 // Skip if a local variable because we don't need them for generating 278 // error messages. In general, only non-local symbols can fail to be 279 // linked. 280 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 281 continue; 282 283 // Get the source filename index for the variable. 284 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 285 if (!LT->hasFileAtIndex(File)) 286 continue; 287 288 // Get the line number on which the variable is declared. 289 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 290 291 // Here we want to take the variable name to add it into VariableLoc. 292 // Variable can have regular and linkage name associated. At first, we try 293 // to get linkage name as it can be different, for example when we have 294 // two variables in different namespaces of the same object. Use common 295 // name otherwise, but handle the case when it also absent in case if the 296 // input object file lacks some debug info. 297 StringRef Name = 298 dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), 299 dwarf::toString(Die.find(dwarf::DW_AT_name), "")); 300 if (!Name.empty()) 301 VariableLoc.insert({Name, {LT, File, Line}}); 302 } 303 } 304 } 305 306 // Returns the pair of file name and line number describing location of data 307 // object (variable, array, etc) definition. 308 template <class ELFT> 309 Optional<std::pair<std::string, unsigned>> 310 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 311 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 312 313 // Return if we have no debug information about data object. 314 auto It = VariableLoc.find(Name); 315 if (It == VariableLoc.end()) 316 return None; 317 318 // Take file name string from line table. 319 std::string FileName; 320 if (!It->second.LT->getFileNameByIndex( 321 It->second.File, nullptr, 322 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 323 return None; 324 325 return std::make_pair(FileName, It->second.Line); 326 } 327 328 // Returns source line information for a given offset 329 // using DWARF debug info. 330 template <class ELFT> 331 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 332 uint64_t Offset) { 333 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 334 335 // Detect SectionIndex for specified section. 336 uint64_t SectionIndex = object::SectionedAddress::UndefSection; 337 ArrayRef<InputSectionBase *> Sections = S->File->getSections(); 338 for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) { 339 if (S == Sections[CurIndex]) { 340 SectionIndex = CurIndex; 341 break; 342 } 343 } 344 345 // Use fake address calcuated by adding section file offset and offset in 346 // section. See comments for ObjectInfo class. 347 DILineInfo Info; 348 for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) { 349 if (LT->getFileLineInfoForAddress( 350 {S->getOffsetInFile() + Offset, SectionIndex}, nullptr, 351 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) 352 return Info; 353 } 354 return None; 355 } 356 357 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 358 std::string lld::toString(const InputFile *F) { 359 if (!F) 360 return "<internal>"; 361 362 if (F->ToStringCache.empty()) { 363 if (F->ArchiveName.empty()) 364 F->ToStringCache = F->getName(); 365 else 366 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 367 } 368 return F->ToStringCache; 369 } 370 371 ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 372 EKind = getELFKind(MB, ""); 373 374 switch (EKind) { 375 case ELF32LEKind: 376 init<ELF32LE>(); 377 break; 378 case ELF32BEKind: 379 init<ELF32BE>(); 380 break; 381 case ELF64LEKind: 382 init<ELF64LE>(); 383 break; 384 case ELF64BEKind: 385 init<ELF64BE>(); 386 break; 387 default: 388 llvm_unreachable("getELFKind"); 389 } 390 } 391 392 template <typename Elf_Shdr> 393 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> Sections, uint32_t Type) { 394 for (const Elf_Shdr &Sec : Sections) 395 if (Sec.sh_type == Type) 396 return &Sec; 397 return nullptr; 398 } 399 400 template <class ELFT> void ELFFileBase::init() { 401 using Elf_Shdr = typename ELFT::Shdr; 402 using Elf_Sym = typename ELFT::Sym; 403 404 // Initialize trivial attributes. 405 const ELFFile<ELFT> &Obj = getObj<ELFT>(); 406 EMachine = Obj.getHeader()->e_machine; 407 OSABI = Obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 408 ABIVersion = Obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 409 410 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 411 412 // Find a symbol table. 413 bool IsDSO = 414 (identify_magic(MB.getBuffer()) == file_magic::elf_shared_object); 415 const Elf_Shdr *SymtabSec = 416 findSection(Sections, IsDSO ? SHT_DYNSYM : SHT_SYMTAB); 417 418 if (!SymtabSec) 419 return; 420 421 // Initialize members corresponding to a symbol table. 422 FirstGlobal = SymtabSec->sh_info; 423 424 ArrayRef<Elf_Sym> ESyms = CHECK(Obj.symbols(SymtabSec), this); 425 if (FirstGlobal == 0 || FirstGlobal > ESyms.size()) 426 fatal(toString(this) + ": invalid sh_info in symbol table"); 427 428 ELFSyms = reinterpret_cast<const void *>(ESyms.data()); 429 NumELFSyms = ESyms.size(); 430 StringTable = CHECK(Obj.getStringTableForSymtab(*SymtabSec, Sections), this); 431 } 432 433 template <class ELFT> 434 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 435 return CHECK( 436 this->getObj().getSectionIndex(&Sym, getELFSyms<ELFT>(), ShndxTable), 437 this); 438 } 439 440 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 441 if (this->Symbols.empty()) 442 return {}; 443 return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); 444 } 445 446 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 447 return makeArrayRef(this->Symbols).slice(this->FirstGlobal); 448 } 449 450 template <class ELFT> 451 void ObjFile<ELFT>::parse( 452 DenseMap<CachedHashStringRef, const InputFile *> &ComdatGroups) { 453 // Read a section table. JustSymbols is usually false. 454 if (this->JustSymbols) 455 initializeJustSymbols(); 456 else 457 initializeSections(ComdatGroups); 458 459 // Read a symbol table. 460 initializeSymbols(); 461 } 462 463 // Sections with SHT_GROUP and comdat bits define comdat section groups. 464 // They are identified and deduplicated by group name. This function 465 // returns a group name. 466 template <class ELFT> 467 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 468 const Elf_Shdr &Sec) { 469 const Elf_Sym *Sym = 470 CHECK(object::getSymbol<ELFT>(this->getELFSyms<ELFT>(), Sec.sh_info), this); 471 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 472 473 // As a special case, if a symbol is a section symbol and has no name, 474 // we use a section name as a signature. 475 // 476 // Such SHT_GROUP sections are invalid from the perspective of the ELF 477 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 478 // older produce such sections as outputs for the -r option, so we need 479 // a bug-compatibility. 480 if (Signature.empty() && Sym->getType() == STT_SECTION) 481 return getSectionName(Sec); 482 return Signature; 483 } 484 485 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 486 // On a regular link we don't merge sections if -O0 (default is -O1). This 487 // sometimes makes the linker significantly faster, although the output will 488 // be bigger. 489 // 490 // Doing the same for -r would create a problem as it would combine sections 491 // with different sh_entsize. One option would be to just copy every SHF_MERGE 492 // section as is to the output. While this would produce a valid ELF file with 493 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 494 // they see two .debug_str. We could have separate logic for combining 495 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 496 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 497 // logic for -r. 498 if (Config->Optimize == 0 && !Config->Relocatable) 499 return false; 500 501 // A mergeable section with size 0 is useless because they don't have 502 // any data to merge. A mergeable string section with size 0 can be 503 // argued as invalid because it doesn't end with a null character. 504 // We'll avoid a mess by handling them as if they were non-mergeable. 505 if (Sec.sh_size == 0) 506 return false; 507 508 // Check for sh_entsize. The ELF spec is not clear about the zero 509 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 510 // the section does not hold a table of fixed-size entries". We know 511 // that Rust 1.13 produces a string mergeable section with a zero 512 // sh_entsize. Here we just accept it rather than being picky about it. 513 uint64_t EntSize = Sec.sh_entsize; 514 if (EntSize == 0) 515 return false; 516 if (Sec.sh_size % EntSize) 517 fatal(toString(this) + 518 ": SHF_MERGE section size must be a multiple of sh_entsize"); 519 520 uint64_t Flags = Sec.sh_flags; 521 if (!(Flags & SHF_MERGE)) 522 return false; 523 if (Flags & SHF_WRITE) 524 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 525 526 return true; 527 } 528 529 // This is for --just-symbols. 530 // 531 // --just-symbols is a very minor feature that allows you to link your 532 // output against other existing program, so that if you load both your 533 // program and the other program into memory, your output can refer the 534 // other program's symbols. 535 // 536 // When the option is given, we link "just symbols". The section table is 537 // initialized with null pointers. 538 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 539 ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); 540 this->Sections.resize(Sections.size()); 541 } 542 543 // An ELF object file may contain a `.deplibs` section. If it exists, the 544 // section contains a list of library specifiers such as `m` for libm. This 545 // function resolves a given name by finding the first matching library checking 546 // the various ways that a library can be specified to LLD. This ELF extension 547 // is a form of autolinking and is called `dependent libraries`. It is currently 548 // unique to LLVM and lld. 549 static void addDependentLibrary(StringRef Specifier, const InputFile *F) { 550 if (!Config->DependentLibraries) 551 return; 552 if (fs::exists(Specifier)) 553 Driver->addFile(Specifier, /*WithLOption=*/false); 554 else if (Optional<std::string> S = findFromSearchPaths(Specifier)) 555 Driver->addFile(*S, /*WithLOption=*/true); 556 else if (Optional<std::string> S = searchLibraryBaseName(Specifier)) 557 Driver->addFile(*S, /*WithLOption=*/true); 558 else 559 error(toString(F) + 560 ": unable to find library from dependent library specifier: " + 561 Specifier); 562 } 563 564 template <class ELFT> 565 void ObjFile<ELFT>::initializeSections( 566 DenseMap<CachedHashStringRef, const InputFile *> &ComdatGroups) { 567 const ELFFile<ELFT> &Obj = this->getObj(); 568 569 ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); 570 uint64_t Size = ObjSections.size(); 571 this->Sections.resize(Size); 572 this->SectionStringTable = 573 CHECK(Obj.getSectionStringTable(ObjSections), this); 574 575 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 576 if (this->Sections[I] == &InputSection::Discarded) 577 continue; 578 const Elf_Shdr &Sec = ObjSections[I]; 579 580 if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 581 CGProfile = 582 check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec)); 583 584 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 585 // if -r is given, we'll let the final link discard such sections. 586 // This is compatible with GNU. 587 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 588 if (Sec.sh_type == SHT_LLVM_ADDRSIG) { 589 // We ignore the address-significance table if we know that the object 590 // file was created by objcopy or ld -r. This is because these tools 591 // will reorder the symbols in the symbol table, invalidating the data 592 // in the address-significance table, which refers to symbols by index. 593 if (Sec.sh_link != 0) 594 this->AddrsigSec = &Sec; 595 else if (Config->ICF == ICFLevel::Safe) 596 warn(toString(this) + ": --icf=safe is incompatible with object " 597 "files created using objcopy or ld -r"); 598 } 599 this->Sections[I] = &InputSection::Discarded; 600 continue; 601 } 602 603 switch (Sec.sh_type) { 604 case SHT_GROUP: { 605 // De-duplicate section groups by their signatures. 606 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 607 this->Sections[I] = &InputSection::Discarded; 608 609 610 ArrayRef<Elf_Word> Entries = 611 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 612 if (Entries.empty()) 613 fatal(toString(this) + ": empty SHT_GROUP"); 614 615 // The first word of a SHT_GROUP section contains flags. Currently, 616 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 617 // An group with the empty flag doesn't define anything; such sections 618 // are just skipped. 619 if (Entries[0] == 0) 620 continue; 621 622 if (Entries[0] != GRP_COMDAT) 623 fatal(toString(this) + ": unsupported SHT_GROUP format"); 624 625 bool IsNew = 626 ComdatGroups.try_emplace(CachedHashStringRef(Signature), this).second; 627 if (IsNew) { 628 if (Config->Relocatable) 629 this->Sections[I] = createInputSection(Sec); 630 continue; 631 } 632 633 // Otherwise, discard group members. 634 for (uint32_t SecIndex : Entries.slice(1)) { 635 if (SecIndex >= Size) 636 fatal(toString(this) + 637 ": invalid section index in group: " + Twine(SecIndex)); 638 this->Sections[SecIndex] = &InputSection::Discarded; 639 } 640 break; 641 } 642 case SHT_SYMTAB_SHNDX: 643 ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 644 break; 645 case SHT_SYMTAB: 646 case SHT_STRTAB: 647 case SHT_NULL: 648 break; 649 default: 650 this->Sections[I] = createInputSection(Sec); 651 } 652 653 // .ARM.exidx sections have a reverse dependency on the InputSection they 654 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 655 if (Sec.sh_flags & SHF_LINK_ORDER) { 656 InputSectionBase *LinkSec = nullptr; 657 if (Sec.sh_link < this->Sections.size()) 658 LinkSec = this->Sections[Sec.sh_link]; 659 if (!LinkSec) 660 fatal(toString(this) + 661 ": invalid sh_link index: " + Twine(Sec.sh_link)); 662 663 InputSection *IS = cast<InputSection>(this->Sections[I]); 664 LinkSec->DependentSections.push_back(IS); 665 if (!isa<InputSection>(LinkSec)) 666 error("a section " + IS->Name + 667 " with SHF_LINK_ORDER should not refer a non-regular " 668 "section: " + 669 toString(LinkSec)); 670 } 671 } 672 } 673 674 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 675 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 676 // the input objects have been compiled. 677 static void updateARMVFPArgs(const ARMAttributeParser &Attributes, 678 const InputFile *F) { 679 if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 680 // If an ABI tag isn't present then it is implicitly given the value of 0 681 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 682 // including some in glibc that don't use FP args (and should have value 3) 683 // don't have the attribute so we do not consider an implicit value of 0 684 // as a clash. 685 return; 686 687 unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 688 ARMVFPArgKind Arg; 689 switch (VFPArgs) { 690 case ARMBuildAttrs::BaseAAPCS: 691 Arg = ARMVFPArgKind::Base; 692 break; 693 case ARMBuildAttrs::HardFPAAPCS: 694 Arg = ARMVFPArgKind::VFP; 695 break; 696 case ARMBuildAttrs::ToolChainFPPCS: 697 // Tool chain specific convention that conforms to neither AAPCS variant. 698 Arg = ARMVFPArgKind::ToolChain; 699 break; 700 case ARMBuildAttrs::CompatibleFPAAPCS: 701 // Object compatible with all conventions. 702 return; 703 default: 704 error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); 705 return; 706 } 707 // Follow ld.bfd and error if there is a mix of calling conventions. 708 if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) 709 error(toString(F) + ": incompatible Tag_ABI_VFP_args"); 710 else 711 Config->ARMVFPArgs = Arg; 712 } 713 714 // The ARM support in lld makes some use of instructions that are not available 715 // on all ARM architectures. Namely: 716 // - Use of BLX instruction for interworking between ARM and Thumb state. 717 // - Use of the extended Thumb branch encoding in relocation. 718 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 719 // The ARM Attributes section contains information about the architecture chosen 720 // at compile time. We follow the convention that if at least one input object 721 // is compiled with an architecture that supports these features then lld is 722 // permitted to use them. 723 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 724 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 725 return; 726 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 727 switch (Arch) { 728 case ARMBuildAttrs::Pre_v4: 729 case ARMBuildAttrs::v4: 730 case ARMBuildAttrs::v4T: 731 // Architectures prior to v5 do not support BLX instruction 732 break; 733 case ARMBuildAttrs::v5T: 734 case ARMBuildAttrs::v5TE: 735 case ARMBuildAttrs::v5TEJ: 736 case ARMBuildAttrs::v6: 737 case ARMBuildAttrs::v6KZ: 738 case ARMBuildAttrs::v6K: 739 Config->ARMHasBlx = true; 740 // Architectures used in pre-Cortex processors do not support 741 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 742 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 743 break; 744 default: 745 // All other Architectures have BLX and extended branch encoding 746 Config->ARMHasBlx = true; 747 Config->ARMJ1J2BranchEncoding = true; 748 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 749 // All Architectures used in Cortex processors with the exception 750 // of v6-M and v6S-M have the MOVT and MOVW instructions. 751 Config->ARMHasMovtMovw = true; 752 break; 753 } 754 } 755 756 template <class ELFT> 757 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 758 uint32_t Idx = Sec.sh_info; 759 if (Idx >= this->Sections.size()) 760 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 761 InputSectionBase *Target = this->Sections[Idx]; 762 763 // Strictly speaking, a relocation section must be included in the 764 // group of the section it relocates. However, LLVM 3.3 and earlier 765 // would fail to do so, so we gracefully handle that case. 766 if (Target == &InputSection::Discarded) 767 return nullptr; 768 769 if (!Target) 770 fatal(toString(this) + ": unsupported relocation reference"); 771 return Target; 772 } 773 774 // Create a regular InputSection class that has the same contents 775 // as a given section. 776 static InputSection *toRegularSection(MergeInputSection *Sec) { 777 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 778 Sec->data(), Sec->Name); 779 } 780 781 template <class ELFT> 782 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 783 StringRef Name = getSectionName(Sec); 784 785 switch (Sec.sh_type) { 786 case SHT_ARM_ATTRIBUTES: { 787 if (Config->EMachine != EM_ARM) 788 break; 789 ARMAttributeParser Attributes; 790 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 791 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 792 updateSupportedARMFeatures(Attributes); 793 updateARMVFPArgs(Attributes, this); 794 795 // FIXME: Retain the first attribute section we see. The eglibc ARM 796 // dynamic loaders require the presence of an attribute section for dlopen 797 // to work. In a full implementation we would merge all attribute sections. 798 if (In.ARMAttributes == nullptr) { 799 In.ARMAttributes = make<InputSection>(*this, Sec, Name); 800 return In.ARMAttributes; 801 } 802 return &InputSection::Discarded; 803 } 804 case SHT_LLVM_DEPENDENT_LIBRARIES: { 805 if (Config->Relocatable) 806 break; 807 ArrayRef<char> Data = 808 CHECK(this->getObj().template getSectionContentsAsArray<char>(&Sec), this); 809 if (!Data.empty() && Data.back() != '\0') { 810 error(toString(this) + 811 ": corrupted dependent libraries section (unterminated string): " + 812 Name); 813 return &InputSection::Discarded; 814 } 815 for (const char *D = Data.begin(), *E = Data.end(); D < E;) { 816 StringRef S(D); 817 addDependentLibrary(S, this); 818 D += S.size() + 1; 819 } 820 return &InputSection::Discarded; 821 } 822 case SHT_RELA: 823 case SHT_REL: { 824 // Find a relocation target section and associate this section with that. 825 // Target may have been discarded if it is in a different section group 826 // and the group is discarded, even though it's a violation of the 827 // spec. We handle that situation gracefully by discarding dangling 828 // relocation sections. 829 InputSectionBase *Target = getRelocTarget(Sec); 830 if (!Target) 831 return nullptr; 832 833 // This section contains relocation information. 834 // If -r is given, we do not interpret or apply relocation 835 // but just copy relocation sections to output. 836 if (Config->Relocatable) { 837 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 838 // We want to add a dependency to target, similar like we do for 839 // -emit-relocs below. This is useful for the case when linker script 840 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 841 // -r, but we faced it in the Linux kernel and have to handle such case 842 // and not to crash. 843 Target->DependentSections.push_back(RelocSec); 844 return RelocSec; 845 } 846 847 if (Target->FirstRelocation) 848 fatal(toString(this) + 849 ": multiple relocation sections to one section are not supported"); 850 851 // ELF spec allows mergeable sections with relocations, but they are 852 // rare, and it is in practice hard to merge such sections by contents, 853 // because applying relocations at end of linking changes section 854 // contents. So, we simply handle such sections as non-mergeable ones. 855 // Degrading like this is acceptable because section merging is optional. 856 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 857 Target = toRegularSection(MS); 858 this->Sections[Sec.sh_info] = Target; 859 } 860 861 if (Sec.sh_type == SHT_RELA) { 862 ArrayRef<Elf_Rela> Rels = CHECK(getObj().relas(&Sec), this); 863 Target->FirstRelocation = Rels.begin(); 864 Target->NumRelocations = Rels.size(); 865 Target->AreRelocsRela = true; 866 } else { 867 ArrayRef<Elf_Rel> Rels = CHECK(getObj().rels(&Sec), this); 868 Target->FirstRelocation = Rels.begin(); 869 Target->NumRelocations = Rels.size(); 870 Target->AreRelocsRela = false; 871 } 872 assert(isUInt<31>(Target->NumRelocations)); 873 874 // Relocation sections processed by the linker are usually removed 875 // from the output, so returning `nullptr` for the normal case. 876 // However, if -emit-relocs is given, we need to leave them in the output. 877 // (Some post link analysis tools need this information.) 878 if (Config->EmitRelocs) { 879 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 880 // We will not emit relocation section if target was discarded. 881 Target->DependentSections.push_back(RelocSec); 882 return RelocSec; 883 } 884 return nullptr; 885 } 886 } 887 888 // The GNU linker uses .note.GNU-stack section as a marker indicating 889 // that the code in the object file does not expect that the stack is 890 // executable (in terms of NX bit). If all input files have the marker, 891 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 892 // make the stack non-executable. Most object files have this section as 893 // of 2017. 894 // 895 // But making the stack non-executable is a norm today for security 896 // reasons. Failure to do so may result in a serious security issue. 897 // Therefore, we make LLD always add PT_GNU_STACK unless it is 898 // explicitly told to do otherwise (by -z execstack). Because the stack 899 // executable-ness is controlled solely by command line options, 900 // .note.GNU-stack sections are simply ignored. 901 if (Name == ".note.GNU-stack") 902 return &InputSection::Discarded; 903 904 // Split stacks is a feature to support a discontiguous stack, 905 // commonly used in the programming language Go. For the details, 906 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 907 // for split stack will include a .note.GNU-split-stack section. 908 if (Name == ".note.GNU-split-stack") { 909 if (Config->Relocatable) { 910 error("cannot mix split-stack and non-split-stack in a relocatable link"); 911 return &InputSection::Discarded; 912 } 913 this->SplitStack = true; 914 return &InputSection::Discarded; 915 } 916 917 // An object file cmpiled for split stack, but where some of the 918 // functions were compiled with the no_split_stack_attribute will 919 // include a .note.GNU-no-split-stack section. 920 if (Name == ".note.GNU-no-split-stack") { 921 this->SomeNoSplitStack = true; 922 return &InputSection::Discarded; 923 } 924 925 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 926 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 927 // sections. Drop those sections to avoid duplicate symbol errors. 928 // FIXME: This is glibc PR20543, we should remove this hack once that has been 929 // fixed for a while. 930 if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 931 Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 932 return &InputSection::Discarded; 933 934 // If we are creating a new .build-id section, strip existing .build-id 935 // sections so that the output won't have more than one .build-id. 936 // This is not usually a problem because input object files normally don't 937 // have .build-id sections, but you can create such files by 938 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 939 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 940 return &InputSection::Discarded; 941 942 // The linker merges EH (exception handling) frames and creates a 943 // .eh_frame_hdr section for runtime. So we handle them with a special 944 // class. For relocatable outputs, they are just passed through. 945 if (Name == ".eh_frame" && !Config->Relocatable) 946 return make<EhInputSection>(*this, Sec, Name); 947 948 if (shouldMerge(Sec)) 949 return make<MergeInputSection>(*this, Sec, Name); 950 return make<InputSection>(*this, Sec, Name); 951 } 952 953 template <class ELFT> 954 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 955 return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this); 956 } 957 958 // Initialize this->Symbols. this->Symbols is a parallel array as 959 // its corresponding ELF symbol table. 960 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 961 ArrayRef<Elf_Sym> ESyms = this->getELFSyms<ELFT>(); 962 this->Symbols.resize(ESyms.size()); 963 964 // Our symbol table may have already been partially initialized 965 // because of LazyObjFile. 966 for (size_t I = 0, End = ESyms.size(); I != End; ++I) 967 if (!this->Symbols[I] && ESyms[I].getBinding() != STB_LOCAL) 968 this->Symbols[I] = 969 Symtab->insert(CHECK(ESyms[I].getName(this->StringTable), this)); 970 971 // Fill this->Symbols. A symbol is either local or global. 972 for (size_t I = 0, End = ESyms.size(); I != End; ++I) { 973 const Elf_Sym &ESym = ESyms[I]; 974 975 // Read symbol attributes. 976 uint32_t SecIdx = getSectionIndex(ESym); 977 if (SecIdx >= this->Sections.size()) 978 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 979 980 InputSectionBase *Sec = this->Sections[SecIdx]; 981 uint8_t Binding = ESym.getBinding(); 982 uint8_t StOther = ESym.st_other; 983 uint8_t Type = ESym.getType(); 984 uint64_t Value = ESym.st_value; 985 uint64_t Size = ESym.st_size; 986 StringRefZ Name = this->StringTable.data() + ESym.st_name; 987 988 // Handle local symbols. Local symbols are not added to the symbol 989 // table because they are not visible from other object files. We 990 // allocate symbol instances and add their pointers to Symbols. 991 if (Binding == STB_LOCAL) { 992 if (ESym.getType() == STT_FILE) 993 SourceFile = CHECK(ESym.getName(this->StringTable), this); 994 995 if (this->StringTable.size() <= ESym.st_name) 996 fatal(toString(this) + ": invalid symbol name offset"); 997 998 if (ESym.st_shndx == SHN_UNDEF) 999 this->Symbols[I] = make<Undefined>(this, Name, Binding, StOther, Type); 1000 else if (Sec == &InputSection::Discarded) 1001 this->Symbols[I] = make<Undefined>(this, Name, Binding, StOther, Type, 1002 /*DiscardedSecIdx=*/SecIdx); 1003 else 1004 this->Symbols[I] = 1005 make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 1006 continue; 1007 } 1008 1009 // Handle global undefined symbols. 1010 if (ESym.st_shndx == SHN_UNDEF) { 1011 this->Symbols[I]->resolve(Undefined{this, Name, Binding, StOther, Type}); 1012 continue; 1013 } 1014 1015 // Handle global common symbols. 1016 if (ESym.st_shndx == SHN_COMMON) { 1017 if (Value == 0 || Value >= UINT32_MAX) 1018 fatal(toString(this) + ": common symbol '" + StringRef(Name.Data) + 1019 "' has invalid alignment: " + Twine(Value)); 1020 this->Symbols[I]->resolve( 1021 CommonSymbol{this, Name, Binding, StOther, Type, Value, Size}); 1022 continue; 1023 } 1024 1025 // If a defined symbol is in a discarded section, handle it as if it 1026 // were an undefined symbol. Such symbol doesn't comply with the 1027 // standard, but in practice, a .eh_frame often directly refer 1028 // COMDAT member sections, and if a comdat group is discarded, some 1029 // defined symbol in a .eh_frame becomes dangling symbols. 1030 if (Sec == &InputSection::Discarded) { 1031 this->Symbols[I]->resolve( 1032 Undefined{this, Name, Binding, StOther, Type, SecIdx}); 1033 continue; 1034 } 1035 1036 // Handle global defined symbols. 1037 if (Binding == STB_GLOBAL || Binding == STB_WEAK || 1038 Binding == STB_GNU_UNIQUE) { 1039 this->Symbols[I]->resolve( 1040 Defined{this, Name, Binding, StOther, Type, Value, Size, Sec}); 1041 continue; 1042 } 1043 1044 fatal(toString(this) + ": unexpected binding: " + Twine((int)Binding)); 1045 } 1046 } 1047 1048 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 1049 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 1050 File(std::move(File)) {} 1051 1052 void ArchiveFile::parse() { 1053 for (const Archive::Symbol &Sym : File->symbols()) 1054 Symtab->addSymbol(LazyArchive{*this, Sym}); 1055 } 1056 1057 // Returns a buffer pointing to a member file containing a given symbol. 1058 void ArchiveFile::fetch(const Archive::Symbol &Sym) { 1059 Archive::Child C = 1060 CHECK(Sym.getMember(), toString(this) + 1061 ": could not get the member for symbol " + 1062 Sym.getName()); 1063 1064 if (!Seen.insert(C.getChildOffset()).second) 1065 return; 1066 1067 MemoryBufferRef MB = 1068 CHECK(C.getMemoryBufferRef(), 1069 toString(this) + 1070 ": could not get the buffer for the member defining symbol " + 1071 Sym.getName()); 1072 1073 if (Tar && C.getParent()->isThin()) 1074 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); 1075 1076 InputFile *File = createObjectFile( 1077 MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); 1078 File->GroupId = GroupId; 1079 parseFile(File); 1080 } 1081 1082 unsigned SharedFile::VernauxNum; 1083 1084 // Parse the version definitions in the object file if present, and return a 1085 // vector whose nth element contains a pointer to the Elf_Verdef for version 1086 // identifier n. Version identifiers that are not definitions map to nullptr. 1087 template <typename ELFT> 1088 static std::vector<const void *> parseVerdefs(const uint8_t *Base, 1089 const typename ELFT::Shdr *Sec) { 1090 if (!Sec) 1091 return {}; 1092 1093 // We cannot determine the largest verdef identifier without inspecting 1094 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1095 // sequentially starting from 1, so we predict that the largest identifier 1096 // will be VerdefCount. 1097 unsigned VerdefCount = Sec->sh_info; 1098 std::vector<const void *> Verdefs(VerdefCount + 1); 1099 1100 // Build the Verdefs array by following the chain of Elf_Verdef objects 1101 // from the start of the .gnu.version_d section. 1102 const uint8_t *Verdef = Base + Sec->sh_offset; 1103 for (unsigned I = 0; I != VerdefCount; ++I) { 1104 auto *CurVerdef = reinterpret_cast<const typename ELFT::Verdef *>(Verdef); 1105 Verdef += CurVerdef->vd_next; 1106 unsigned VerdefIndex = CurVerdef->vd_ndx; 1107 Verdefs.resize(VerdefIndex + 1); 1108 Verdefs[VerdefIndex] = CurVerdef; 1109 } 1110 return Verdefs; 1111 } 1112 1113 // We do not usually care about alignments of data in shared object 1114 // files because the loader takes care of it. However, if we promote a 1115 // DSO symbol to point to .bss due to copy relocation, we need to keep 1116 // the original alignment requirements. We infer it in this function. 1117 template <typename ELFT> 1118 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> Sections, 1119 const typename ELFT::Sym &Sym) { 1120 uint64_t Ret = UINT64_MAX; 1121 if (Sym.st_value) 1122 Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 1123 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) 1124 Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); 1125 return (Ret > UINT32_MAX) ? 0 : Ret; 1126 } 1127 1128 // Fully parse the shared object file. 1129 // 1130 // This function parses symbol versions. If a DSO has version information, 1131 // the file has a ".gnu.version_d" section which contains symbol version 1132 // definitions. Each symbol is associated to one version through a table in 1133 // ".gnu.version" section. That table is a parallel array for the symbol 1134 // table, and each table entry contains an index in ".gnu.version_d". 1135 // 1136 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1137 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1138 // ".gnu.version_d". 1139 // 1140 // The file format for symbol versioning is perhaps a bit more complicated 1141 // than necessary, but you can easily understand the code if you wrap your 1142 // head around the data structure described above. 1143 template <class ELFT> void SharedFile::parse() { 1144 using Elf_Dyn = typename ELFT::Dyn; 1145 using Elf_Shdr = typename ELFT::Shdr; 1146 using Elf_Sym = typename ELFT::Sym; 1147 using Elf_Verdef = typename ELFT::Verdef; 1148 using Elf_Versym = typename ELFT::Versym; 1149 1150 ArrayRef<Elf_Dyn> DynamicTags; 1151 const ELFFile<ELFT> Obj = this->getObj<ELFT>(); 1152 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 1153 1154 const Elf_Shdr *VersymSec = nullptr; 1155 const Elf_Shdr *VerdefSec = nullptr; 1156 1157 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1158 for (const Elf_Shdr &Sec : Sections) { 1159 switch (Sec.sh_type) { 1160 default: 1161 continue; 1162 case SHT_DYNAMIC: 1163 DynamicTags = 1164 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(&Sec), this); 1165 break; 1166 case SHT_GNU_versym: 1167 VersymSec = &Sec; 1168 break; 1169 case SHT_GNU_verdef: 1170 VerdefSec = &Sec; 1171 break; 1172 } 1173 } 1174 1175 if (VersymSec && NumELFSyms == 0) { 1176 error("SHT_GNU_versym should be associated with symbol table"); 1177 return; 1178 } 1179 1180 // Search for a DT_SONAME tag to initialize this->SoName. 1181 for (const Elf_Dyn &Dyn : DynamicTags) { 1182 if (Dyn.d_tag == DT_NEEDED) { 1183 uint64_t Val = Dyn.getVal(); 1184 if (Val >= this->StringTable.size()) 1185 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1186 DtNeeded.push_back(this->StringTable.data() + Val); 1187 } else if (Dyn.d_tag == DT_SONAME) { 1188 uint64_t Val = Dyn.getVal(); 1189 if (Val >= this->StringTable.size()) 1190 fatal(toString(this) + ": invalid DT_SONAME entry"); 1191 SoName = this->StringTable.data() + Val; 1192 } 1193 } 1194 1195 // DSOs are uniquified not by filename but by soname. 1196 DenseMap<StringRef, SharedFile *>::iterator It; 1197 bool WasInserted; 1198 std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this); 1199 1200 // If a DSO appears more than once on the command line with and without 1201 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1202 // user can add an extra DSO with --no-as-needed to force it to be added to 1203 // the dependency list. 1204 It->second->IsNeeded |= IsNeeded; 1205 if (!WasInserted) 1206 return; 1207 1208 SharedFiles.push_back(this); 1209 1210 Verdefs = parseVerdefs<ELFT>(Obj.base(), VerdefSec); 1211 1212 // Parse ".gnu.version" section which is a parallel array for the symbol 1213 // table. If a given file doesn't have a ".gnu.version" section, we use 1214 // VER_NDX_GLOBAL. 1215 size_t Size = NumELFSyms - FirstGlobal; 1216 std::vector<uint32_t> Versyms(Size, VER_NDX_GLOBAL); 1217 if (VersymSec) { 1218 ArrayRef<Elf_Versym> Versym = 1219 CHECK(Obj.template getSectionContentsAsArray<Elf_Versym>(VersymSec), 1220 this) 1221 .slice(FirstGlobal); 1222 for (size_t I = 0; I < Size; ++I) 1223 Versyms[I] = Versym[I].vs_index; 1224 } 1225 1226 // System libraries can have a lot of symbols with versions. Using a 1227 // fixed buffer for computing the versions name (foo@ver) can save a 1228 // lot of allocations. 1229 SmallString<0> VersionedNameBuffer; 1230 1231 // Add symbols to the symbol table. 1232 ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms<ELFT>(); 1233 for (size_t I = 0; I < Syms.size(); ++I) { 1234 const Elf_Sym &Sym = Syms[I]; 1235 1236 // ELF spec requires that all local symbols precede weak or global 1237 // symbols in each symbol table, and the index of first non-local symbol 1238 // is stored to sh_info. If a local symbol appears after some non-local 1239 // symbol, that's a violation of the spec. 1240 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 1241 if (Sym.getBinding() == STB_LOCAL) { 1242 warn("found local symbol '" + Name + 1243 "' in global part of symbol table in file " + toString(this)); 1244 continue; 1245 } 1246 1247 if (Sym.isUndefined()) { 1248 Symbol *S = Symtab->addSymbol( 1249 Undefined{this, Name, Sym.getBinding(), Sym.st_other, Sym.getType()}); 1250 S->ExportDynamic = true; 1251 continue; 1252 } 1253 1254 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1255 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1256 // workaround for this bug. 1257 uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; 1258 if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && 1259 Name == "_gp_disp") 1260 continue; 1261 1262 uint32_t Alignment = getAlignment<ELFT>(Sections, Sym); 1263 if (!(Versyms[I] & VERSYM_HIDDEN)) { 1264 Symtab->addSymbol(SharedSymbol{*this, Name, Sym.getBinding(), 1265 Sym.st_other, Sym.getType(), Sym.st_value, 1266 Sym.st_size, Alignment, Idx}); 1267 } 1268 1269 // Also add the symbol with the versioned name to handle undefined symbols 1270 // with explicit versions. 1271 if (Idx == VER_NDX_GLOBAL) 1272 continue; 1273 1274 if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { 1275 error("corrupt input file: version definition index " + Twine(Idx) + 1276 " for symbol " + Name + " is out of bounds\n>>> defined in " + 1277 toString(this)); 1278 continue; 1279 } 1280 1281 StringRef VerName = 1282 this->StringTable.data() + 1283 reinterpret_cast<const Elf_Verdef *>(Verdefs[Idx])->getAux()->vda_name; 1284 VersionedNameBuffer.clear(); 1285 Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); 1286 Symtab->addSymbol(SharedSymbol{*this, Saver.save(Name), Sym.getBinding(), 1287 Sym.st_other, Sym.getType(), Sym.st_value, 1288 Sym.st_size, Alignment, Idx}); 1289 } 1290 } 1291 1292 static ELFKind getBitcodeELFKind(const Triple &T) { 1293 if (T.isLittleEndian()) 1294 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1295 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1296 } 1297 1298 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 1299 switch (T.getArch()) { 1300 case Triple::aarch64: 1301 return EM_AARCH64; 1302 case Triple::amdgcn: 1303 case Triple::r600: 1304 return EM_AMDGPU; 1305 case Triple::arm: 1306 case Triple::thumb: 1307 return EM_ARM; 1308 case Triple::avr: 1309 return EM_AVR; 1310 case Triple::mips: 1311 case Triple::mipsel: 1312 case Triple::mips64: 1313 case Triple::mips64el: 1314 return EM_MIPS; 1315 case Triple::msp430: 1316 return EM_MSP430; 1317 case Triple::ppc: 1318 return EM_PPC; 1319 case Triple::ppc64: 1320 case Triple::ppc64le: 1321 return EM_PPC64; 1322 case Triple::x86: 1323 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 1324 case Triple::x86_64: 1325 return EM_X86_64; 1326 default: 1327 error(Path + ": could not infer e_machine from bitcode target triple " + 1328 T.str()); 1329 return EM_NONE; 1330 } 1331 } 1332 1333 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 1334 uint64_t OffsetInArchive) 1335 : InputFile(BitcodeKind, MB) { 1336 this->ArchiveName = ArchiveName; 1337 1338 std::string Path = MB.getBufferIdentifier().str(); 1339 if (Config->ThinLTOIndexOnly) 1340 Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); 1341 1342 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1343 // name. If two archives define two members with the same name, this 1344 // causes a collision which result in only one of the objects being taken 1345 // into consideration at LTO time (which very likely causes undefined 1346 // symbols later in the link stage). So we append file offset to make 1347 // filename unique. 1348 StringRef Name = ArchiveName.empty() 1349 ? Saver.save(Path) 1350 : Saver.save(ArchiveName + "(" + Path + " at " + 1351 utostr(OffsetInArchive) + ")"); 1352 MemoryBufferRef MBRef(MB.getBuffer(), Name); 1353 1354 Obj = CHECK(lto::InputFile::create(MBRef), this); 1355 1356 Triple T(Obj->getTargetTriple()); 1357 EKind = getBitcodeELFKind(T); 1358 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 1359 } 1360 1361 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 1362 switch (GvVisibility) { 1363 case GlobalValue::DefaultVisibility: 1364 return STV_DEFAULT; 1365 case GlobalValue::HiddenVisibility: 1366 return STV_HIDDEN; 1367 case GlobalValue::ProtectedVisibility: 1368 return STV_PROTECTED; 1369 } 1370 llvm_unreachable("unknown visibility"); 1371 } 1372 1373 template <class ELFT> 1374 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 1375 const lto::InputFile::Symbol &ObjSym, 1376 BitcodeFile &F) { 1377 StringRef Name = Saver.save(ObjSym.getName()); 1378 uint8_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1379 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 1380 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 1381 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 1382 1383 int C = ObjSym.getComdatIndex(); 1384 if (ObjSym.isUndefined() || (C != -1 && !KeptComdats[C])) { 1385 Undefined New(&F, Name, Binding, Visibility, Type); 1386 if (CanOmitFromDynSym) 1387 New.ExportDynamic = false; 1388 return Symtab->addSymbol(New); 1389 } 1390 1391 if (ObjSym.isCommon()) 1392 return Symtab->addSymbol( 1393 CommonSymbol{&F, Name, Binding, Visibility, STT_OBJECT, 1394 ObjSym.getCommonAlignment(), ObjSym.getCommonSize()}); 1395 1396 Defined New(&F, Name, Binding, Visibility, Type, 0, 0, nullptr); 1397 if (CanOmitFromDynSym) 1398 New.ExportDynamic = false; 1399 return Symtab->addSymbol(New); 1400 } 1401 1402 template <class ELFT> 1403 void BitcodeFile::parse( 1404 DenseMap<CachedHashStringRef, const InputFile *> &ComdatGroups) { 1405 std::vector<bool> KeptComdats; 1406 for (StringRef S : Obj->getComdatTable()) 1407 KeptComdats.push_back( 1408 ComdatGroups.try_emplace(CachedHashStringRef(S), this).second); 1409 1410 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1411 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1412 1413 for (auto L : Obj->getDependentLibraries()) 1414 addDependentLibrary(L, this); 1415 } 1416 1417 void BinaryFile::parse() { 1418 ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer()); 1419 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1420 8, Data, ".data"); 1421 Sections.push_back(Section); 1422 1423 // For each input file foo that is embedded to a result as a binary 1424 // blob, we define _binary_foo_{start,end,size} symbols, so that 1425 // user programs can access blobs by name. Non-alphanumeric 1426 // characters in a filename are replaced with underscore. 1427 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1428 for (size_t I = 0; I < S.size(); ++I) 1429 if (!isAlnum(S[I])) 1430 S[I] = '_'; 1431 1432 Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_start"), STB_GLOBAL, 1433 STV_DEFAULT, STT_OBJECT, 0, 0, Section}); 1434 Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_end"), STB_GLOBAL, 1435 STV_DEFAULT, STT_OBJECT, Data.size(), 0, Section}); 1436 Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_size"), STB_GLOBAL, 1437 STV_DEFAULT, STT_OBJECT, Data.size(), 0, nullptr}); 1438 } 1439 1440 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1441 uint64_t OffsetInArchive) { 1442 if (isBitcode(MB)) 1443 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1444 1445 switch (getELFKind(MB, ArchiveName)) { 1446 case ELF32LEKind: 1447 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1448 case ELF32BEKind: 1449 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1450 case ELF64LEKind: 1451 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1452 case ELF64BEKind: 1453 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1454 default: 1455 llvm_unreachable("getELFKind"); 1456 } 1457 } 1458 1459 void LazyObjFile::fetch() { 1460 if (MB.getBuffer().empty()) 1461 return; 1462 1463 InputFile *File = createObjectFile(MB, ArchiveName, OffsetInArchive); 1464 File->GroupId = GroupId; 1465 1466 MB = {}; 1467 1468 // Copy symbol vector so that the new InputFile doesn't have to 1469 // insert the same defined symbols to the symbol table again. 1470 File->Symbols = std::move(Symbols); 1471 1472 parseFile(File); 1473 } 1474 1475 template <class ELFT> void LazyObjFile::parse() { 1476 using Elf_Sym = typename ELFT::Sym; 1477 1478 // A lazy object file wraps either a bitcode file or an ELF file. 1479 if (isBitcode(this->MB)) { 1480 std::unique_ptr<lto::InputFile> Obj = 1481 CHECK(lto::InputFile::create(this->MB), this); 1482 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) { 1483 if (Sym.isUndefined()) 1484 continue; 1485 Symtab->addSymbol(LazyObject{*this, Saver.save(Sym.getName())}); 1486 } 1487 return; 1488 } 1489 1490 if (getELFKind(this->MB, ArchiveName) != Config->EKind) { 1491 error("incompatible file: " + this->MB.getBufferIdentifier()); 1492 return; 1493 } 1494 1495 // Find a symbol table. 1496 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); 1497 ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); 1498 1499 for (const typename ELFT::Shdr &Sec : Sections) { 1500 if (Sec.sh_type != SHT_SYMTAB) 1501 continue; 1502 1503 // A symbol table is found. 1504 ArrayRef<Elf_Sym> ESyms = CHECK(Obj.symbols(&Sec), this); 1505 uint32_t FirstGlobal = Sec.sh_info; 1506 StringRef Strtab = CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1507 this->Symbols.resize(ESyms.size()); 1508 1509 // Get existing symbols or insert placeholder symbols. 1510 for (size_t I = FirstGlobal, End = ESyms.size(); I != End; ++I) 1511 if (ESyms[I].st_shndx != SHN_UNDEF) 1512 this->Symbols[I] = Symtab->insert(CHECK(ESyms[I].getName(Strtab), this)); 1513 1514 // Replace existing symbols with LazyObject symbols. 1515 // 1516 // resolve() may trigger this->fetch() if an existing symbol is an 1517 // undefined symbol. If that happens, this LazyObjFile has served 1518 // its purpose, and we can exit from the loop early. 1519 for (Symbol *Sym : this->Symbols) { 1520 if (!Sym) 1521 continue; 1522 Sym->resolve(LazyObject{*this, Sym->getName()}); 1523 1524 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1525 if (MB.getBuffer().empty()) 1526 return; 1527 } 1528 return; 1529 } 1530 } 1531 1532 std::string elf::replaceThinLTOSuffix(StringRef Path) { 1533 StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; 1534 StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; 1535 1536 if (Path.consume_back(Suffix)) 1537 return (Path + Repl).str(); 1538 return Path; 1539 } 1540 1541 template void 1542 BitcodeFile::parse<ELF32LE>(DenseMap<CachedHashStringRef, const InputFile *> &); 1543 template void 1544 BitcodeFile::parse<ELF32BE>(DenseMap<CachedHashStringRef, const InputFile *> &); 1545 template void 1546 BitcodeFile::parse<ELF64LE>(DenseMap<CachedHashStringRef, const InputFile *> &); 1547 template void 1548 BitcodeFile::parse<ELF64BE>(DenseMap<CachedHashStringRef, const InputFile *> &); 1549 1550 template void LazyObjFile::parse<ELF32LE>(); 1551 template void LazyObjFile::parse<ELF32BE>(); 1552 template void LazyObjFile::parse<ELF64LE>(); 1553 template void LazyObjFile::parse<ELF64BE>(); 1554 1555 template class elf::ObjFile<ELF32LE>; 1556 template class elf::ObjFile<ELF32BE>; 1557 template class elf::ObjFile<ELF64LE>; 1558 template class elf::ObjFile<ELF64BE>; 1559 1560 template void SharedFile::parse<ELF32LE>(); 1561 template void SharedFile::parse<ELF32BE>(); 1562 template void SharedFile::parse<ELF64LE>(); 1563 template void SharedFile::parse<ELF64BE>(); 1564