1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 42 std::string toString(const elf::InputFile *f) { 43 if (!f) 44 return "<internal>"; 45 46 if (f->toStringCache.empty()) { 47 if (f->archiveName.empty()) 48 f->toStringCache = std::string(f->getName()); 49 else 50 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 51 } 52 return f->toStringCache; 53 } 54 55 namespace elf { 56 bool InputFile::isInGroup; 57 uint32_t InputFile::nextGroupId; 58 std::vector<ArchiveFile *> archiveFiles; 59 std::vector<BinaryFile *> binaryFiles; 60 std::vector<BitcodeFile *> bitcodeFiles; 61 std::vector<LazyObjFile *> lazyObjFiles; 62 std::vector<InputFile *> objectFiles; 63 std::vector<SharedFile *> sharedFiles; 64 65 std::unique_ptr<TarWriter> tar; 66 67 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 68 unsigned char size; 69 unsigned char endian; 70 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 71 72 auto report = [&](StringRef msg) { 73 StringRef filename = mb.getBufferIdentifier(); 74 if (archiveName.empty()) 75 fatal(filename + ": " + msg); 76 else 77 fatal(archiveName + "(" + filename + "): " + msg); 78 }; 79 80 if (!mb.getBuffer().startswith(ElfMagic)) 81 report("not an ELF file"); 82 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 83 report("corrupted ELF file: invalid data encoding"); 84 if (size != ELFCLASS32 && size != ELFCLASS64) 85 report("corrupted ELF file: invalid file class"); 86 87 size_t bufSize = mb.getBuffer().size(); 88 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 89 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 90 report("corrupted ELF file: file is too short"); 91 92 if (size == ELFCLASS32) 93 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 94 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 95 } 96 97 InputFile::InputFile(Kind k, MemoryBufferRef m) 98 : mb(m), groupId(nextGroupId), fileKind(k) { 99 // All files within the same --{start,end}-group get the same group ID. 100 // Otherwise, a new file will get a new group ID. 101 if (!isInGroup) 102 ++nextGroupId; 103 } 104 105 Optional<MemoryBufferRef> readFile(StringRef path) { 106 // The --chroot option changes our virtual root directory. 107 // This is useful when you are dealing with files created by --reproduce. 108 if (!config->chroot.empty() && path.startswith("/")) 109 path = saver.save(config->chroot + path); 110 111 log(path); 112 113 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 114 if (auto ec = mbOrErr.getError()) { 115 error("cannot open " + path + ": " + ec.message()); 116 return None; 117 } 118 119 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 120 MemoryBufferRef mbref = mb->getMemBufferRef(); 121 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 122 123 if (tar) 124 tar->append(relativeToRoot(path), mbref.getBuffer()); 125 return mbref; 126 } 127 128 // All input object files must be for the same architecture 129 // (e.g. it does not make sense to link x86 object files with 130 // MIPS object files.) This function checks for that error. 131 static bool isCompatible(InputFile *file) { 132 if (!file->isElf() && !isa<BitcodeFile>(file)) 133 return true; 134 135 if (file->ekind == config->ekind && file->emachine == config->emachine) { 136 if (config->emachine != EM_MIPS) 137 return true; 138 if (isMipsN32Abi(file) == config->mipsN32Abi) 139 return true; 140 } 141 142 StringRef target = 143 !config->bfdname.empty() ? config->bfdname : config->emulation; 144 if (!target.empty()) { 145 error(toString(file) + " is incompatible with " + target); 146 return false; 147 } 148 149 InputFile *existing; 150 if (!objectFiles.empty()) 151 existing = objectFiles[0]; 152 else if (!sharedFiles.empty()) 153 existing = sharedFiles[0]; 154 else if (!bitcodeFiles.empty()) 155 existing = bitcodeFiles[0]; 156 else 157 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 158 "determine target emulation"); 159 160 error(toString(file) + " is incompatible with " + toString(existing)); 161 return false; 162 } 163 164 template <class ELFT> static void doParseFile(InputFile *file) { 165 if (!isCompatible(file)) 166 return; 167 168 // Binary file 169 if (auto *f = dyn_cast<BinaryFile>(file)) { 170 binaryFiles.push_back(f); 171 f->parse(); 172 return; 173 } 174 175 // .a file 176 if (auto *f = dyn_cast<ArchiveFile>(file)) { 177 archiveFiles.push_back(f); 178 f->parse(); 179 return; 180 } 181 182 // Lazy object file 183 if (auto *f = dyn_cast<LazyObjFile>(file)) { 184 lazyObjFiles.push_back(f); 185 f->parse<ELFT>(); 186 return; 187 } 188 189 if (config->trace) 190 message(toString(file)); 191 192 // .so file 193 if (auto *f = dyn_cast<SharedFile>(file)) { 194 f->parse<ELFT>(); 195 return; 196 } 197 198 // LLVM bitcode file 199 if (auto *f = dyn_cast<BitcodeFile>(file)) { 200 bitcodeFiles.push_back(f); 201 f->parse<ELFT>(); 202 return; 203 } 204 205 // Regular object file 206 objectFiles.push_back(file); 207 cast<ObjFile<ELFT>>(file)->parse(); 208 } 209 210 // Add symbols in File to the symbol table. 211 void parseFile(InputFile *file) { 212 switch (config->ekind) { 213 case ELF32LEKind: 214 doParseFile<ELF32LE>(file); 215 return; 216 case ELF32BEKind: 217 doParseFile<ELF32BE>(file); 218 return; 219 case ELF64LEKind: 220 doParseFile<ELF64LE>(file); 221 return; 222 case ELF64BEKind: 223 doParseFile<ELF64BE>(file); 224 return; 225 default: 226 llvm_unreachable("unknown ELFT"); 227 } 228 } 229 230 // Concatenates arguments to construct a string representing an error location. 231 static std::string createFileLineMsg(StringRef path, unsigned line) { 232 std::string filename = std::string(path::filename(path)); 233 std::string lineno = ":" + std::to_string(line); 234 if (filename == path) 235 return filename + lineno; 236 return filename + lineno + " (" + path.str() + lineno + ")"; 237 } 238 239 template <class ELFT> 240 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 241 InputSectionBase &sec, uint64_t offset) { 242 // In DWARF, functions and variables are stored to different places. 243 // First, lookup a function for a given offset. 244 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 245 return createFileLineMsg(info->FileName, info->Line); 246 247 // If it failed, lookup again as a variable. 248 if (Optional<std::pair<std::string, unsigned>> fileLine = 249 file.getVariableLoc(sym.getName())) 250 return createFileLineMsg(fileLine->first, fileLine->second); 251 252 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 253 return std::string(file.sourceFile); 254 } 255 256 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 257 uint64_t offset) { 258 if (kind() != ObjKind) 259 return ""; 260 switch (config->ekind) { 261 default: 262 llvm_unreachable("Invalid kind"); 263 case ELF32LEKind: 264 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 265 case ELF32BEKind: 266 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 267 case ELF64LEKind: 268 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 269 case ELF64BEKind: 270 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 271 } 272 } 273 274 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 275 llvm::call_once(initDwarf, [this]() { 276 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 277 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 278 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 279 [&](Error warning) { 280 warn(getName() + ": " + toString(std::move(warning))); 281 })); 282 }); 283 284 return dwarf.get(); 285 } 286 287 // Returns the pair of file name and line number describing location of data 288 // object (variable, array, etc) definition. 289 template <class ELFT> 290 Optional<std::pair<std::string, unsigned>> 291 ObjFile<ELFT>::getVariableLoc(StringRef name) { 292 return getDwarf()->getVariableLoc(name); 293 } 294 295 // Returns source line information for a given offset 296 // using DWARF debug info. 297 template <class ELFT> 298 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 299 uint64_t offset) { 300 // Detect SectionIndex for specified section. 301 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 302 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 303 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 304 if (s == sections[curIndex]) { 305 sectionIndex = curIndex; 306 break; 307 } 308 } 309 310 return getDwarf()->getDILineInfo(offset, sectionIndex); 311 } 312 313 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 314 ekind = getELFKind(mb, ""); 315 316 switch (ekind) { 317 case ELF32LEKind: 318 init<ELF32LE>(); 319 break; 320 case ELF32BEKind: 321 init<ELF32BE>(); 322 break; 323 case ELF64LEKind: 324 init<ELF64LE>(); 325 break; 326 case ELF64BEKind: 327 init<ELF64BE>(); 328 break; 329 default: 330 llvm_unreachable("getELFKind"); 331 } 332 } 333 334 template <typename Elf_Shdr> 335 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 336 for (const Elf_Shdr &sec : sections) 337 if (sec.sh_type == type) 338 return &sec; 339 return nullptr; 340 } 341 342 template <class ELFT> void ELFFileBase::init() { 343 using Elf_Shdr = typename ELFT::Shdr; 344 using Elf_Sym = typename ELFT::Sym; 345 346 // Initialize trivial attributes. 347 const ELFFile<ELFT> &obj = getObj<ELFT>(); 348 emachine = obj.getHeader()->e_machine; 349 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 350 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 351 352 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 353 354 // Find a symbol table. 355 bool isDSO = 356 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 357 const Elf_Shdr *symtabSec = 358 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 359 360 if (!symtabSec) 361 return; 362 363 // Initialize members corresponding to a symbol table. 364 firstGlobal = symtabSec->sh_info; 365 366 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 367 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 368 fatal(toString(this) + ": invalid sh_info in symbol table"); 369 370 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 371 numELFSyms = eSyms.size(); 372 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 373 } 374 375 template <class ELFT> 376 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 377 return CHECK( 378 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 379 this); 380 } 381 382 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 383 if (this->symbols.empty()) 384 return {}; 385 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 386 } 387 388 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 389 return makeArrayRef(this->symbols).slice(this->firstGlobal); 390 } 391 392 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 393 // Read a section table. justSymbols is usually false. 394 if (this->justSymbols) 395 initializeJustSymbols(); 396 else 397 initializeSections(ignoreComdats); 398 399 // Read a symbol table. 400 initializeSymbols(); 401 } 402 403 // Sections with SHT_GROUP and comdat bits define comdat section groups. 404 // They are identified and deduplicated by group name. This function 405 // returns a group name. 406 template <class ELFT> 407 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 408 const Elf_Shdr &sec) { 409 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 410 if (sec.sh_info >= symbols.size()) 411 fatal(toString(this) + ": invalid symbol index"); 412 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 413 StringRef signature = CHECK(sym.getName(this->stringTable), this); 414 415 // As a special case, if a symbol is a section symbol and has no name, 416 // we use a section name as a signature. 417 // 418 // Such SHT_GROUP sections are invalid from the perspective of the ELF 419 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 420 // older produce such sections as outputs for the -r option, so we need 421 // a bug-compatibility. 422 if (signature.empty() && sym.getType() == STT_SECTION) 423 return getSectionName(sec); 424 return signature; 425 } 426 427 template <class ELFT> 428 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 429 if (!(sec.sh_flags & SHF_MERGE)) 430 return false; 431 432 // On a regular link we don't merge sections if -O0 (default is -O1). This 433 // sometimes makes the linker significantly faster, although the output will 434 // be bigger. 435 // 436 // Doing the same for -r would create a problem as it would combine sections 437 // with different sh_entsize. One option would be to just copy every SHF_MERGE 438 // section as is to the output. While this would produce a valid ELF file with 439 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 440 // they see two .debug_str. We could have separate logic for combining 441 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 442 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 443 // logic for -r. 444 if (config->optimize == 0 && !config->relocatable) 445 return false; 446 447 // A mergeable section with size 0 is useless because they don't have 448 // any data to merge. A mergeable string section with size 0 can be 449 // argued as invalid because it doesn't end with a null character. 450 // We'll avoid a mess by handling them as if they were non-mergeable. 451 if (sec.sh_size == 0) 452 return false; 453 454 // Check for sh_entsize. The ELF spec is not clear about the zero 455 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 456 // the section does not hold a table of fixed-size entries". We know 457 // that Rust 1.13 produces a string mergeable section with a zero 458 // sh_entsize. Here we just accept it rather than being picky about it. 459 uint64_t entSize = sec.sh_entsize; 460 if (entSize == 0) 461 return false; 462 if (sec.sh_size % entSize) 463 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 464 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 465 Twine(entSize) + ")"); 466 467 if (sec.sh_flags & SHF_WRITE) 468 fatal(toString(this) + ":(" + name + 469 "): writable SHF_MERGE section is not supported"); 470 471 return true; 472 } 473 474 // This is for --just-symbols. 475 // 476 // --just-symbols is a very minor feature that allows you to link your 477 // output against other existing program, so that if you load both your 478 // program and the other program into memory, your output can refer the 479 // other program's symbols. 480 // 481 // When the option is given, we link "just symbols". The section table is 482 // initialized with null pointers. 483 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 484 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 485 this->sections.resize(sections.size()); 486 } 487 488 // An ELF object file may contain a `.deplibs` section. If it exists, the 489 // section contains a list of library specifiers such as `m` for libm. This 490 // function resolves a given name by finding the first matching library checking 491 // the various ways that a library can be specified to LLD. This ELF extension 492 // is a form of autolinking and is called `dependent libraries`. It is currently 493 // unique to LLVM and lld. 494 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 495 if (!config->dependentLibraries) 496 return; 497 if (fs::exists(specifier)) 498 driver->addFile(specifier, /*withLOption=*/false); 499 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 500 driver->addFile(*s, /*withLOption=*/true); 501 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 502 driver->addFile(*s, /*withLOption=*/true); 503 else 504 error(toString(f) + 505 ": unable to find library from dependent library specifier: " + 506 specifier); 507 } 508 509 // Record the membership of a section group so that in the garbage collection 510 // pass, section group members are kept or discarded as a unit. 511 template <class ELFT> 512 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 513 ArrayRef<typename ELFT::Word> entries) { 514 bool hasAlloc = false; 515 for (uint32_t index : entries.slice(1)) { 516 if (index >= sections.size()) 517 return; 518 if (InputSectionBase *s = sections[index]) 519 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 520 hasAlloc = true; 521 } 522 523 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 524 // collection. See the comment in markLive(). This rule retains .debug_types 525 // and .rela.debug_types. 526 if (!hasAlloc) 527 return; 528 529 // Connect the members in a circular doubly-linked list via 530 // nextInSectionGroup. 531 InputSectionBase *head; 532 InputSectionBase *prev = nullptr; 533 for (uint32_t index : entries.slice(1)) { 534 InputSectionBase *s = sections[index]; 535 if (!s || s == &InputSection::discarded) 536 continue; 537 if (prev) 538 prev->nextInSectionGroup = s; 539 else 540 head = s; 541 prev = s; 542 } 543 if (prev) 544 prev->nextInSectionGroup = head; 545 } 546 547 template <class ELFT> 548 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 549 const ELFFile<ELFT> &obj = this->getObj(); 550 551 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 552 uint64_t size = objSections.size(); 553 this->sections.resize(size); 554 this->sectionStringTable = 555 CHECK(obj.getSectionStringTable(objSections), this); 556 557 std::vector<ArrayRef<Elf_Word>> selectedGroups; 558 559 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 560 if (this->sections[i] == &InputSection::discarded) 561 continue; 562 const Elf_Shdr &sec = objSections[i]; 563 564 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 565 cgProfile = 566 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 567 568 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 569 // if -r is given, we'll let the final link discard such sections. 570 // This is compatible with GNU. 571 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 572 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 573 // We ignore the address-significance table if we know that the object 574 // file was created by objcopy or ld -r. This is because these tools 575 // will reorder the symbols in the symbol table, invalidating the data 576 // in the address-significance table, which refers to symbols by index. 577 if (sec.sh_link != 0) 578 this->addrsigSec = &sec; 579 else if (config->icf == ICFLevel::Safe) 580 warn(toString(this) + ": --icf=safe is incompatible with object " 581 "files created using objcopy or ld -r"); 582 } 583 this->sections[i] = &InputSection::discarded; 584 continue; 585 } 586 587 switch (sec.sh_type) { 588 case SHT_GROUP: { 589 // De-duplicate section groups by their signatures. 590 StringRef signature = getShtGroupSignature(objSections, sec); 591 this->sections[i] = &InputSection::discarded; 592 593 594 ArrayRef<Elf_Word> entries = 595 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 596 if (entries.empty()) 597 fatal(toString(this) + ": empty SHT_GROUP"); 598 599 // The first word of a SHT_GROUP section contains flags. Currently, 600 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 601 // An group with the empty flag doesn't define anything; such sections 602 // are just skipped. 603 if (entries[0] == 0) 604 continue; 605 606 if (entries[0] != GRP_COMDAT) 607 fatal(toString(this) + ": unsupported SHT_GROUP format"); 608 609 bool isNew = 610 ignoreComdats || 611 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 612 .second; 613 if (isNew) { 614 if (config->relocatable) 615 this->sections[i] = createInputSection(sec); 616 selectedGroups.push_back(entries); 617 continue; 618 } 619 620 // Otherwise, discard group members. 621 for (uint32_t secIndex : entries.slice(1)) { 622 if (secIndex >= size) 623 fatal(toString(this) + 624 ": invalid section index in group: " + Twine(secIndex)); 625 this->sections[secIndex] = &InputSection::discarded; 626 } 627 break; 628 } 629 case SHT_SYMTAB_SHNDX: 630 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 631 break; 632 case SHT_SYMTAB: 633 case SHT_STRTAB: 634 case SHT_NULL: 635 break; 636 default: 637 this->sections[i] = createInputSection(sec); 638 } 639 } 640 641 // This block handles SHF_LINK_ORDER. 642 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 643 if (this->sections[i] == &InputSection::discarded) 644 continue; 645 const Elf_Shdr &sec = objSections[i]; 646 if (!(sec.sh_flags & SHF_LINK_ORDER)) 647 continue; 648 649 // .ARM.exidx sections have a reverse dependency on the InputSection they 650 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 651 InputSectionBase *linkSec = nullptr; 652 if (sec.sh_link < this->sections.size()) 653 linkSec = this->sections[sec.sh_link]; 654 if (!linkSec) 655 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 656 657 InputSection *isec = cast<InputSection>(this->sections[i]); 658 linkSec->dependentSections.push_back(isec); 659 if (!isa<InputSection>(linkSec)) 660 error("a section " + isec->name + 661 " with SHF_LINK_ORDER should not refer a non-regular section: " + 662 toString(linkSec)); 663 } 664 665 for (ArrayRef<Elf_Word> entries : selectedGroups) 666 handleSectionGroup<ELFT>(this->sections, entries); 667 } 668 669 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 670 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 671 // the input objects have been compiled. 672 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 673 const InputFile *f) { 674 Optional<unsigned> attr = 675 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 676 if (!attr.hasValue()) 677 // If an ABI tag isn't present then it is implicitly given the value of 0 678 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 679 // including some in glibc that don't use FP args (and should have value 3) 680 // don't have the attribute so we do not consider an implicit value of 0 681 // as a clash. 682 return; 683 684 unsigned vfpArgs = attr.getValue(); 685 ARMVFPArgKind arg; 686 switch (vfpArgs) { 687 case ARMBuildAttrs::BaseAAPCS: 688 arg = ARMVFPArgKind::Base; 689 break; 690 case ARMBuildAttrs::HardFPAAPCS: 691 arg = ARMVFPArgKind::VFP; 692 break; 693 case ARMBuildAttrs::ToolChainFPPCS: 694 // Tool chain specific convention that conforms to neither AAPCS variant. 695 arg = ARMVFPArgKind::ToolChain; 696 break; 697 case ARMBuildAttrs::CompatibleFPAAPCS: 698 // Object compatible with all conventions. 699 return; 700 default: 701 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 702 return; 703 } 704 // Follow ld.bfd and error if there is a mix of calling conventions. 705 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 706 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 707 else 708 config->armVFPArgs = arg; 709 } 710 711 // The ARM support in lld makes some use of instructions that are not available 712 // on all ARM architectures. Namely: 713 // - Use of BLX instruction for interworking between ARM and Thumb state. 714 // - Use of the extended Thumb branch encoding in relocation. 715 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 716 // The ARM Attributes section contains information about the architecture chosen 717 // at compile time. We follow the convention that if at least one input object 718 // is compiled with an architecture that supports these features then lld is 719 // permitted to use them. 720 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 721 Optional<unsigned> attr = 722 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 723 if (!attr.hasValue()) 724 return; 725 auto arch = attr.getValue(); 726 switch (arch) { 727 case ARMBuildAttrs::Pre_v4: 728 case ARMBuildAttrs::v4: 729 case ARMBuildAttrs::v4T: 730 // Architectures prior to v5 do not support BLX instruction 731 break; 732 case ARMBuildAttrs::v5T: 733 case ARMBuildAttrs::v5TE: 734 case ARMBuildAttrs::v5TEJ: 735 case ARMBuildAttrs::v6: 736 case ARMBuildAttrs::v6KZ: 737 case ARMBuildAttrs::v6K: 738 config->armHasBlx = true; 739 // Architectures used in pre-Cortex processors do not support 740 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 741 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 742 break; 743 default: 744 // All other Architectures have BLX and extended branch encoding 745 config->armHasBlx = true; 746 config->armJ1J2BranchEncoding = true; 747 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 748 // All Architectures used in Cortex processors with the exception 749 // of v6-M and v6S-M have the MOVT and MOVW instructions. 750 config->armHasMovtMovw = true; 751 break; 752 } 753 } 754 755 // If a source file is compiled with x86 hardware-assisted call flow control 756 // enabled, the generated object file contains feature flags indicating that 757 // fact. This function reads the feature flags and returns it. 758 // 759 // Essentially we want to read a single 32-bit value in this function, but this 760 // function is rather complicated because the value is buried deep inside a 761 // .note.gnu.property section. 762 // 763 // The section consists of one or more NOTE records. Each NOTE record consists 764 // of zero or more type-length-value fields. We want to find a field of a 765 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 766 // the ABI is unnecessarily complicated. 767 template <class ELFT> 768 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 769 using Elf_Nhdr = typename ELFT::Nhdr; 770 using Elf_Note = typename ELFT::Note; 771 772 uint32_t featuresSet = 0; 773 while (!data.empty()) { 774 // Read one NOTE record. 775 if (data.size() < sizeof(Elf_Nhdr)) 776 fatal(toString(obj) + ": .note.gnu.property: section too short"); 777 778 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 779 if (data.size() < nhdr->getSize()) 780 fatal(toString(obj) + ": .note.gnu.property: section too short"); 781 782 Elf_Note note(*nhdr); 783 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 784 data = data.slice(nhdr->getSize()); 785 continue; 786 } 787 788 uint32_t featureAndType = config->emachine == EM_AARCH64 789 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 790 : GNU_PROPERTY_X86_FEATURE_1_AND; 791 792 // Read a body of a NOTE record, which consists of type-length-value fields. 793 ArrayRef<uint8_t> desc = note.getDesc(); 794 while (!desc.empty()) { 795 if (desc.size() < 8) 796 fatal(toString(obj) + ": .note.gnu.property: section too short"); 797 798 uint32_t type = read32le(desc.data()); 799 uint32_t size = read32le(desc.data() + 4); 800 801 if (type == featureAndType) { 802 // We found a FEATURE_1_AND field. There may be more than one of these 803 // in a .note.gnu.property section, for a relocatable object we 804 // accumulate the bits set. 805 featuresSet |= read32le(desc.data() + 8); 806 } 807 808 // On 64-bit, a payload may be followed by a 4-byte padding to make its 809 // size a multiple of 8. 810 if (ELFT::Is64Bits) 811 size = alignTo(size, 8); 812 813 desc = desc.slice(size + 8); // +8 for Type and Size 814 } 815 816 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 817 data = data.slice(nhdr->getSize()); 818 } 819 820 return featuresSet; 821 } 822 823 template <class ELFT> 824 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 825 uint32_t idx = sec.sh_info; 826 if (idx >= this->sections.size()) 827 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 828 InputSectionBase *target = this->sections[idx]; 829 830 // Strictly speaking, a relocation section must be included in the 831 // group of the section it relocates. However, LLVM 3.3 and earlier 832 // would fail to do so, so we gracefully handle that case. 833 if (target == &InputSection::discarded) 834 return nullptr; 835 836 if (!target) 837 fatal(toString(this) + ": unsupported relocation reference"); 838 return target; 839 } 840 841 // Create a regular InputSection class that has the same contents 842 // as a given section. 843 static InputSection *toRegularSection(MergeInputSection *sec) { 844 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 845 sec->data(), sec->name); 846 } 847 848 template <class ELFT> 849 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 850 StringRef name = getSectionName(sec); 851 852 switch (sec.sh_type) { 853 case SHT_ARM_ATTRIBUTES: { 854 if (config->emachine != EM_ARM) 855 break; 856 ARMAttributeParser attributes; 857 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 858 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 859 ? support::little 860 : support::big)) { 861 auto *isec = make<InputSection>(*this, sec, name); 862 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 863 break; 864 } 865 updateSupportedARMFeatures(attributes); 866 updateARMVFPArgs(attributes, this); 867 868 // FIXME: Retain the first attribute section we see. The eglibc ARM 869 // dynamic loaders require the presence of an attribute section for dlopen 870 // to work. In a full implementation we would merge all attribute sections. 871 if (in.armAttributes == nullptr) { 872 in.armAttributes = make<InputSection>(*this, sec, name); 873 return in.armAttributes; 874 } 875 return &InputSection::discarded; 876 } 877 case SHT_LLVM_DEPENDENT_LIBRARIES: { 878 if (config->relocatable) 879 break; 880 ArrayRef<char> data = 881 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 882 if (!data.empty() && data.back() != '\0') { 883 error(toString(this) + 884 ": corrupted dependent libraries section (unterminated string): " + 885 name); 886 return &InputSection::discarded; 887 } 888 for (const char *d = data.begin(), *e = data.end(); d < e;) { 889 StringRef s(d); 890 addDependentLibrary(s, this); 891 d += s.size() + 1; 892 } 893 return &InputSection::discarded; 894 } 895 case SHT_RELA: 896 case SHT_REL: { 897 // Find a relocation target section and associate this section with that. 898 // Target may have been discarded if it is in a different section group 899 // and the group is discarded, even though it's a violation of the 900 // spec. We handle that situation gracefully by discarding dangling 901 // relocation sections. 902 InputSectionBase *target = getRelocTarget(sec); 903 if (!target) 904 return nullptr; 905 906 // ELF spec allows mergeable sections with relocations, but they are 907 // rare, and it is in practice hard to merge such sections by contents, 908 // because applying relocations at end of linking changes section 909 // contents. So, we simply handle such sections as non-mergeable ones. 910 // Degrading like this is acceptable because section merging is optional. 911 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 912 target = toRegularSection(ms); 913 this->sections[sec.sh_info] = target; 914 } 915 916 // This section contains relocation information. 917 // If -r is given, we do not interpret or apply relocation 918 // but just copy relocation sections to output. 919 if (config->relocatable) { 920 InputSection *relocSec = make<InputSection>(*this, sec, name); 921 // We want to add a dependency to target, similar like we do for 922 // -emit-relocs below. This is useful for the case when linker script 923 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 924 // -r, but we faced it in the Linux kernel and have to handle such case 925 // and not to crash. 926 target->dependentSections.push_back(relocSec); 927 return relocSec; 928 } 929 930 if (target->firstRelocation) 931 fatal(toString(this) + 932 ": multiple relocation sections to one section are not supported"); 933 934 if (sec.sh_type == SHT_RELA) { 935 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 936 target->firstRelocation = rels.begin(); 937 target->numRelocations = rels.size(); 938 target->areRelocsRela = true; 939 } else { 940 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 941 target->firstRelocation = rels.begin(); 942 target->numRelocations = rels.size(); 943 target->areRelocsRela = false; 944 } 945 assert(isUInt<31>(target->numRelocations)); 946 947 // Relocation sections processed by the linker are usually removed 948 // from the output, so returning `nullptr` for the normal case. 949 // However, if -emit-relocs is given, we need to leave them in the output. 950 // (Some post link analysis tools need this information.) 951 if (config->emitRelocs) { 952 InputSection *relocSec = make<InputSection>(*this, sec, name); 953 // We will not emit relocation section if target was discarded. 954 target->dependentSections.push_back(relocSec); 955 return relocSec; 956 } 957 return nullptr; 958 } 959 } 960 961 // The GNU linker uses .note.GNU-stack section as a marker indicating 962 // that the code in the object file does not expect that the stack is 963 // executable (in terms of NX bit). If all input files have the marker, 964 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 965 // make the stack non-executable. Most object files have this section as 966 // of 2017. 967 // 968 // But making the stack non-executable is a norm today for security 969 // reasons. Failure to do so may result in a serious security issue. 970 // Therefore, we make LLD always add PT_GNU_STACK unless it is 971 // explicitly told to do otherwise (by -z execstack). Because the stack 972 // executable-ness is controlled solely by command line options, 973 // .note.GNU-stack sections are simply ignored. 974 if (name == ".note.GNU-stack") 975 return &InputSection::discarded; 976 977 // Object files that use processor features such as Intel Control-Flow 978 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 979 // .note.gnu.property section containing a bitfield of feature bits like the 980 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 981 // 982 // Since we merge bitmaps from multiple object files to create a new 983 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 984 // file's .note.gnu.property section. 985 if (name == ".note.gnu.property") { 986 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 987 this->andFeatures = readAndFeatures(this, contents); 988 return &InputSection::discarded; 989 } 990 991 // Split stacks is a feature to support a discontiguous stack, 992 // commonly used in the programming language Go. For the details, 993 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 994 // for split stack will include a .note.GNU-split-stack section. 995 if (name == ".note.GNU-split-stack") { 996 if (config->relocatable) { 997 error("cannot mix split-stack and non-split-stack in a relocatable link"); 998 return &InputSection::discarded; 999 } 1000 this->splitStack = true; 1001 return &InputSection::discarded; 1002 } 1003 1004 // An object file cmpiled for split stack, but where some of the 1005 // functions were compiled with the no_split_stack_attribute will 1006 // include a .note.GNU-no-split-stack section. 1007 if (name == ".note.GNU-no-split-stack") { 1008 this->someNoSplitStack = true; 1009 return &InputSection::discarded; 1010 } 1011 1012 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1013 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1014 // sections. Drop those sections to avoid duplicate symbol errors. 1015 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1016 // fixed for a while. 1017 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1018 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1019 return &InputSection::discarded; 1020 1021 // If we are creating a new .build-id section, strip existing .build-id 1022 // sections so that the output won't have more than one .build-id. 1023 // This is not usually a problem because input object files normally don't 1024 // have .build-id sections, but you can create such files by 1025 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1026 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1027 return &InputSection::discarded; 1028 1029 // The linker merges EH (exception handling) frames and creates a 1030 // .eh_frame_hdr section for runtime. So we handle them with a special 1031 // class. For relocatable outputs, they are just passed through. 1032 if (name == ".eh_frame" && !config->relocatable) 1033 return make<EhInputSection>(*this, sec, name); 1034 1035 if (shouldMerge(sec, name)) 1036 return make<MergeInputSection>(*this, sec, name); 1037 return make<InputSection>(*this, sec, name); 1038 } 1039 1040 template <class ELFT> 1041 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1042 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1043 } 1044 1045 // Initialize this->Symbols. this->Symbols is a parallel array as 1046 // its corresponding ELF symbol table. 1047 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1048 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1049 this->symbols.resize(eSyms.size()); 1050 1051 // Our symbol table may have already been partially initialized 1052 // because of LazyObjFile. 1053 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1054 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1055 this->symbols[i] = 1056 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1057 1058 // Fill this->Symbols. A symbol is either local or global. 1059 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1060 const Elf_Sym &eSym = eSyms[i]; 1061 1062 // Read symbol attributes. 1063 uint32_t secIdx = getSectionIndex(eSym); 1064 if (secIdx >= this->sections.size()) 1065 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1066 1067 InputSectionBase *sec = this->sections[secIdx]; 1068 uint8_t binding = eSym.getBinding(); 1069 uint8_t stOther = eSym.st_other; 1070 uint8_t type = eSym.getType(); 1071 uint64_t value = eSym.st_value; 1072 uint64_t size = eSym.st_size; 1073 StringRefZ name = this->stringTable.data() + eSym.st_name; 1074 1075 // Handle local symbols. Local symbols are not added to the symbol 1076 // table because they are not visible from other object files. We 1077 // allocate symbol instances and add their pointers to Symbols. 1078 if (binding == STB_LOCAL) { 1079 if (eSym.getType() == STT_FILE) 1080 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1081 1082 if (this->stringTable.size() <= eSym.st_name) 1083 fatal(toString(this) + ": invalid symbol name offset"); 1084 1085 if (eSym.st_shndx == SHN_UNDEF) 1086 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1087 else if (sec == &InputSection::discarded) 1088 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1089 /*DiscardedSecIdx=*/secIdx); 1090 else 1091 this->symbols[i] = 1092 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1093 continue; 1094 } 1095 1096 // Handle global undefined symbols. 1097 if (eSym.st_shndx == SHN_UNDEF) { 1098 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1099 this->symbols[i]->referenced = true; 1100 continue; 1101 } 1102 1103 // Handle global common symbols. 1104 if (eSym.st_shndx == SHN_COMMON) { 1105 if (value == 0 || value >= UINT32_MAX) 1106 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1107 "' has invalid alignment: " + Twine(value)); 1108 this->symbols[i]->resolve( 1109 CommonSymbol{this, name, binding, stOther, type, value, size}); 1110 continue; 1111 } 1112 1113 // If a defined symbol is in a discarded section, handle it as if it 1114 // were an undefined symbol. Such symbol doesn't comply with the 1115 // standard, but in practice, a .eh_frame often directly refer 1116 // COMDAT member sections, and if a comdat group is discarded, some 1117 // defined symbol in a .eh_frame becomes dangling symbols. 1118 if (sec == &InputSection::discarded) { 1119 this->symbols[i]->resolve( 1120 Undefined{this, name, binding, stOther, type, secIdx}); 1121 continue; 1122 } 1123 1124 // Handle global defined symbols. 1125 if (binding == STB_GLOBAL || binding == STB_WEAK || 1126 binding == STB_GNU_UNIQUE) { 1127 this->symbols[i]->resolve( 1128 Defined{this, name, binding, stOther, type, value, size, sec}); 1129 continue; 1130 } 1131 1132 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1133 } 1134 } 1135 1136 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1137 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1138 file(std::move(file)) {} 1139 1140 void ArchiveFile::parse() { 1141 for (const Archive::Symbol &sym : file->symbols()) 1142 symtab->addSymbol(LazyArchive{*this, sym}); 1143 } 1144 1145 // Returns a buffer pointing to a member file containing a given symbol. 1146 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1147 Archive::Child c = 1148 CHECK(sym.getMember(), toString(this) + 1149 ": could not get the member for symbol " + 1150 toELFString(sym)); 1151 1152 if (!seen.insert(c.getChildOffset()).second) 1153 return; 1154 1155 MemoryBufferRef mb = 1156 CHECK(c.getMemoryBufferRef(), 1157 toString(this) + 1158 ": could not get the buffer for the member defining symbol " + 1159 toELFString(sym)); 1160 1161 if (tar && c.getParent()->isThin()) 1162 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1163 1164 InputFile *file = createObjectFile( 1165 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1166 file->groupId = groupId; 1167 parseFile(file); 1168 } 1169 1170 size_t ArchiveFile::getMemberCount() const { 1171 size_t count = 0; 1172 Error err = Error::success(); 1173 for (const Archive::Child &c : file->children(err)) { 1174 (void)c; 1175 ++count; 1176 } 1177 // This function is used by --print-archive-stats=, where an error does not 1178 // really matter. 1179 consumeError(std::move(err)); 1180 return count; 1181 } 1182 1183 unsigned SharedFile::vernauxNum; 1184 1185 // Parse the version definitions in the object file if present, and return a 1186 // vector whose nth element contains a pointer to the Elf_Verdef for version 1187 // identifier n. Version identifiers that are not definitions map to nullptr. 1188 template <typename ELFT> 1189 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1190 const typename ELFT::Shdr *sec) { 1191 if (!sec) 1192 return {}; 1193 1194 // We cannot determine the largest verdef identifier without inspecting 1195 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1196 // sequentially starting from 1, so we predict that the largest identifier 1197 // will be verdefCount. 1198 unsigned verdefCount = sec->sh_info; 1199 std::vector<const void *> verdefs(verdefCount + 1); 1200 1201 // Build the Verdefs array by following the chain of Elf_Verdef objects 1202 // from the start of the .gnu.version_d section. 1203 const uint8_t *verdef = base + sec->sh_offset; 1204 for (unsigned i = 0; i != verdefCount; ++i) { 1205 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1206 verdef += curVerdef->vd_next; 1207 unsigned verdefIndex = curVerdef->vd_ndx; 1208 verdefs.resize(verdefIndex + 1); 1209 verdefs[verdefIndex] = curVerdef; 1210 } 1211 return verdefs; 1212 } 1213 1214 // We do not usually care about alignments of data in shared object 1215 // files because the loader takes care of it. However, if we promote a 1216 // DSO symbol to point to .bss due to copy relocation, we need to keep 1217 // the original alignment requirements. We infer it in this function. 1218 template <typename ELFT> 1219 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1220 const typename ELFT::Sym &sym) { 1221 uint64_t ret = UINT64_MAX; 1222 if (sym.st_value) 1223 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1224 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1225 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1226 return (ret > UINT32_MAX) ? 0 : ret; 1227 } 1228 1229 // Fully parse the shared object file. 1230 // 1231 // This function parses symbol versions. If a DSO has version information, 1232 // the file has a ".gnu.version_d" section which contains symbol version 1233 // definitions. Each symbol is associated to one version through a table in 1234 // ".gnu.version" section. That table is a parallel array for the symbol 1235 // table, and each table entry contains an index in ".gnu.version_d". 1236 // 1237 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1238 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1239 // ".gnu.version_d". 1240 // 1241 // The file format for symbol versioning is perhaps a bit more complicated 1242 // than necessary, but you can easily understand the code if you wrap your 1243 // head around the data structure described above. 1244 template <class ELFT> void SharedFile::parse() { 1245 using Elf_Dyn = typename ELFT::Dyn; 1246 using Elf_Shdr = typename ELFT::Shdr; 1247 using Elf_Sym = typename ELFT::Sym; 1248 using Elf_Verdef = typename ELFT::Verdef; 1249 using Elf_Versym = typename ELFT::Versym; 1250 1251 ArrayRef<Elf_Dyn> dynamicTags; 1252 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1253 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1254 1255 const Elf_Shdr *versymSec = nullptr; 1256 const Elf_Shdr *verdefSec = nullptr; 1257 1258 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1259 for (const Elf_Shdr &sec : sections) { 1260 switch (sec.sh_type) { 1261 default: 1262 continue; 1263 case SHT_DYNAMIC: 1264 dynamicTags = 1265 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1266 break; 1267 case SHT_GNU_versym: 1268 versymSec = &sec; 1269 break; 1270 case SHT_GNU_verdef: 1271 verdefSec = &sec; 1272 break; 1273 } 1274 } 1275 1276 if (versymSec && numELFSyms == 0) { 1277 error("SHT_GNU_versym should be associated with symbol table"); 1278 return; 1279 } 1280 1281 // Search for a DT_SONAME tag to initialize this->soName. 1282 for (const Elf_Dyn &dyn : dynamicTags) { 1283 if (dyn.d_tag == DT_NEEDED) { 1284 uint64_t val = dyn.getVal(); 1285 if (val >= this->stringTable.size()) 1286 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1287 dtNeeded.push_back(this->stringTable.data() + val); 1288 } else if (dyn.d_tag == DT_SONAME) { 1289 uint64_t val = dyn.getVal(); 1290 if (val >= this->stringTable.size()) 1291 fatal(toString(this) + ": invalid DT_SONAME entry"); 1292 soName = this->stringTable.data() + val; 1293 } 1294 } 1295 1296 // DSOs are uniquified not by filename but by soname. 1297 DenseMap<StringRef, SharedFile *>::iterator it; 1298 bool wasInserted; 1299 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1300 1301 // If a DSO appears more than once on the command line with and without 1302 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1303 // user can add an extra DSO with --no-as-needed to force it to be added to 1304 // the dependency list. 1305 it->second->isNeeded |= isNeeded; 1306 if (!wasInserted) 1307 return; 1308 1309 sharedFiles.push_back(this); 1310 1311 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1312 1313 // Parse ".gnu.version" section which is a parallel array for the symbol 1314 // table. If a given file doesn't have a ".gnu.version" section, we use 1315 // VER_NDX_GLOBAL. 1316 size_t size = numELFSyms - firstGlobal; 1317 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1318 if (versymSec) { 1319 ArrayRef<Elf_Versym> versym = 1320 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1321 this) 1322 .slice(firstGlobal); 1323 for (size_t i = 0; i < size; ++i) 1324 versyms[i] = versym[i].vs_index; 1325 } 1326 1327 // System libraries can have a lot of symbols with versions. Using a 1328 // fixed buffer for computing the versions name (foo@ver) can save a 1329 // lot of allocations. 1330 SmallString<0> versionedNameBuffer; 1331 1332 // Add symbols to the symbol table. 1333 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1334 for (size_t i = 0; i < syms.size(); ++i) { 1335 const Elf_Sym &sym = syms[i]; 1336 1337 // ELF spec requires that all local symbols precede weak or global 1338 // symbols in each symbol table, and the index of first non-local symbol 1339 // is stored to sh_info. If a local symbol appears after some non-local 1340 // symbol, that's a violation of the spec. 1341 StringRef name = CHECK(sym.getName(this->stringTable), this); 1342 if (sym.getBinding() == STB_LOCAL) { 1343 warn("found local symbol '" + name + 1344 "' in global part of symbol table in file " + toString(this)); 1345 continue; 1346 } 1347 1348 if (sym.isUndefined()) { 1349 Symbol *s = symtab->addSymbol( 1350 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1351 s->exportDynamic = true; 1352 continue; 1353 } 1354 1355 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1356 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1357 // workaround for this bug. 1358 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1359 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1360 name == "_gp_disp") 1361 continue; 1362 1363 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1364 if (!(versyms[i] & VERSYM_HIDDEN)) { 1365 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1366 sym.st_other, sym.getType(), sym.st_value, 1367 sym.st_size, alignment, idx}); 1368 } 1369 1370 // Also add the symbol with the versioned name to handle undefined symbols 1371 // with explicit versions. 1372 if (idx == VER_NDX_GLOBAL) 1373 continue; 1374 1375 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1376 error("corrupt input file: version definition index " + Twine(idx) + 1377 " for symbol " + name + " is out of bounds\n>>> defined in " + 1378 toString(this)); 1379 continue; 1380 } 1381 1382 StringRef verName = 1383 this->stringTable.data() + 1384 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1385 versionedNameBuffer.clear(); 1386 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1387 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1388 sym.st_other, sym.getType(), sym.st_value, 1389 sym.st_size, alignment, idx}); 1390 } 1391 } 1392 1393 static ELFKind getBitcodeELFKind(const Triple &t) { 1394 if (t.isLittleEndian()) 1395 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1396 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1397 } 1398 1399 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1400 switch (t.getArch()) { 1401 case Triple::aarch64: 1402 return EM_AARCH64; 1403 case Triple::amdgcn: 1404 case Triple::r600: 1405 return EM_AMDGPU; 1406 case Triple::arm: 1407 case Triple::thumb: 1408 return EM_ARM; 1409 case Triple::avr: 1410 return EM_AVR; 1411 case Triple::mips: 1412 case Triple::mipsel: 1413 case Triple::mips64: 1414 case Triple::mips64el: 1415 return EM_MIPS; 1416 case Triple::msp430: 1417 return EM_MSP430; 1418 case Triple::ppc: 1419 return EM_PPC; 1420 case Triple::ppc64: 1421 case Triple::ppc64le: 1422 return EM_PPC64; 1423 case Triple::riscv32: 1424 case Triple::riscv64: 1425 return EM_RISCV; 1426 case Triple::x86: 1427 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1428 case Triple::x86_64: 1429 return EM_X86_64; 1430 default: 1431 error(path + ": could not infer e_machine from bitcode target triple " + 1432 t.str()); 1433 return EM_NONE; 1434 } 1435 } 1436 1437 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1438 uint64_t offsetInArchive) 1439 : InputFile(BitcodeKind, mb) { 1440 this->archiveName = std::string(archiveName); 1441 1442 std::string path = mb.getBufferIdentifier().str(); 1443 if (config->thinLTOIndexOnly) 1444 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1445 1446 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1447 // name. If two archives define two members with the same name, this 1448 // causes a collision which result in only one of the objects being taken 1449 // into consideration at LTO time (which very likely causes undefined 1450 // symbols later in the link stage). So we append file offset to make 1451 // filename unique. 1452 StringRef name = 1453 archiveName.empty() 1454 ? saver.save(path) 1455 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1456 utostr(offsetInArchive) + ")"); 1457 MemoryBufferRef mbref(mb.getBuffer(), name); 1458 1459 obj = CHECK(lto::InputFile::create(mbref), this); 1460 1461 Triple t(obj->getTargetTriple()); 1462 ekind = getBitcodeELFKind(t); 1463 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1464 } 1465 1466 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1467 switch (gvVisibility) { 1468 case GlobalValue::DefaultVisibility: 1469 return STV_DEFAULT; 1470 case GlobalValue::HiddenVisibility: 1471 return STV_HIDDEN; 1472 case GlobalValue::ProtectedVisibility: 1473 return STV_PROTECTED; 1474 } 1475 llvm_unreachable("unknown visibility"); 1476 } 1477 1478 template <class ELFT> 1479 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1480 const lto::InputFile::Symbol &objSym, 1481 BitcodeFile &f) { 1482 StringRef name = saver.save(objSym.getName()); 1483 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1484 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1485 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1486 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1487 1488 int c = objSym.getComdatIndex(); 1489 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1490 Undefined newSym(&f, name, binding, visibility, type); 1491 if (canOmitFromDynSym) 1492 newSym.exportDynamic = false; 1493 Symbol *ret = symtab->addSymbol(newSym); 1494 ret->referenced = true; 1495 return ret; 1496 } 1497 1498 if (objSym.isCommon()) 1499 return symtab->addSymbol( 1500 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1501 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1502 1503 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1504 if (canOmitFromDynSym) 1505 newSym.exportDynamic = false; 1506 return symtab->addSymbol(newSym); 1507 } 1508 1509 template <class ELFT> void BitcodeFile::parse() { 1510 std::vector<bool> keptComdats; 1511 for (StringRef s : obj->getComdatTable()) 1512 keptComdats.push_back( 1513 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1514 1515 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1516 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1517 1518 for (auto l : obj->getDependentLibraries()) 1519 addDependentLibrary(l, this); 1520 } 1521 1522 void BinaryFile::parse() { 1523 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1524 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1525 8, data, ".data"); 1526 sections.push_back(section); 1527 1528 // For each input file foo that is embedded to a result as a binary 1529 // blob, we define _binary_foo_{start,end,size} symbols, so that 1530 // user programs can access blobs by name. Non-alphanumeric 1531 // characters in a filename are replaced with underscore. 1532 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1533 for (size_t i = 0; i < s.size(); ++i) 1534 if (!isAlnum(s[i])) 1535 s[i] = '_'; 1536 1537 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1538 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1539 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1540 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1541 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1542 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1543 } 1544 1545 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1546 uint64_t offsetInArchive) { 1547 if (isBitcode(mb)) 1548 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1549 1550 switch (getELFKind(mb, archiveName)) { 1551 case ELF32LEKind: 1552 return make<ObjFile<ELF32LE>>(mb, archiveName); 1553 case ELF32BEKind: 1554 return make<ObjFile<ELF32BE>>(mb, archiveName); 1555 case ELF64LEKind: 1556 return make<ObjFile<ELF64LE>>(mb, archiveName); 1557 case ELF64BEKind: 1558 return make<ObjFile<ELF64BE>>(mb, archiveName); 1559 default: 1560 llvm_unreachable("getELFKind"); 1561 } 1562 } 1563 1564 void LazyObjFile::fetch() { 1565 if (mb.getBuffer().empty()) 1566 return; 1567 1568 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1569 file->groupId = groupId; 1570 1571 mb = {}; 1572 1573 // Copy symbol vector so that the new InputFile doesn't have to 1574 // insert the same defined symbols to the symbol table again. 1575 file->symbols = std::move(symbols); 1576 1577 parseFile(file); 1578 } 1579 1580 template <class ELFT> void LazyObjFile::parse() { 1581 using Elf_Sym = typename ELFT::Sym; 1582 1583 // A lazy object file wraps either a bitcode file or an ELF file. 1584 if (isBitcode(this->mb)) { 1585 std::unique_ptr<lto::InputFile> obj = 1586 CHECK(lto::InputFile::create(this->mb), this); 1587 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1588 if (sym.isUndefined()) 1589 continue; 1590 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1591 } 1592 return; 1593 } 1594 1595 if (getELFKind(this->mb, archiveName) != config->ekind) { 1596 error("incompatible file: " + this->mb.getBufferIdentifier()); 1597 return; 1598 } 1599 1600 // Find a symbol table. 1601 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1602 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1603 1604 for (const typename ELFT::Shdr &sec : sections) { 1605 if (sec.sh_type != SHT_SYMTAB) 1606 continue; 1607 1608 // A symbol table is found. 1609 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1610 uint32_t firstGlobal = sec.sh_info; 1611 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1612 this->symbols.resize(eSyms.size()); 1613 1614 // Get existing symbols or insert placeholder symbols. 1615 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1616 if (eSyms[i].st_shndx != SHN_UNDEF) 1617 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1618 1619 // Replace existing symbols with LazyObject symbols. 1620 // 1621 // resolve() may trigger this->fetch() if an existing symbol is an 1622 // undefined symbol. If that happens, this LazyObjFile has served 1623 // its purpose, and we can exit from the loop early. 1624 for (Symbol *sym : this->symbols) { 1625 if (!sym) 1626 continue; 1627 sym->resolve(LazyObject{*this, sym->getName()}); 1628 1629 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1630 if (mb.getBuffer().empty()) 1631 return; 1632 } 1633 return; 1634 } 1635 } 1636 1637 std::string replaceThinLTOSuffix(StringRef path) { 1638 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1639 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1640 1641 if (path.consume_back(suffix)) 1642 return (path + repl).str(); 1643 return std::string(path); 1644 } 1645 1646 template void BitcodeFile::parse<ELF32LE>(); 1647 template void BitcodeFile::parse<ELF32BE>(); 1648 template void BitcodeFile::parse<ELF64LE>(); 1649 template void BitcodeFile::parse<ELF64BE>(); 1650 1651 template void LazyObjFile::parse<ELF32LE>(); 1652 template void LazyObjFile::parse<ELF32BE>(); 1653 template void LazyObjFile::parse<ELF64LE>(); 1654 template void LazyObjFile::parse<ELF64BE>(); 1655 1656 template class ObjFile<ELF32LE>; 1657 template class ObjFile<ELF32BE>; 1658 template class ObjFile<ELF64LE>; 1659 template class ObjFile<ELF64BE>; 1660 1661 template void SharedFile::parse<ELF32LE>(); 1662 template void SharedFile::parse<ELF32BE>(); 1663 template void SharedFile::parse<ELF64LE>(); 1664 template void SharedFile::parse<ELF64BE>(); 1665 1666 } // namespace elf 1667 } // namespace lld 1668