1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 std::vector<ArchiveFile *> elf::archiveFiles; 47 std::vector<BinaryFile *> elf::binaryFiles; 48 std::vector<BitcodeFile *> elf::bitcodeFiles; 49 std::vector<LazyObjFile *> elf::lazyObjFiles; 50 std::vector<InputFile *> elf::objectFiles; 51 std::vector<SharedFile *> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = std::string(f->getName()); 63 else 64 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 65 } 66 return f->toStringCache; 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver.save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 119 if (auto ec = mbOrErr.getError()) { 120 error("cannot open " + path + ": " + ec.message()); 121 return None; 122 } 123 124 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 125 MemoryBufferRef mbref = mb->getMemBufferRef(); 126 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 127 128 if (tar) 129 tar->append(relativeToRoot(path), mbref.getBuffer()); 130 return mbref; 131 } 132 133 // All input object files must be for the same architecture 134 // (e.g. it does not make sense to link x86 object files with 135 // MIPS object files.) This function checks for that error. 136 static bool isCompatible(InputFile *file) { 137 if (!file->isElf() && !isa<BitcodeFile>(file)) 138 return true; 139 140 if (file->ekind == config->ekind && file->emachine == config->emachine) { 141 if (config->emachine != EM_MIPS) 142 return true; 143 if (isMipsN32Abi(file) == config->mipsN32Abi) 144 return true; 145 } 146 147 StringRef target = 148 !config->bfdname.empty() ? config->bfdname : config->emulation; 149 if (!target.empty()) { 150 error(toString(file) + " is incompatible with " + target); 151 return false; 152 } 153 154 InputFile *existing; 155 if (!objectFiles.empty()) 156 existing = objectFiles[0]; 157 else if (!sharedFiles.empty()) 158 existing = sharedFiles[0]; 159 else if (!bitcodeFiles.empty()) 160 existing = bitcodeFiles[0]; 161 else 162 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 163 "determine target emulation"); 164 165 error(toString(file) + " is incompatible with " + toString(existing)); 166 return false; 167 } 168 169 template <class ELFT> static void doParseFile(InputFile *file) { 170 if (!isCompatible(file)) 171 return; 172 173 // Binary file 174 if (auto *f = dyn_cast<BinaryFile>(file)) { 175 binaryFiles.push_back(f); 176 f->parse(); 177 return; 178 } 179 180 // .a file 181 if (auto *f = dyn_cast<ArchiveFile>(file)) { 182 archiveFiles.push_back(f); 183 f->parse(); 184 return; 185 } 186 187 // Lazy object file 188 if (auto *f = dyn_cast<LazyObjFile>(file)) { 189 lazyObjFiles.push_back(f); 190 f->parse<ELFT>(); 191 return; 192 } 193 194 if (config->trace) 195 message(toString(file)); 196 197 // .so file 198 if (auto *f = dyn_cast<SharedFile>(file)) { 199 f->parse<ELFT>(); 200 return; 201 } 202 203 // LLVM bitcode file 204 if (auto *f = dyn_cast<BitcodeFile>(file)) { 205 bitcodeFiles.push_back(f); 206 f->parse<ELFT>(); 207 return; 208 } 209 210 // Regular object file 211 objectFiles.push_back(file); 212 cast<ObjFile<ELFT>>(file)->parse(); 213 } 214 215 // Add symbols in File to the symbol table. 216 void elf::parseFile(InputFile *file) { 217 switch (config->ekind) { 218 case ELF32LEKind: 219 doParseFile<ELF32LE>(file); 220 return; 221 case ELF32BEKind: 222 doParseFile<ELF32BE>(file); 223 return; 224 case ELF64LEKind: 225 doParseFile<ELF64LE>(file); 226 return; 227 case ELF64BEKind: 228 doParseFile<ELF64BE>(file); 229 return; 230 default: 231 llvm_unreachable("unknown ELFT"); 232 } 233 } 234 235 // Concatenates arguments to construct a string representing an error location. 236 static std::string createFileLineMsg(StringRef path, unsigned line) { 237 std::string filename = std::string(path::filename(path)); 238 std::string lineno = ":" + std::to_string(line); 239 if (filename == path) 240 return filename + lineno; 241 return filename + lineno + " (" + path.str() + lineno + ")"; 242 } 243 244 template <class ELFT> 245 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 246 InputSectionBase &sec, uint64_t offset) { 247 // In DWARF, functions and variables are stored to different places. 248 // First, lookup a function for a given offset. 249 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 250 return createFileLineMsg(info->FileName, info->Line); 251 252 // If it failed, lookup again as a variable. 253 if (Optional<std::pair<std::string, unsigned>> fileLine = 254 file.getVariableLoc(sym.getName())) 255 return createFileLineMsg(fileLine->first, fileLine->second); 256 257 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 258 return std::string(file.sourceFile); 259 } 260 261 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 262 uint64_t offset) { 263 if (kind() != ObjKind) 264 return ""; 265 switch (config->ekind) { 266 default: 267 llvm_unreachable("Invalid kind"); 268 case ELF32LEKind: 269 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 270 case ELF32BEKind: 271 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 272 case ELF64LEKind: 273 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 274 case ELF64BEKind: 275 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 276 } 277 } 278 279 StringRef InputFile::getNameForScript() const { 280 if (archiveName.empty()) 281 return getName(); 282 283 if (nameForScriptCache.empty()) 284 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 285 286 return nameForScriptCache; 287 } 288 289 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 290 llvm::call_once(initDwarf, [this]() { 291 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 292 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 293 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 294 [&](Error warning) { 295 warn(getName() + ": " + toString(std::move(warning))); 296 })); 297 }); 298 299 return dwarf.get(); 300 } 301 302 // Returns the pair of file name and line number describing location of data 303 // object (variable, array, etc) definition. 304 template <class ELFT> 305 Optional<std::pair<std::string, unsigned>> 306 ObjFile<ELFT>::getVariableLoc(StringRef name) { 307 return getDwarf()->getVariableLoc(name); 308 } 309 310 // Returns source line information for a given offset 311 // using DWARF debug info. 312 template <class ELFT> 313 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 314 uint64_t offset) { 315 // Detect SectionIndex for specified section. 316 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 317 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 318 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 319 if (s == sections[curIndex]) { 320 sectionIndex = curIndex; 321 break; 322 } 323 } 324 325 return getDwarf()->getDILineInfo(offset, sectionIndex); 326 } 327 328 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 329 ekind = getELFKind(mb, ""); 330 331 switch (ekind) { 332 case ELF32LEKind: 333 init<ELF32LE>(); 334 break; 335 case ELF32BEKind: 336 init<ELF32BE>(); 337 break; 338 case ELF64LEKind: 339 init<ELF64LE>(); 340 break; 341 case ELF64BEKind: 342 init<ELF64BE>(); 343 break; 344 default: 345 llvm_unreachable("getELFKind"); 346 } 347 } 348 349 template <typename Elf_Shdr> 350 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 351 for (const Elf_Shdr &sec : sections) 352 if (sec.sh_type == type) 353 return &sec; 354 return nullptr; 355 } 356 357 template <class ELFT> void ELFFileBase::init() { 358 using Elf_Shdr = typename ELFT::Shdr; 359 using Elf_Sym = typename ELFT::Sym; 360 361 // Initialize trivial attributes. 362 const ELFFile<ELFT> &obj = getObj<ELFT>(); 363 emachine = obj.getHeader().e_machine; 364 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 365 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 366 367 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 368 369 // Find a symbol table. 370 bool isDSO = 371 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 372 const Elf_Shdr *symtabSec = 373 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 374 375 if (!symtabSec) 376 return; 377 378 // Initialize members corresponding to a symbol table. 379 firstGlobal = symtabSec->sh_info; 380 381 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 382 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 383 fatal(toString(this) + ": invalid sh_info in symbol table"); 384 385 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 386 numELFSyms = eSyms.size(); 387 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 388 } 389 390 template <class ELFT> 391 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 392 return CHECK( 393 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 394 this); 395 } 396 397 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 398 if (this->symbols.empty()) 399 return {}; 400 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 401 } 402 403 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 404 return makeArrayRef(this->symbols).slice(this->firstGlobal); 405 } 406 407 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 408 // Read a section table. justSymbols is usually false. 409 if (this->justSymbols) 410 initializeJustSymbols(); 411 else 412 initializeSections(ignoreComdats); 413 414 // Read a symbol table. 415 initializeSymbols(); 416 } 417 418 // Sections with SHT_GROUP and comdat bits define comdat section groups. 419 // They are identified and deduplicated by group name. This function 420 // returns a group name. 421 template <class ELFT> 422 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 423 const Elf_Shdr &sec) { 424 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 425 if (sec.sh_info >= symbols.size()) 426 fatal(toString(this) + ": invalid symbol index"); 427 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 428 StringRef signature = CHECK(sym.getName(this->stringTable), this); 429 430 // As a special case, if a symbol is a section symbol and has no name, 431 // we use a section name as a signature. 432 // 433 // Such SHT_GROUP sections are invalid from the perspective of the ELF 434 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 435 // older produce such sections as outputs for the -r option, so we need 436 // a bug-compatibility. 437 if (signature.empty() && sym.getType() == STT_SECTION) 438 return getSectionName(sec); 439 return signature; 440 } 441 442 template <class ELFT> 443 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 444 if (!(sec.sh_flags & SHF_MERGE)) 445 return false; 446 447 // On a regular link we don't merge sections if -O0 (default is -O1). This 448 // sometimes makes the linker significantly faster, although the output will 449 // be bigger. 450 // 451 // Doing the same for -r would create a problem as it would combine sections 452 // with different sh_entsize. One option would be to just copy every SHF_MERGE 453 // section as is to the output. While this would produce a valid ELF file with 454 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 455 // they see two .debug_str. We could have separate logic for combining 456 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 457 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 458 // logic for -r. 459 if (config->optimize == 0 && !config->relocatable) 460 return false; 461 462 // A mergeable section with size 0 is useless because they don't have 463 // any data to merge. A mergeable string section with size 0 can be 464 // argued as invalid because it doesn't end with a null character. 465 // We'll avoid a mess by handling them as if they were non-mergeable. 466 if (sec.sh_size == 0) 467 return false; 468 469 // Check for sh_entsize. The ELF spec is not clear about the zero 470 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 471 // the section does not hold a table of fixed-size entries". We know 472 // that Rust 1.13 produces a string mergeable section with a zero 473 // sh_entsize. Here we just accept it rather than being picky about it. 474 uint64_t entSize = sec.sh_entsize; 475 if (entSize == 0) 476 return false; 477 if (sec.sh_size % entSize) 478 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 479 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 480 Twine(entSize) + ")"); 481 482 if (sec.sh_flags & SHF_WRITE) 483 fatal(toString(this) + ":(" + name + 484 "): writable SHF_MERGE section is not supported"); 485 486 return true; 487 } 488 489 // This is for --just-symbols. 490 // 491 // --just-symbols is a very minor feature that allows you to link your 492 // output against other existing program, so that if you load both your 493 // program and the other program into memory, your output can refer the 494 // other program's symbols. 495 // 496 // When the option is given, we link "just symbols". The section table is 497 // initialized with null pointers. 498 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 499 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 500 this->sections.resize(sections.size()); 501 } 502 503 // An ELF object file may contain a `.deplibs` section. If it exists, the 504 // section contains a list of library specifiers such as `m` for libm. This 505 // function resolves a given name by finding the first matching library checking 506 // the various ways that a library can be specified to LLD. This ELF extension 507 // is a form of autolinking and is called `dependent libraries`. It is currently 508 // unique to LLVM and lld. 509 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 510 if (!config->dependentLibraries) 511 return; 512 if (fs::exists(specifier)) 513 driver->addFile(specifier, /*withLOption=*/false); 514 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 515 driver->addFile(*s, /*withLOption=*/true); 516 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 517 driver->addFile(*s, /*withLOption=*/true); 518 else 519 error(toString(f) + 520 ": unable to find library from dependent library specifier: " + 521 specifier); 522 } 523 524 // Record the membership of a section group so that in the garbage collection 525 // pass, section group members are kept or discarded as a unit. 526 template <class ELFT> 527 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 528 ArrayRef<typename ELFT::Word> entries) { 529 bool hasAlloc = false; 530 for (uint32_t index : entries.slice(1)) { 531 if (index >= sections.size()) 532 return; 533 if (InputSectionBase *s = sections[index]) 534 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 535 hasAlloc = true; 536 } 537 538 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 539 // collection. See the comment in markLive(). This rule retains .debug_types 540 // and .rela.debug_types. 541 if (!hasAlloc) 542 return; 543 544 // Connect the members in a circular doubly-linked list via 545 // nextInSectionGroup. 546 InputSectionBase *head; 547 InputSectionBase *prev = nullptr; 548 for (uint32_t index : entries.slice(1)) { 549 InputSectionBase *s = sections[index]; 550 if (!s || s == &InputSection::discarded) 551 continue; 552 if (prev) 553 prev->nextInSectionGroup = s; 554 else 555 head = s; 556 prev = s; 557 } 558 if (prev) 559 prev->nextInSectionGroup = head; 560 } 561 562 template <class ELFT> 563 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 564 const ELFFile<ELFT> &obj = this->getObj(); 565 566 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 567 uint64_t size = objSections.size(); 568 this->sections.resize(size); 569 this->sectionStringTable = 570 CHECK(obj.getSectionStringTable(objSections), this); 571 572 std::vector<ArrayRef<Elf_Word>> selectedGroups; 573 574 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 575 if (this->sections[i] == &InputSection::discarded) 576 continue; 577 const Elf_Shdr &sec = objSections[i]; 578 579 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 580 cgProfile = 581 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec)); 582 583 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 584 // if -r is given, we'll let the final link discard such sections. 585 // This is compatible with GNU. 586 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 587 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 588 // We ignore the address-significance table if we know that the object 589 // file was created by objcopy or ld -r. This is because these tools 590 // will reorder the symbols in the symbol table, invalidating the data 591 // in the address-significance table, which refers to symbols by index. 592 if (sec.sh_link != 0) 593 this->addrsigSec = &sec; 594 else if (config->icf == ICFLevel::Safe) 595 warn(toString(this) + 596 ": --icf=safe conservatively ignores " 597 "SHT_LLVM_ADDRSIG [index " + 598 Twine(i) + 599 "] with sh_link=0 " 600 "(likely created using objcopy or ld -r)"); 601 } 602 this->sections[i] = &InputSection::discarded; 603 continue; 604 } 605 606 switch (sec.sh_type) { 607 case SHT_GROUP: { 608 // De-duplicate section groups by their signatures. 609 StringRef signature = getShtGroupSignature(objSections, sec); 610 this->sections[i] = &InputSection::discarded; 611 612 ArrayRef<Elf_Word> entries = 613 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 614 if (entries.empty()) 615 fatal(toString(this) + ": empty SHT_GROUP"); 616 617 Elf_Word flag = entries[0]; 618 if (flag && flag != GRP_COMDAT) 619 fatal(toString(this) + ": unsupported SHT_GROUP format"); 620 621 bool keepGroup = 622 (flag & GRP_COMDAT) == 0 || ignoreComdats || 623 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 624 .second; 625 if (keepGroup) { 626 if (config->relocatable) 627 this->sections[i] = createInputSection(sec); 628 selectedGroups.push_back(entries); 629 continue; 630 } 631 632 // Otherwise, discard group members. 633 for (uint32_t secIndex : entries.slice(1)) { 634 if (secIndex >= size) 635 fatal(toString(this) + 636 ": invalid section index in group: " + Twine(secIndex)); 637 this->sections[secIndex] = &InputSection::discarded; 638 } 639 break; 640 } 641 case SHT_SYMTAB_SHNDX: 642 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 643 break; 644 case SHT_SYMTAB: 645 case SHT_STRTAB: 646 case SHT_REL: 647 case SHT_RELA: 648 case SHT_NULL: 649 break; 650 default: 651 this->sections[i] = createInputSection(sec); 652 } 653 } 654 655 // We have a second loop. It is used to: 656 // 1) handle SHF_LINK_ORDER sections. 657 // 2) create SHT_REL[A] sections. In some cases the section header index of a 658 // relocation section may be smaller than that of the relocated section. In 659 // such cases, the relocation section would attempt to reference a target 660 // section that has not yet been created. For simplicity, delay creation of 661 // relocation sections until now. 662 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 663 if (this->sections[i] == &InputSection::discarded) 664 continue; 665 const Elf_Shdr &sec = objSections[i]; 666 667 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 668 this->sections[i] = createInputSection(sec); 669 670 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 671 // the flag. 672 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 673 continue; 674 675 InputSectionBase *linkSec = nullptr; 676 if (sec.sh_link < this->sections.size()) 677 linkSec = this->sections[sec.sh_link]; 678 if (!linkSec) 679 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 680 681 // A SHF_LINK_ORDER section is discarded if its linked-to section is 682 // discarded. 683 InputSection *isec = cast<InputSection>(this->sections[i]); 684 linkSec->dependentSections.push_back(isec); 685 if (!isa<InputSection>(linkSec)) 686 error("a section " + isec->name + 687 " with SHF_LINK_ORDER should not refer a non-regular section: " + 688 toString(linkSec)); 689 } 690 691 for (ArrayRef<Elf_Word> entries : selectedGroups) 692 handleSectionGroup<ELFT>(this->sections, entries); 693 } 694 695 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 696 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 697 // the input objects have been compiled. 698 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 699 const InputFile *f) { 700 Optional<unsigned> attr = 701 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 702 if (!attr.hasValue()) 703 // If an ABI tag isn't present then it is implicitly given the value of 0 704 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 705 // including some in glibc that don't use FP args (and should have value 3) 706 // don't have the attribute so we do not consider an implicit value of 0 707 // as a clash. 708 return; 709 710 unsigned vfpArgs = attr.getValue(); 711 ARMVFPArgKind arg; 712 switch (vfpArgs) { 713 case ARMBuildAttrs::BaseAAPCS: 714 arg = ARMVFPArgKind::Base; 715 break; 716 case ARMBuildAttrs::HardFPAAPCS: 717 arg = ARMVFPArgKind::VFP; 718 break; 719 case ARMBuildAttrs::ToolChainFPPCS: 720 // Tool chain specific convention that conforms to neither AAPCS variant. 721 arg = ARMVFPArgKind::ToolChain; 722 break; 723 case ARMBuildAttrs::CompatibleFPAAPCS: 724 // Object compatible with all conventions. 725 return; 726 default: 727 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 728 return; 729 } 730 // Follow ld.bfd and error if there is a mix of calling conventions. 731 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 732 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 733 else 734 config->armVFPArgs = arg; 735 } 736 737 // The ARM support in lld makes some use of instructions that are not available 738 // on all ARM architectures. Namely: 739 // - Use of BLX instruction for interworking between ARM and Thumb state. 740 // - Use of the extended Thumb branch encoding in relocation. 741 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 742 // The ARM Attributes section contains information about the architecture chosen 743 // at compile time. We follow the convention that if at least one input object 744 // is compiled with an architecture that supports these features then lld is 745 // permitted to use them. 746 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 747 Optional<unsigned> attr = 748 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 749 if (!attr.hasValue()) 750 return; 751 auto arch = attr.getValue(); 752 switch (arch) { 753 case ARMBuildAttrs::Pre_v4: 754 case ARMBuildAttrs::v4: 755 case ARMBuildAttrs::v4T: 756 // Architectures prior to v5 do not support BLX instruction 757 break; 758 case ARMBuildAttrs::v5T: 759 case ARMBuildAttrs::v5TE: 760 case ARMBuildAttrs::v5TEJ: 761 case ARMBuildAttrs::v6: 762 case ARMBuildAttrs::v6KZ: 763 case ARMBuildAttrs::v6K: 764 config->armHasBlx = true; 765 // Architectures used in pre-Cortex processors do not support 766 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 767 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 768 break; 769 default: 770 // All other Architectures have BLX and extended branch encoding 771 config->armHasBlx = true; 772 config->armJ1J2BranchEncoding = true; 773 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 774 // All Architectures used in Cortex processors with the exception 775 // of v6-M and v6S-M have the MOVT and MOVW instructions. 776 config->armHasMovtMovw = true; 777 break; 778 } 779 } 780 781 // If a source file is compiled with x86 hardware-assisted call flow control 782 // enabled, the generated object file contains feature flags indicating that 783 // fact. This function reads the feature flags and returns it. 784 // 785 // Essentially we want to read a single 32-bit value in this function, but this 786 // function is rather complicated because the value is buried deep inside a 787 // .note.gnu.property section. 788 // 789 // The section consists of one or more NOTE records. Each NOTE record consists 790 // of zero or more type-length-value fields. We want to find a field of a 791 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 792 // the ABI is unnecessarily complicated. 793 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 794 using Elf_Nhdr = typename ELFT::Nhdr; 795 using Elf_Note = typename ELFT::Note; 796 797 uint32_t featuresSet = 0; 798 ArrayRef<uint8_t> data = sec.data(); 799 auto reportFatal = [&](const uint8_t *place, const char *msg) { 800 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 801 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 802 }; 803 while (!data.empty()) { 804 // Read one NOTE record. 805 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 806 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 807 reportFatal(data.data(), "data is too short"); 808 809 Elf_Note note(*nhdr); 810 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 811 data = data.slice(nhdr->getSize()); 812 continue; 813 } 814 815 uint32_t featureAndType = config->emachine == EM_AARCH64 816 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 817 : GNU_PROPERTY_X86_FEATURE_1_AND; 818 819 // Read a body of a NOTE record, which consists of type-length-value fields. 820 ArrayRef<uint8_t> desc = note.getDesc(); 821 while (!desc.empty()) { 822 const uint8_t *place = desc.data(); 823 if (desc.size() < 8) 824 reportFatal(place, "program property is too short"); 825 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 826 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 827 desc = desc.slice(8); 828 if (desc.size() < size) 829 reportFatal(place, "program property is too short"); 830 831 if (type == featureAndType) { 832 // We found a FEATURE_1_AND field. There may be more than one of these 833 // in a .note.gnu.property section, for a relocatable object we 834 // accumulate the bits set. 835 if (size < 4) 836 reportFatal(place, "FEATURE_1_AND entry is too short"); 837 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 838 } 839 840 // Padding is present in the note descriptor, if necessary. 841 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 842 } 843 844 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 845 data = data.slice(nhdr->getSize()); 846 } 847 848 return featuresSet; 849 } 850 851 template <class ELFT> 852 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 853 uint32_t idx = sec.sh_info; 854 if (idx >= this->sections.size()) 855 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 856 InputSectionBase *target = this->sections[idx]; 857 858 // Strictly speaking, a relocation section must be included in the 859 // group of the section it relocates. However, LLVM 3.3 and earlier 860 // would fail to do so, so we gracefully handle that case. 861 if (target == &InputSection::discarded) 862 return nullptr; 863 864 if (!target) 865 fatal(toString(this) + ": unsupported relocation reference"); 866 return target; 867 } 868 869 // Create a regular InputSection class that has the same contents 870 // as a given section. 871 static InputSection *toRegularSection(MergeInputSection *sec) { 872 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 873 sec->data(), sec->name); 874 } 875 876 template <class ELFT> 877 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 878 StringRef name = getSectionName(sec); 879 880 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { 881 ARMAttributeParser attributes; 882 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 883 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 884 ? support::little 885 : support::big)) { 886 auto *isec = make<InputSection>(*this, sec, name); 887 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 888 } else { 889 updateSupportedARMFeatures(attributes); 890 updateARMVFPArgs(attributes, this); 891 892 // FIXME: Retain the first attribute section we see. The eglibc ARM 893 // dynamic loaders require the presence of an attribute section for dlopen 894 // to work. In a full implementation we would merge all attribute 895 // sections. 896 if (in.attributes == nullptr) { 897 in.attributes = make<InputSection>(*this, sec, name); 898 return in.attributes; 899 } 900 return &InputSection::discarded; 901 } 902 } 903 904 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { 905 RISCVAttributeParser attributes; 906 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 907 if (Error e = attributes.parse(contents, support::little)) { 908 auto *isec = make<InputSection>(*this, sec, name); 909 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 910 } else { 911 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 912 // present. 913 914 // FIXME: Retain the first attribute section we see. Tools such as 915 // llvm-objdump make use of the attribute section to determine which 916 // standard extensions to enable. In a full implementation we would merge 917 // all attribute sections. 918 if (in.attributes == nullptr) { 919 in.attributes = make<InputSection>(*this, sec, name); 920 return in.attributes; 921 } 922 return &InputSection::discarded; 923 } 924 } 925 926 switch (sec.sh_type) { 927 case SHT_LLVM_DEPENDENT_LIBRARIES: { 928 if (config->relocatable) 929 break; 930 ArrayRef<char> data = 931 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 932 if (!data.empty() && data.back() != '\0') { 933 error(toString(this) + 934 ": corrupted dependent libraries section (unterminated string): " + 935 name); 936 return &InputSection::discarded; 937 } 938 for (const char *d = data.begin(), *e = data.end(); d < e;) { 939 StringRef s(d); 940 addDependentLibrary(s, this); 941 d += s.size() + 1; 942 } 943 return &InputSection::discarded; 944 } 945 case SHT_RELA: 946 case SHT_REL: { 947 // Find a relocation target section and associate this section with that. 948 // Target may have been discarded if it is in a different section group 949 // and the group is discarded, even though it's a violation of the 950 // spec. We handle that situation gracefully by discarding dangling 951 // relocation sections. 952 InputSectionBase *target = getRelocTarget(sec); 953 if (!target) 954 return nullptr; 955 956 // ELF spec allows mergeable sections with relocations, but they are 957 // rare, and it is in practice hard to merge such sections by contents, 958 // because applying relocations at end of linking changes section 959 // contents. So, we simply handle such sections as non-mergeable ones. 960 // Degrading like this is acceptable because section merging is optional. 961 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 962 target = toRegularSection(ms); 963 this->sections[sec.sh_info] = target; 964 } 965 966 if (target->firstRelocation) 967 fatal(toString(this) + 968 ": multiple relocation sections to one section are not supported"); 969 970 if (sec.sh_type == SHT_RELA) { 971 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this); 972 target->firstRelocation = rels.begin(); 973 target->numRelocations = rels.size(); 974 target->areRelocsRela = true; 975 } else { 976 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this); 977 target->firstRelocation = rels.begin(); 978 target->numRelocations = rels.size(); 979 target->areRelocsRela = false; 980 } 981 assert(isUInt<31>(target->numRelocations)); 982 983 // Relocation sections are usually removed from the output, so return 984 // `nullptr` for the normal case. However, if -r or --emit-relocs is 985 // specified, we need to copy them to the output. (Some post link analysis 986 // tools specify --emit-relocs to obtain the information.) 987 if (!config->relocatable && !config->emitRelocs) 988 return nullptr; 989 InputSection *relocSec = make<InputSection>(*this, sec, name); 990 // If the relocated section is discarded (due to /DISCARD/ or 991 // --gc-sections), the relocation section should be discarded as well. 992 target->dependentSections.push_back(relocSec); 993 return relocSec; 994 } 995 } 996 997 // The GNU linker uses .note.GNU-stack section as a marker indicating 998 // that the code in the object file does not expect that the stack is 999 // executable (in terms of NX bit). If all input files have the marker, 1000 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 1001 // make the stack non-executable. Most object files have this section as 1002 // of 2017. 1003 // 1004 // But making the stack non-executable is a norm today for security 1005 // reasons. Failure to do so may result in a serious security issue. 1006 // Therefore, we make LLD always add PT_GNU_STACK unless it is 1007 // explicitly told to do otherwise (by -z execstack). Because the stack 1008 // executable-ness is controlled solely by command line options, 1009 // .note.GNU-stack sections are simply ignored. 1010 if (name == ".note.GNU-stack") 1011 return &InputSection::discarded; 1012 1013 // Object files that use processor features such as Intel Control-Flow 1014 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 1015 // .note.gnu.property section containing a bitfield of feature bits like the 1016 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 1017 // 1018 // Since we merge bitmaps from multiple object files to create a new 1019 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 1020 // file's .note.gnu.property section. 1021 if (name == ".note.gnu.property") { 1022 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 1023 return &InputSection::discarded; 1024 } 1025 1026 // Split stacks is a feature to support a discontiguous stack, 1027 // commonly used in the programming language Go. For the details, 1028 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1029 // for split stack will include a .note.GNU-split-stack section. 1030 if (name == ".note.GNU-split-stack") { 1031 if (config->relocatable) { 1032 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1033 return &InputSection::discarded; 1034 } 1035 this->splitStack = true; 1036 return &InputSection::discarded; 1037 } 1038 1039 // An object file cmpiled for split stack, but where some of the 1040 // functions were compiled with the no_split_stack_attribute will 1041 // include a .note.GNU-no-split-stack section. 1042 if (name == ".note.GNU-no-split-stack") { 1043 this->someNoSplitStack = true; 1044 return &InputSection::discarded; 1045 } 1046 1047 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1048 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1049 // sections. Drop those sections to avoid duplicate symbol errors. 1050 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1051 // fixed for a while. 1052 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1053 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1054 return &InputSection::discarded; 1055 1056 // If we are creating a new .build-id section, strip existing .build-id 1057 // sections so that the output won't have more than one .build-id. 1058 // This is not usually a problem because input object files normally don't 1059 // have .build-id sections, but you can create such files by 1060 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1061 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1062 return &InputSection::discarded; 1063 1064 // The linker merges EH (exception handling) frames and creates a 1065 // .eh_frame_hdr section for runtime. So we handle them with a special 1066 // class. For relocatable outputs, they are just passed through. 1067 if (name == ".eh_frame" && !config->relocatable) 1068 return make<EhInputSection>(*this, sec, name); 1069 1070 if (shouldMerge(sec, name)) 1071 return make<MergeInputSection>(*this, sec, name); 1072 return make<InputSection>(*this, sec, name); 1073 } 1074 1075 template <class ELFT> 1076 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1077 return CHECK(getObj().getSectionName(sec, sectionStringTable), this); 1078 } 1079 1080 // Initialize this->Symbols. this->Symbols is a parallel array as 1081 // its corresponding ELF symbol table. 1082 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1083 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1084 this->symbols.resize(eSyms.size()); 1085 1086 // Fill in InputFile::symbols. Some entries have been initialized 1087 // because of LazyObjFile. 1088 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1089 if (this->symbols[i]) 1090 continue; 1091 const Elf_Sym &eSym = eSyms[i]; 1092 uint32_t secIdx = getSectionIndex(eSym); 1093 if (secIdx >= this->sections.size()) 1094 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1095 if (eSym.getBinding() != STB_LOCAL) { 1096 if (i < firstGlobal) 1097 error(toString(this) + ": non-local symbol (" + Twine(i) + 1098 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1099 ")"); 1100 this->symbols[i] = 1101 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1102 continue; 1103 } 1104 1105 // Handle local symbols. Local symbols are not added to the symbol 1106 // table because they are not visible from other object files. We 1107 // allocate symbol instances and add their pointers to symbols. 1108 if (i >= firstGlobal) 1109 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1110 ") found at index >= .symtab's sh_info (" + 1111 Twine(firstGlobal) + ")"); 1112 1113 InputSectionBase *sec = this->sections[secIdx]; 1114 uint8_t type = eSym.getType(); 1115 if (type == STT_FILE) 1116 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1117 if (this->stringTable.size() <= eSym.st_name) 1118 fatal(toString(this) + ": invalid symbol name offset"); 1119 StringRefZ name = this->stringTable.data() + eSym.st_name; 1120 1121 if (eSym.st_shndx == SHN_UNDEF) 1122 this->symbols[i] = 1123 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); 1124 else if (sec == &InputSection::discarded) 1125 this->symbols[i] = 1126 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, 1127 /*discardedSecIdx=*/secIdx); 1128 else 1129 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, 1130 type, eSym.st_value, eSym.st_size, sec); 1131 } 1132 1133 // Symbol resolution of non-local symbols. 1134 SmallVector<unsigned, 32> unds; 1135 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1136 const Elf_Sym &eSym = eSyms[i]; 1137 uint8_t binding = eSym.getBinding(); 1138 if (binding == STB_LOCAL) 1139 continue; // Errored above. 1140 1141 uint32_t secIdx = getSectionIndex(eSym); 1142 InputSectionBase *sec = this->sections[secIdx]; 1143 uint8_t stOther = eSym.st_other; 1144 uint8_t type = eSym.getType(); 1145 uint64_t value = eSym.st_value; 1146 uint64_t size = eSym.st_size; 1147 StringRefZ name = this->stringTable.data() + eSym.st_name; 1148 1149 // Handle global undefined symbols. 1150 if (eSym.st_shndx == SHN_UNDEF) { 1151 unds.push_back(i); 1152 continue; 1153 } 1154 1155 // Handle global common symbols. 1156 if (eSym.st_shndx == SHN_COMMON) { 1157 if (value == 0 || value >= UINT32_MAX) 1158 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1159 "' has invalid alignment: " + Twine(value)); 1160 this->symbols[i]->resolve( 1161 CommonSymbol{this, name, binding, stOther, type, value, size}); 1162 continue; 1163 } 1164 1165 // If a defined symbol is in a discarded section, handle it as if it 1166 // were an undefined symbol. Such symbol doesn't comply with the 1167 // standard, but in practice, a .eh_frame often directly refer 1168 // COMDAT member sections, and if a comdat group is discarded, some 1169 // defined symbol in a .eh_frame becomes dangling symbols. 1170 if (sec == &InputSection::discarded) { 1171 Undefined und{this, name, binding, stOther, type, secIdx}; 1172 Symbol *sym = this->symbols[i]; 1173 // !ArchiveFile::parsed or LazyObjFile::fetched means that the file 1174 // containing this object has not finished processing, i.e. this symbol is 1175 // a result of a lazy symbol fetch. We should demote the lazy symbol to an 1176 // Undefined so that any relocations outside of the group to it will 1177 // trigger a discarded section error. 1178 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1179 !cast<ArchiveFile>(sym->file)->parsed) || 1180 (sym->symbolKind == Symbol::LazyObjectKind && 1181 cast<LazyObjFile>(sym->file)->fetched)) 1182 sym->replace(und); 1183 else 1184 sym->resolve(und); 1185 continue; 1186 } 1187 1188 // Handle global defined symbols. 1189 if (binding == STB_GLOBAL || binding == STB_WEAK || 1190 binding == STB_GNU_UNIQUE) { 1191 this->symbols[i]->resolve( 1192 Defined{this, name, binding, stOther, type, value, size, sec}); 1193 continue; 1194 } 1195 1196 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1197 } 1198 1199 // Undefined symbols (excluding those defined relative to non-prevailing 1200 // sections) can trigger recursive fetch. Process defined symbols first so 1201 // that the relative order between a defined symbol and an undefined symbol 1202 // does not change the symbol resolution behavior. In addition, a set of 1203 // interconnected symbols will all be resolved to the same file, instead of 1204 // being resolved to different files. 1205 for (unsigned i : unds) { 1206 const Elf_Sym &eSym = eSyms[i]; 1207 StringRefZ name = this->stringTable.data() + eSym.st_name; 1208 this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(), 1209 eSym.st_other, eSym.getType()}); 1210 this->symbols[i]->referenced = true; 1211 } 1212 } 1213 1214 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1215 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1216 file(std::move(file)) {} 1217 1218 void ArchiveFile::parse() { 1219 for (const Archive::Symbol &sym : file->symbols()) 1220 symtab->addSymbol(LazyArchive{*this, sym}); 1221 1222 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1223 // archive has been processed. 1224 parsed = true; 1225 } 1226 1227 // Returns a buffer pointing to a member file containing a given symbol. 1228 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1229 Archive::Child c = 1230 CHECK(sym.getMember(), toString(this) + 1231 ": could not get the member for symbol " + 1232 toELFString(sym)); 1233 1234 if (!seen.insert(c.getChildOffset()).second) 1235 return; 1236 1237 MemoryBufferRef mb = 1238 CHECK(c.getMemoryBufferRef(), 1239 toString(this) + 1240 ": could not get the buffer for the member defining symbol " + 1241 toELFString(sym)); 1242 1243 if (tar && c.getParent()->isThin()) 1244 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1245 1246 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1247 file->groupId = groupId; 1248 parseFile(file); 1249 } 1250 1251 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1252 // A tentative definition will be promoted to a global definition if there are 1253 // no non-tentative definitions to dominate it. When we hold a tentative 1254 // definition to a symbol and are inspecting archive members for inclusion 1255 // there are 2 ways we can proceed: 1256 // 1257 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1258 // tentative to real definition has already happened) and not inspect 1259 // archive members for Global/Weak definitions to replace the tentative 1260 // definition. An archive member would only be included if it satisfies some 1261 // other undefined symbol. This is the behavior Gold uses. 1262 // 1263 // 2) Consider the tentative definition as still undefined (ie the promotion to 1264 // a real definition happens only after all symbol resolution is done). 1265 // The linker searches archive members for global or weak definitions to 1266 // replace the tentative definition with. This is the behavior used by 1267 // GNU ld. 1268 // 1269 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1270 // COMMON BLOCK model. This behavior is needed for proper initalization in old 1271 // (pre F90) FORTRAN code that is packaged into an archive. 1272 // 1273 // The following functions search archive members for definitions to replace 1274 // tentative definitions (implementing behavior 2). 1275 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1276 StringRef archiveName) { 1277 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1278 for (const irsymtab::Reader::SymbolRef &sym : 1279 symtabFile.TheReader.symbols()) { 1280 if (sym.isGlobal() && sym.getName() == symName) 1281 return !sym.isUndefined() && !sym.isCommon(); 1282 } 1283 return false; 1284 } 1285 1286 template <class ELFT> 1287 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1288 StringRef archiveName) { 1289 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1290 StringRef stringtable = obj->getStringTable(); 1291 1292 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1293 Expected<StringRef> name = sym.getName(stringtable); 1294 if (name && name.get() == symName) 1295 return sym.isDefined() && !sym.isCommon(); 1296 } 1297 return false; 1298 } 1299 1300 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1301 StringRef archiveName) { 1302 switch (getELFKind(mb, archiveName)) { 1303 case ELF32LEKind: 1304 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1305 case ELF32BEKind: 1306 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1307 case ELF64LEKind: 1308 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1309 case ELF64BEKind: 1310 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1311 default: 1312 llvm_unreachable("getELFKind"); 1313 } 1314 } 1315 1316 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) { 1317 Archive::Child c = 1318 CHECK(sym.getMember(), toString(this) + 1319 ": could not get the member for symbol " + 1320 toELFString(sym)); 1321 MemoryBufferRef mb = 1322 CHECK(c.getMemoryBufferRef(), 1323 toString(this) + 1324 ": could not get the buffer for the member defining symbol " + 1325 toELFString(sym)); 1326 1327 if (isBitcode(mb)) 1328 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1329 1330 return isNonCommonDef(mb, sym.getName(), getName()); 1331 } 1332 1333 size_t ArchiveFile::getMemberCount() const { 1334 size_t count = 0; 1335 Error err = Error::success(); 1336 for (const Archive::Child &c : file->children(err)) { 1337 (void)c; 1338 ++count; 1339 } 1340 // This function is used by --print-archive-stats=, where an error does not 1341 // really matter. 1342 consumeError(std::move(err)); 1343 return count; 1344 } 1345 1346 unsigned SharedFile::vernauxNum; 1347 1348 // Parse the version definitions in the object file if present, and return a 1349 // vector whose nth element contains a pointer to the Elf_Verdef for version 1350 // identifier n. Version identifiers that are not definitions map to nullptr. 1351 template <typename ELFT> 1352 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1353 const typename ELFT::Shdr *sec) { 1354 if (!sec) 1355 return {}; 1356 1357 // We cannot determine the largest verdef identifier without inspecting 1358 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1359 // sequentially starting from 1, so we predict that the largest identifier 1360 // will be verdefCount. 1361 unsigned verdefCount = sec->sh_info; 1362 std::vector<const void *> verdefs(verdefCount + 1); 1363 1364 // Build the Verdefs array by following the chain of Elf_Verdef objects 1365 // from the start of the .gnu.version_d section. 1366 const uint8_t *verdef = base + sec->sh_offset; 1367 for (unsigned i = 0; i != verdefCount; ++i) { 1368 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1369 verdef += curVerdef->vd_next; 1370 unsigned verdefIndex = curVerdef->vd_ndx; 1371 verdefs.resize(verdefIndex + 1); 1372 verdefs[verdefIndex] = curVerdef; 1373 } 1374 return verdefs; 1375 } 1376 1377 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1378 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1379 // implement sophisticated error checking like in llvm-readobj because the value 1380 // of such diagnostics is low. 1381 template <typename ELFT> 1382 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1383 const typename ELFT::Shdr *sec) { 1384 if (!sec) 1385 return {}; 1386 std::vector<uint32_t> verneeds; 1387 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1388 const uint8_t *verneedBuf = data.begin(); 1389 for (unsigned i = 0; i != sec->sh_info; ++i) { 1390 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1391 fatal(toString(this) + " has an invalid Verneed"); 1392 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1393 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1394 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1395 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1396 fatal(toString(this) + " has an invalid Vernaux"); 1397 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1398 if (aux->vna_name >= this->stringTable.size()) 1399 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1400 uint16_t version = aux->vna_other & VERSYM_VERSION; 1401 if (version >= verneeds.size()) 1402 verneeds.resize(version + 1); 1403 verneeds[version] = aux->vna_name; 1404 vernauxBuf += aux->vna_next; 1405 } 1406 verneedBuf += vn->vn_next; 1407 } 1408 return verneeds; 1409 } 1410 1411 // We do not usually care about alignments of data in shared object 1412 // files because the loader takes care of it. However, if we promote a 1413 // DSO symbol to point to .bss due to copy relocation, we need to keep 1414 // the original alignment requirements. We infer it in this function. 1415 template <typename ELFT> 1416 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1417 const typename ELFT::Sym &sym) { 1418 uint64_t ret = UINT64_MAX; 1419 if (sym.st_value) 1420 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1421 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1422 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1423 return (ret > UINT32_MAX) ? 0 : ret; 1424 } 1425 1426 // Fully parse the shared object file. 1427 // 1428 // This function parses symbol versions. If a DSO has version information, 1429 // the file has a ".gnu.version_d" section which contains symbol version 1430 // definitions. Each symbol is associated to one version through a table in 1431 // ".gnu.version" section. That table is a parallel array for the symbol 1432 // table, and each table entry contains an index in ".gnu.version_d". 1433 // 1434 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1435 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1436 // ".gnu.version_d". 1437 // 1438 // The file format for symbol versioning is perhaps a bit more complicated 1439 // than necessary, but you can easily understand the code if you wrap your 1440 // head around the data structure described above. 1441 template <class ELFT> void SharedFile::parse() { 1442 using Elf_Dyn = typename ELFT::Dyn; 1443 using Elf_Shdr = typename ELFT::Shdr; 1444 using Elf_Sym = typename ELFT::Sym; 1445 using Elf_Verdef = typename ELFT::Verdef; 1446 using Elf_Versym = typename ELFT::Versym; 1447 1448 ArrayRef<Elf_Dyn> dynamicTags; 1449 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1450 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1451 1452 const Elf_Shdr *versymSec = nullptr; 1453 const Elf_Shdr *verdefSec = nullptr; 1454 const Elf_Shdr *verneedSec = nullptr; 1455 1456 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1457 for (const Elf_Shdr &sec : sections) { 1458 switch (sec.sh_type) { 1459 default: 1460 continue; 1461 case SHT_DYNAMIC: 1462 dynamicTags = 1463 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1464 break; 1465 case SHT_GNU_versym: 1466 versymSec = &sec; 1467 break; 1468 case SHT_GNU_verdef: 1469 verdefSec = &sec; 1470 break; 1471 case SHT_GNU_verneed: 1472 verneedSec = &sec; 1473 break; 1474 } 1475 } 1476 1477 if (versymSec && numELFSyms == 0) { 1478 error("SHT_GNU_versym should be associated with symbol table"); 1479 return; 1480 } 1481 1482 // Search for a DT_SONAME tag to initialize this->soName. 1483 for (const Elf_Dyn &dyn : dynamicTags) { 1484 if (dyn.d_tag == DT_NEEDED) { 1485 uint64_t val = dyn.getVal(); 1486 if (val >= this->stringTable.size()) 1487 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1488 dtNeeded.push_back(this->stringTable.data() + val); 1489 } else if (dyn.d_tag == DT_SONAME) { 1490 uint64_t val = dyn.getVal(); 1491 if (val >= this->stringTable.size()) 1492 fatal(toString(this) + ": invalid DT_SONAME entry"); 1493 soName = this->stringTable.data() + val; 1494 } 1495 } 1496 1497 // DSOs are uniquified not by filename but by soname. 1498 DenseMap<StringRef, SharedFile *>::iterator it; 1499 bool wasInserted; 1500 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1501 1502 // If a DSO appears more than once on the command line with and without 1503 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1504 // user can add an extra DSO with --no-as-needed to force it to be added to 1505 // the dependency list. 1506 it->second->isNeeded |= isNeeded; 1507 if (!wasInserted) 1508 return; 1509 1510 sharedFiles.push_back(this); 1511 1512 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1513 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1514 1515 // Parse ".gnu.version" section which is a parallel array for the symbol 1516 // table. If a given file doesn't have a ".gnu.version" section, we use 1517 // VER_NDX_GLOBAL. 1518 size_t size = numELFSyms - firstGlobal; 1519 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1520 if (versymSec) { 1521 ArrayRef<Elf_Versym> versym = 1522 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1523 this) 1524 .slice(firstGlobal); 1525 for (size_t i = 0; i < size; ++i) 1526 versyms[i] = versym[i].vs_index; 1527 } 1528 1529 // System libraries can have a lot of symbols with versions. Using a 1530 // fixed buffer for computing the versions name (foo@ver) can save a 1531 // lot of allocations. 1532 SmallString<0> versionedNameBuffer; 1533 1534 // Add symbols to the symbol table. 1535 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1536 for (size_t i = 0; i < syms.size(); ++i) { 1537 const Elf_Sym &sym = syms[i]; 1538 1539 // ELF spec requires that all local symbols precede weak or global 1540 // symbols in each symbol table, and the index of first non-local symbol 1541 // is stored to sh_info. If a local symbol appears after some non-local 1542 // symbol, that's a violation of the spec. 1543 StringRef name = CHECK(sym.getName(this->stringTable), this); 1544 if (sym.getBinding() == STB_LOCAL) { 1545 warn("found local symbol '" + name + 1546 "' in global part of symbol table in file " + toString(this)); 1547 continue; 1548 } 1549 1550 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1551 if (sym.isUndefined()) { 1552 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1553 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1554 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1555 if (idx >= verneeds.size()) { 1556 error("corrupt input file: version need index " + Twine(idx) + 1557 " for symbol " + name + " is out of bounds\n>>> defined in " + 1558 toString(this)); 1559 continue; 1560 } 1561 StringRef verName = this->stringTable.data() + verneeds[idx]; 1562 versionedNameBuffer.clear(); 1563 name = 1564 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1565 } 1566 Symbol *s = symtab->addSymbol( 1567 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1568 s->exportDynamic = true; 1569 continue; 1570 } 1571 1572 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1573 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1574 // workaround for this bug. 1575 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1576 name == "_gp_disp") 1577 continue; 1578 1579 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1580 if (!(versyms[i] & VERSYM_HIDDEN)) { 1581 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1582 sym.st_other, sym.getType(), sym.st_value, 1583 sym.st_size, alignment, idx}); 1584 } 1585 1586 // Also add the symbol with the versioned name to handle undefined symbols 1587 // with explicit versions. 1588 if (idx == VER_NDX_GLOBAL) 1589 continue; 1590 1591 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1592 error("corrupt input file: version definition index " + Twine(idx) + 1593 " for symbol " + name + " is out of bounds\n>>> defined in " + 1594 toString(this)); 1595 continue; 1596 } 1597 1598 StringRef verName = 1599 this->stringTable.data() + 1600 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1601 versionedNameBuffer.clear(); 1602 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1603 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1604 sym.st_other, sym.getType(), sym.st_value, 1605 sym.st_size, alignment, idx}); 1606 } 1607 } 1608 1609 static ELFKind getBitcodeELFKind(const Triple &t) { 1610 if (t.isLittleEndian()) 1611 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1612 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1613 } 1614 1615 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1616 switch (t.getArch()) { 1617 case Triple::aarch64: 1618 case Triple::aarch64_be: 1619 return EM_AARCH64; 1620 case Triple::amdgcn: 1621 case Triple::r600: 1622 return EM_AMDGPU; 1623 case Triple::arm: 1624 case Triple::thumb: 1625 return EM_ARM; 1626 case Triple::avr: 1627 return EM_AVR; 1628 case Triple::mips: 1629 case Triple::mipsel: 1630 case Triple::mips64: 1631 case Triple::mips64el: 1632 return EM_MIPS; 1633 case Triple::msp430: 1634 return EM_MSP430; 1635 case Triple::ppc: 1636 case Triple::ppcle: 1637 return EM_PPC; 1638 case Triple::ppc64: 1639 case Triple::ppc64le: 1640 return EM_PPC64; 1641 case Triple::riscv32: 1642 case Triple::riscv64: 1643 return EM_RISCV; 1644 case Triple::x86: 1645 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1646 case Triple::x86_64: 1647 return EM_X86_64; 1648 default: 1649 error(path + ": could not infer e_machine from bitcode target triple " + 1650 t.str()); 1651 return EM_NONE; 1652 } 1653 } 1654 1655 static uint8_t getOsAbi(const Triple &t) { 1656 switch (t.getOS()) { 1657 case Triple::AMDHSA: 1658 return ELF::ELFOSABI_AMDGPU_HSA; 1659 case Triple::AMDPAL: 1660 return ELF::ELFOSABI_AMDGPU_PAL; 1661 case Triple::Mesa3D: 1662 return ELF::ELFOSABI_AMDGPU_MESA3D; 1663 default: 1664 return ELF::ELFOSABI_NONE; 1665 } 1666 } 1667 1668 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1669 uint64_t offsetInArchive) 1670 : InputFile(BitcodeKind, mb) { 1671 this->archiveName = std::string(archiveName); 1672 1673 std::string path = mb.getBufferIdentifier().str(); 1674 if (config->thinLTOIndexOnly) 1675 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1676 1677 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1678 // name. If two archives define two members with the same name, this 1679 // causes a collision which result in only one of the objects being taken 1680 // into consideration at LTO time (which very likely causes undefined 1681 // symbols later in the link stage). So we append file offset to make 1682 // filename unique. 1683 StringRef name = 1684 archiveName.empty() 1685 ? saver.save(path) 1686 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1687 utostr(offsetInArchive) + ")"); 1688 MemoryBufferRef mbref(mb.getBuffer(), name); 1689 1690 obj = CHECK(lto::InputFile::create(mbref), this); 1691 1692 Triple t(obj->getTargetTriple()); 1693 ekind = getBitcodeELFKind(t); 1694 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1695 osabi = getOsAbi(t); 1696 } 1697 1698 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1699 switch (gvVisibility) { 1700 case GlobalValue::DefaultVisibility: 1701 return STV_DEFAULT; 1702 case GlobalValue::HiddenVisibility: 1703 return STV_HIDDEN; 1704 case GlobalValue::ProtectedVisibility: 1705 return STV_PROTECTED; 1706 } 1707 llvm_unreachable("unknown visibility"); 1708 } 1709 1710 template <class ELFT> 1711 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1712 const lto::InputFile::Symbol &objSym, 1713 BitcodeFile &f) { 1714 StringRef name = saver.save(objSym.getName()); 1715 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1716 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1717 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1718 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1719 1720 int c = objSym.getComdatIndex(); 1721 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1722 Undefined newSym(&f, name, binding, visibility, type); 1723 if (canOmitFromDynSym) 1724 newSym.exportDynamic = false; 1725 Symbol *ret = symtab->addSymbol(newSym); 1726 ret->referenced = true; 1727 return ret; 1728 } 1729 1730 if (objSym.isCommon()) 1731 return symtab->addSymbol( 1732 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1733 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1734 1735 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1736 if (canOmitFromDynSym) 1737 newSym.exportDynamic = false; 1738 return symtab->addSymbol(newSym); 1739 } 1740 1741 template <class ELFT> void BitcodeFile::parse() { 1742 std::vector<bool> keptComdats; 1743 for (StringRef s : obj->getComdatTable()) 1744 keptComdats.push_back( 1745 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1746 1747 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1748 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1749 1750 for (auto l : obj->getDependentLibraries()) 1751 addDependentLibrary(l, this); 1752 } 1753 1754 void BinaryFile::parse() { 1755 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1756 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1757 8, data, ".data"); 1758 sections.push_back(section); 1759 1760 // For each input file foo that is embedded to a result as a binary 1761 // blob, we define _binary_foo_{start,end,size} symbols, so that 1762 // user programs can access blobs by name. Non-alphanumeric 1763 // characters in a filename are replaced with underscore. 1764 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1765 for (size_t i = 0; i < s.size(); ++i) 1766 if (!isAlnum(s[i])) 1767 s[i] = '_'; 1768 1769 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1770 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1771 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1772 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1773 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1774 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1775 } 1776 1777 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1778 uint64_t offsetInArchive) { 1779 if (isBitcode(mb)) 1780 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1781 1782 switch (getELFKind(mb, archiveName)) { 1783 case ELF32LEKind: 1784 return make<ObjFile<ELF32LE>>(mb, archiveName); 1785 case ELF32BEKind: 1786 return make<ObjFile<ELF32BE>>(mb, archiveName); 1787 case ELF64LEKind: 1788 return make<ObjFile<ELF64LE>>(mb, archiveName); 1789 case ELF64BEKind: 1790 return make<ObjFile<ELF64BE>>(mb, archiveName); 1791 default: 1792 llvm_unreachable("getELFKind"); 1793 } 1794 } 1795 1796 void LazyObjFile::fetch() { 1797 if (fetched) 1798 return; 1799 fetched = true; 1800 1801 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1802 file->groupId = groupId; 1803 1804 // Copy symbol vector so that the new InputFile doesn't have to 1805 // insert the same defined symbols to the symbol table again. 1806 file->symbols = std::move(symbols); 1807 1808 parseFile(file); 1809 } 1810 1811 template <class ELFT> void LazyObjFile::parse() { 1812 using Elf_Sym = typename ELFT::Sym; 1813 1814 // A lazy object file wraps either a bitcode file or an ELF file. 1815 if (isBitcode(this->mb)) { 1816 std::unique_ptr<lto::InputFile> obj = 1817 CHECK(lto::InputFile::create(this->mb), this); 1818 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1819 if (sym.isUndefined()) 1820 continue; 1821 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1822 } 1823 return; 1824 } 1825 1826 if (getELFKind(this->mb, archiveName) != config->ekind) { 1827 error("incompatible file: " + this->mb.getBufferIdentifier()); 1828 return; 1829 } 1830 1831 // Find a symbol table. 1832 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1833 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1834 1835 for (const typename ELFT::Shdr &sec : sections) { 1836 if (sec.sh_type != SHT_SYMTAB) 1837 continue; 1838 1839 // A symbol table is found. 1840 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1841 uint32_t firstGlobal = sec.sh_info; 1842 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1843 this->symbols.resize(eSyms.size()); 1844 1845 // Get existing symbols or insert placeholder symbols. 1846 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1847 if (eSyms[i].st_shndx != SHN_UNDEF) 1848 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1849 1850 // Replace existing symbols with LazyObject symbols. 1851 // 1852 // resolve() may trigger this->fetch() if an existing symbol is an 1853 // undefined symbol. If that happens, this LazyObjFile has served 1854 // its purpose, and we can exit from the loop early. 1855 for (Symbol *sym : this->symbols) { 1856 if (!sym) 1857 continue; 1858 sym->resolve(LazyObject{*this, sym->getName()}); 1859 1860 // If fetched, stop iterating because this->symbols has been transferred 1861 // to the instantiated ObjFile. 1862 if (fetched) 1863 return; 1864 } 1865 return; 1866 } 1867 } 1868 1869 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) { 1870 if (isBitcode(mb)) 1871 return isBitcodeNonCommonDef(mb, name, archiveName); 1872 1873 return isNonCommonDef(mb, name, archiveName); 1874 } 1875 1876 std::string elf::replaceThinLTOSuffix(StringRef path) { 1877 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1878 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1879 1880 if (path.consume_back(suffix)) 1881 return (path + repl).str(); 1882 return std::string(path); 1883 } 1884 1885 template void BitcodeFile::parse<ELF32LE>(); 1886 template void BitcodeFile::parse<ELF32BE>(); 1887 template void BitcodeFile::parse<ELF64LE>(); 1888 template void BitcodeFile::parse<ELF64BE>(); 1889 1890 template void LazyObjFile::parse<ELF32LE>(); 1891 template void LazyObjFile::parse<ELF32BE>(); 1892 template void LazyObjFile::parse<ELF64LE>(); 1893 template void LazyObjFile::parse<ELF64BE>(); 1894 1895 template class elf::ObjFile<ELF32LE>; 1896 template class elf::ObjFile<ELF32BE>; 1897 template class elf::ObjFile<ELF64LE>; 1898 template class elf::ObjFile<ELF64BE>; 1899 1900 template void SharedFile::parse<ELF32LE>(); 1901 template void SharedFile::parse<ELF32BE>(); 1902 template void SharedFile::parse<ELF64LE>(); 1903 template void SharedFile::parse<ELF64BE>(); 1904