1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = std::string(f->getName());
63     else
64       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
65   }
66   return f->toStringCache;
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   llvm::TimeTraceScope timeScope("Load input files", path);
109 
110   // The --chroot option changes our virtual root directory.
111   // This is useful when you are dealing with files created by --reproduce.
112   if (!config->chroot.empty() && path.startswith("/"))
113     path = saver.save(config->chroot + path);
114 
115   log(path);
116   config->dependencyFiles.insert(llvm::CachedHashString(path));
117 
118   auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
119   if (auto ec = mbOrErr.getError()) {
120     error("cannot open " + path + ": " + ec.message());
121     return None;
122   }
123 
124   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
125   MemoryBufferRef mbref = mb->getMemBufferRef();
126   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
127 
128   if (tar)
129     tar->append(relativeToRoot(path), mbref.getBuffer());
130   return mbref;
131 }
132 
133 // All input object files must be for the same architecture
134 // (e.g. it does not make sense to link x86 object files with
135 // MIPS object files.) This function checks for that error.
136 static bool isCompatible(InputFile *file) {
137   if (!file->isElf() && !isa<BitcodeFile>(file))
138     return true;
139 
140   if (file->ekind == config->ekind && file->emachine == config->emachine) {
141     if (config->emachine != EM_MIPS)
142       return true;
143     if (isMipsN32Abi(file) == config->mipsN32Abi)
144       return true;
145   }
146 
147   StringRef target =
148       !config->bfdname.empty() ? config->bfdname : config->emulation;
149   if (!target.empty()) {
150     error(toString(file) + " is incompatible with " + target);
151     return false;
152   }
153 
154   InputFile *existing;
155   if (!objectFiles.empty())
156     existing = objectFiles[0];
157   else if (!sharedFiles.empty())
158     existing = sharedFiles[0];
159   else if (!bitcodeFiles.empty())
160     existing = bitcodeFiles[0];
161   else
162     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
163                      "determine target emulation");
164 
165   error(toString(file) + " is incompatible with " + toString(existing));
166   return false;
167 }
168 
169 template <class ELFT> static void doParseFile(InputFile *file) {
170   if (!isCompatible(file))
171     return;
172 
173   // Binary file
174   if (auto *f = dyn_cast<BinaryFile>(file)) {
175     binaryFiles.push_back(f);
176     f->parse();
177     return;
178   }
179 
180   // .a file
181   if (auto *f = dyn_cast<ArchiveFile>(file)) {
182     archiveFiles.push_back(f);
183     f->parse();
184     return;
185   }
186 
187   // Lazy object file
188   if (auto *f = dyn_cast<LazyObjFile>(file)) {
189     lazyObjFiles.push_back(f);
190     f->parse<ELFT>();
191     return;
192   }
193 
194   if (config->trace)
195     message(toString(file));
196 
197   // .so file
198   if (auto *f = dyn_cast<SharedFile>(file)) {
199     f->parse<ELFT>();
200     return;
201   }
202 
203   // LLVM bitcode file
204   if (auto *f = dyn_cast<BitcodeFile>(file)) {
205     bitcodeFiles.push_back(f);
206     f->parse<ELFT>();
207     return;
208   }
209 
210   // Regular object file
211   objectFiles.push_back(file);
212   cast<ObjFile<ELFT>>(file)->parse();
213 }
214 
215 // Add symbols in File to the symbol table.
216 void elf::parseFile(InputFile *file) {
217   switch (config->ekind) {
218   case ELF32LEKind:
219     doParseFile<ELF32LE>(file);
220     return;
221   case ELF32BEKind:
222     doParseFile<ELF32BE>(file);
223     return;
224   case ELF64LEKind:
225     doParseFile<ELF64LE>(file);
226     return;
227   case ELF64BEKind:
228     doParseFile<ELF64BE>(file);
229     return;
230   default:
231     llvm_unreachable("unknown ELFT");
232   }
233 }
234 
235 // Concatenates arguments to construct a string representing an error location.
236 static std::string createFileLineMsg(StringRef path, unsigned line) {
237   std::string filename = std::string(path::filename(path));
238   std::string lineno = ":" + std::to_string(line);
239   if (filename == path)
240     return filename + lineno;
241   return filename + lineno + " (" + path.str() + lineno + ")";
242 }
243 
244 template <class ELFT>
245 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
246                                 InputSectionBase &sec, uint64_t offset) {
247   // In DWARF, functions and variables are stored to different places.
248   // First, lookup a function for a given offset.
249   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
250     return createFileLineMsg(info->FileName, info->Line);
251 
252   // If it failed, lookup again as a variable.
253   if (Optional<std::pair<std::string, unsigned>> fileLine =
254           file.getVariableLoc(sym.getName()))
255     return createFileLineMsg(fileLine->first, fileLine->second);
256 
257   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
258   return std::string(file.sourceFile);
259 }
260 
261 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
262                                  uint64_t offset) {
263   if (kind() != ObjKind)
264     return "";
265   switch (config->ekind) {
266   default:
267     llvm_unreachable("Invalid kind");
268   case ELF32LEKind:
269     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
270   case ELF32BEKind:
271     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
272   case ELF64LEKind:
273     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
274   case ELF64BEKind:
275     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
276   }
277 }
278 
279 StringRef InputFile::getNameForScript() const {
280   if (archiveName.empty())
281     return getName();
282 
283   if (nameForScriptCache.empty())
284     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
285 
286   return nameForScriptCache;
287 }
288 
289 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
290   llvm::call_once(initDwarf, [this]() {
291     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
292         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
293         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
294         [&](Error warning) {
295           warn(getName() + ": " + toString(std::move(warning)));
296         }));
297   });
298 
299   return dwarf.get();
300 }
301 
302 // Returns the pair of file name and line number describing location of data
303 // object (variable, array, etc) definition.
304 template <class ELFT>
305 Optional<std::pair<std::string, unsigned>>
306 ObjFile<ELFT>::getVariableLoc(StringRef name) {
307   return getDwarf()->getVariableLoc(name);
308 }
309 
310 // Returns source line information for a given offset
311 // using DWARF debug info.
312 template <class ELFT>
313 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
314                                                   uint64_t offset) {
315   // Detect SectionIndex for specified section.
316   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
317   ArrayRef<InputSectionBase *> sections = s->file->getSections();
318   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
319     if (s == sections[curIndex]) {
320       sectionIndex = curIndex;
321       break;
322     }
323   }
324 
325   return getDwarf()->getDILineInfo(offset, sectionIndex);
326 }
327 
328 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
329   ekind = getELFKind(mb, "");
330 
331   switch (ekind) {
332   case ELF32LEKind:
333     init<ELF32LE>();
334     break;
335   case ELF32BEKind:
336     init<ELF32BE>();
337     break;
338   case ELF64LEKind:
339     init<ELF64LE>();
340     break;
341   case ELF64BEKind:
342     init<ELF64BE>();
343     break;
344   default:
345     llvm_unreachable("getELFKind");
346   }
347 }
348 
349 template <typename Elf_Shdr>
350 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
351   for (const Elf_Shdr &sec : sections)
352     if (sec.sh_type == type)
353       return &sec;
354   return nullptr;
355 }
356 
357 template <class ELFT> void ELFFileBase::init() {
358   using Elf_Shdr = typename ELFT::Shdr;
359   using Elf_Sym = typename ELFT::Sym;
360 
361   // Initialize trivial attributes.
362   const ELFFile<ELFT> &obj = getObj<ELFT>();
363   emachine = obj.getHeader().e_machine;
364   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
365   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
366 
367   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
368 
369   // Find a symbol table.
370   bool isDSO =
371       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
372   const Elf_Shdr *symtabSec =
373       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
374 
375   if (!symtabSec)
376     return;
377 
378   // Initialize members corresponding to a symbol table.
379   firstGlobal = symtabSec->sh_info;
380 
381   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
382   if (firstGlobal == 0 || firstGlobal > eSyms.size())
383     fatal(toString(this) + ": invalid sh_info in symbol table");
384 
385   elfSyms = reinterpret_cast<const void *>(eSyms.data());
386   numELFSyms = eSyms.size();
387   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
388 }
389 
390 template <class ELFT>
391 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
392   return CHECK(
393       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
394       this);
395 }
396 
397 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
398   if (this->symbols.empty())
399     return {};
400   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
401 }
402 
403 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
404   return makeArrayRef(this->symbols).slice(this->firstGlobal);
405 }
406 
407 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
408   // Read a section table. justSymbols is usually false.
409   if (this->justSymbols)
410     initializeJustSymbols();
411   else
412     initializeSections(ignoreComdats);
413 
414   // Read a symbol table.
415   initializeSymbols();
416 }
417 
418 // Sections with SHT_GROUP and comdat bits define comdat section groups.
419 // They are identified and deduplicated by group name. This function
420 // returns a group name.
421 template <class ELFT>
422 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
423                                               const Elf_Shdr &sec) {
424   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
425   if (sec.sh_info >= symbols.size())
426     fatal(toString(this) + ": invalid symbol index");
427   const typename ELFT::Sym &sym = symbols[sec.sh_info];
428   StringRef signature = CHECK(sym.getName(this->stringTable), this);
429 
430   // As a special case, if a symbol is a section symbol and has no name,
431   // we use a section name as a signature.
432   //
433   // Such SHT_GROUP sections are invalid from the perspective of the ELF
434   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
435   // older produce such sections as outputs for the -r option, so we need
436   // a bug-compatibility.
437   if (signature.empty() && sym.getType() == STT_SECTION)
438     return getSectionName(sec);
439   return signature;
440 }
441 
442 template <class ELFT>
443 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
444   if (!(sec.sh_flags & SHF_MERGE))
445     return false;
446 
447   // On a regular link we don't merge sections if -O0 (default is -O1). This
448   // sometimes makes the linker significantly faster, although the output will
449   // be bigger.
450   //
451   // Doing the same for -r would create a problem as it would combine sections
452   // with different sh_entsize. One option would be to just copy every SHF_MERGE
453   // section as is to the output. While this would produce a valid ELF file with
454   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
455   // they see two .debug_str. We could have separate logic for combining
456   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
457   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
458   // logic for -r.
459   if (config->optimize == 0 && !config->relocatable)
460     return false;
461 
462   // A mergeable section with size 0 is useless because they don't have
463   // any data to merge. A mergeable string section with size 0 can be
464   // argued as invalid because it doesn't end with a null character.
465   // We'll avoid a mess by handling them as if they were non-mergeable.
466   if (sec.sh_size == 0)
467     return false;
468 
469   // Check for sh_entsize. The ELF spec is not clear about the zero
470   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
471   // the section does not hold a table of fixed-size entries". We know
472   // that Rust 1.13 produces a string mergeable section with a zero
473   // sh_entsize. Here we just accept it rather than being picky about it.
474   uint64_t entSize = sec.sh_entsize;
475   if (entSize == 0)
476     return false;
477   if (sec.sh_size % entSize)
478     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
479           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
480           Twine(entSize) + ")");
481 
482   if (sec.sh_flags & SHF_WRITE)
483     fatal(toString(this) + ":(" + name +
484           "): writable SHF_MERGE section is not supported");
485 
486   return true;
487 }
488 
489 // This is for --just-symbols.
490 //
491 // --just-symbols is a very minor feature that allows you to link your
492 // output against other existing program, so that if you load both your
493 // program and the other program into memory, your output can refer the
494 // other program's symbols.
495 //
496 // When the option is given, we link "just symbols". The section table is
497 // initialized with null pointers.
498 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
499   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
500   this->sections.resize(sections.size());
501 }
502 
503 // An ELF object file may contain a `.deplibs` section. If it exists, the
504 // section contains a list of library specifiers such as `m` for libm. This
505 // function resolves a given name by finding the first matching library checking
506 // the various ways that a library can be specified to LLD. This ELF extension
507 // is a form of autolinking and is called `dependent libraries`. It is currently
508 // unique to LLVM and lld.
509 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
510   if (!config->dependentLibraries)
511     return;
512   if (fs::exists(specifier))
513     driver->addFile(specifier, /*withLOption=*/false);
514   else if (Optional<std::string> s = findFromSearchPaths(specifier))
515     driver->addFile(*s, /*withLOption=*/true);
516   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
517     driver->addFile(*s, /*withLOption=*/true);
518   else
519     error(toString(f) +
520           ": unable to find library from dependent library specifier: " +
521           specifier);
522 }
523 
524 // Record the membership of a section group so that in the garbage collection
525 // pass, section group members are kept or discarded as a unit.
526 template <class ELFT>
527 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
528                                ArrayRef<typename ELFT::Word> entries) {
529   bool hasAlloc = false;
530   for (uint32_t index : entries.slice(1)) {
531     if (index >= sections.size())
532       return;
533     if (InputSectionBase *s = sections[index])
534       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
535         hasAlloc = true;
536   }
537 
538   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
539   // collection. See the comment in markLive(). This rule retains .debug_types
540   // and .rela.debug_types.
541   if (!hasAlloc)
542     return;
543 
544   // Connect the members in a circular doubly-linked list via
545   // nextInSectionGroup.
546   InputSectionBase *head;
547   InputSectionBase *prev = nullptr;
548   for (uint32_t index : entries.slice(1)) {
549     InputSectionBase *s = sections[index];
550     if (!s || s == &InputSection::discarded)
551       continue;
552     if (prev)
553       prev->nextInSectionGroup = s;
554     else
555       head = s;
556     prev = s;
557   }
558   if (prev)
559     prev->nextInSectionGroup = head;
560 }
561 
562 template <class ELFT>
563 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
564   const ELFFile<ELFT> &obj = this->getObj();
565 
566   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
567   uint64_t size = objSections.size();
568   this->sections.resize(size);
569   this->sectionStringTable =
570       CHECK(obj.getSectionStringTable(objSections), this);
571 
572   std::vector<ArrayRef<Elf_Word>> selectedGroups;
573 
574   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
575     if (this->sections[i] == &InputSection::discarded)
576       continue;
577     const Elf_Shdr &sec = objSections[i];
578 
579     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
580       cgProfile =
581           check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec));
582 
583     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
584     // if -r is given, we'll let the final link discard such sections.
585     // This is compatible with GNU.
586     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
587       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
588         // We ignore the address-significance table if we know that the object
589         // file was created by objcopy or ld -r. This is because these tools
590         // will reorder the symbols in the symbol table, invalidating the data
591         // in the address-significance table, which refers to symbols by index.
592         if (sec.sh_link != 0)
593           this->addrsigSec = &sec;
594         else if (config->icf == ICFLevel::Safe)
595           warn(toString(this) +
596                ": --icf=safe conservatively ignores "
597                "SHT_LLVM_ADDRSIG [index " +
598                Twine(i) +
599                "] with sh_link=0 "
600                "(likely created using objcopy or ld -r)");
601       }
602       this->sections[i] = &InputSection::discarded;
603       continue;
604     }
605 
606     switch (sec.sh_type) {
607     case SHT_GROUP: {
608       // De-duplicate section groups by their signatures.
609       StringRef signature = getShtGroupSignature(objSections, sec);
610       this->sections[i] = &InputSection::discarded;
611 
612       ArrayRef<Elf_Word> entries =
613           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
614       if (entries.empty())
615         fatal(toString(this) + ": empty SHT_GROUP");
616 
617       Elf_Word flag = entries[0];
618       if (flag && flag != GRP_COMDAT)
619         fatal(toString(this) + ": unsupported SHT_GROUP format");
620 
621       bool keepGroup =
622           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
623           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
624               .second;
625       if (keepGroup) {
626         if (config->relocatable)
627           this->sections[i] = createInputSection(sec);
628         selectedGroups.push_back(entries);
629         continue;
630       }
631 
632       // Otherwise, discard group members.
633       for (uint32_t secIndex : entries.slice(1)) {
634         if (secIndex >= size)
635           fatal(toString(this) +
636                 ": invalid section index in group: " + Twine(secIndex));
637         this->sections[secIndex] = &InputSection::discarded;
638       }
639       break;
640     }
641     case SHT_SYMTAB_SHNDX:
642       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
643       break;
644     case SHT_SYMTAB:
645     case SHT_STRTAB:
646     case SHT_REL:
647     case SHT_RELA:
648     case SHT_NULL:
649       break;
650     default:
651       this->sections[i] = createInputSection(sec);
652     }
653   }
654 
655   // We have a second loop. It is used to:
656   // 1) handle SHF_LINK_ORDER sections.
657   // 2) create SHT_REL[A] sections. In some cases the section header index of a
658   //    relocation section may be smaller than that of the relocated section. In
659   //    such cases, the relocation section would attempt to reference a target
660   //    section that has not yet been created. For simplicity, delay creation of
661   //    relocation sections until now.
662   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
663     if (this->sections[i] == &InputSection::discarded)
664       continue;
665     const Elf_Shdr &sec = objSections[i];
666 
667     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
668       this->sections[i] = createInputSection(sec);
669 
670     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
671     // the flag.
672     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
673       continue;
674 
675     InputSectionBase *linkSec = nullptr;
676     if (sec.sh_link < this->sections.size())
677       linkSec = this->sections[sec.sh_link];
678     if (!linkSec)
679       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
680 
681     // A SHF_LINK_ORDER section is discarded if its linked-to section is
682     // discarded.
683     InputSection *isec = cast<InputSection>(this->sections[i]);
684     linkSec->dependentSections.push_back(isec);
685     if (!isa<InputSection>(linkSec))
686       error("a section " + isec->name +
687             " with SHF_LINK_ORDER should not refer a non-regular section: " +
688             toString(linkSec));
689   }
690 
691   for (ArrayRef<Elf_Word> entries : selectedGroups)
692     handleSectionGroup<ELFT>(this->sections, entries);
693 }
694 
695 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
696 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
697 // the input objects have been compiled.
698 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
699                              const InputFile *f) {
700   Optional<unsigned> attr =
701       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
702   if (!attr.hasValue())
703     // If an ABI tag isn't present then it is implicitly given the value of 0
704     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
705     // including some in glibc that don't use FP args (and should have value 3)
706     // don't have the attribute so we do not consider an implicit value of 0
707     // as a clash.
708     return;
709 
710   unsigned vfpArgs = attr.getValue();
711   ARMVFPArgKind arg;
712   switch (vfpArgs) {
713   case ARMBuildAttrs::BaseAAPCS:
714     arg = ARMVFPArgKind::Base;
715     break;
716   case ARMBuildAttrs::HardFPAAPCS:
717     arg = ARMVFPArgKind::VFP;
718     break;
719   case ARMBuildAttrs::ToolChainFPPCS:
720     // Tool chain specific convention that conforms to neither AAPCS variant.
721     arg = ARMVFPArgKind::ToolChain;
722     break;
723   case ARMBuildAttrs::CompatibleFPAAPCS:
724     // Object compatible with all conventions.
725     return;
726   default:
727     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
728     return;
729   }
730   // Follow ld.bfd and error if there is a mix of calling conventions.
731   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
732     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
733   else
734     config->armVFPArgs = arg;
735 }
736 
737 // The ARM support in lld makes some use of instructions that are not available
738 // on all ARM architectures. Namely:
739 // - Use of BLX instruction for interworking between ARM and Thumb state.
740 // - Use of the extended Thumb branch encoding in relocation.
741 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
742 // The ARM Attributes section contains information about the architecture chosen
743 // at compile time. We follow the convention that if at least one input object
744 // is compiled with an architecture that supports these features then lld is
745 // permitted to use them.
746 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
747   Optional<unsigned> attr =
748       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
749   if (!attr.hasValue())
750     return;
751   auto arch = attr.getValue();
752   switch (arch) {
753   case ARMBuildAttrs::Pre_v4:
754   case ARMBuildAttrs::v4:
755   case ARMBuildAttrs::v4T:
756     // Architectures prior to v5 do not support BLX instruction
757     break;
758   case ARMBuildAttrs::v5T:
759   case ARMBuildAttrs::v5TE:
760   case ARMBuildAttrs::v5TEJ:
761   case ARMBuildAttrs::v6:
762   case ARMBuildAttrs::v6KZ:
763   case ARMBuildAttrs::v6K:
764     config->armHasBlx = true;
765     // Architectures used in pre-Cortex processors do not support
766     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
767     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
768     break;
769   default:
770     // All other Architectures have BLX and extended branch encoding
771     config->armHasBlx = true;
772     config->armJ1J2BranchEncoding = true;
773     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
774       // All Architectures used in Cortex processors with the exception
775       // of v6-M and v6S-M have the MOVT and MOVW instructions.
776       config->armHasMovtMovw = true;
777     break;
778   }
779 }
780 
781 // If a source file is compiled with x86 hardware-assisted call flow control
782 // enabled, the generated object file contains feature flags indicating that
783 // fact. This function reads the feature flags and returns it.
784 //
785 // Essentially we want to read a single 32-bit value in this function, but this
786 // function is rather complicated because the value is buried deep inside a
787 // .note.gnu.property section.
788 //
789 // The section consists of one or more NOTE records. Each NOTE record consists
790 // of zero or more type-length-value fields. We want to find a field of a
791 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
792 // the ABI is unnecessarily complicated.
793 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
794   using Elf_Nhdr = typename ELFT::Nhdr;
795   using Elf_Note = typename ELFT::Note;
796 
797   uint32_t featuresSet = 0;
798   ArrayRef<uint8_t> data = sec.data();
799   auto reportFatal = [&](const uint8_t *place, const char *msg) {
800     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
801           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
802   };
803   while (!data.empty()) {
804     // Read one NOTE record.
805     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
806     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
807       reportFatal(data.data(), "data is too short");
808 
809     Elf_Note note(*nhdr);
810     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
811       data = data.slice(nhdr->getSize());
812       continue;
813     }
814 
815     uint32_t featureAndType = config->emachine == EM_AARCH64
816                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
817                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
818 
819     // Read a body of a NOTE record, which consists of type-length-value fields.
820     ArrayRef<uint8_t> desc = note.getDesc();
821     while (!desc.empty()) {
822       const uint8_t *place = desc.data();
823       if (desc.size() < 8)
824         reportFatal(place, "program property is too short");
825       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
826       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
827       desc = desc.slice(8);
828       if (desc.size() < size)
829         reportFatal(place, "program property is too short");
830 
831       if (type == featureAndType) {
832         // We found a FEATURE_1_AND field. There may be more than one of these
833         // in a .note.gnu.property section, for a relocatable object we
834         // accumulate the bits set.
835         if (size < 4)
836           reportFatal(place, "FEATURE_1_AND entry is too short");
837         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
838       }
839 
840       // Padding is present in the note descriptor, if necessary.
841       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
842     }
843 
844     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
845     data = data.slice(nhdr->getSize());
846   }
847 
848   return featuresSet;
849 }
850 
851 template <class ELFT>
852 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
853   uint32_t idx = sec.sh_info;
854   if (idx >= this->sections.size())
855     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
856   InputSectionBase *target = this->sections[idx];
857 
858   // Strictly speaking, a relocation section must be included in the
859   // group of the section it relocates. However, LLVM 3.3 and earlier
860   // would fail to do so, so we gracefully handle that case.
861   if (target == &InputSection::discarded)
862     return nullptr;
863 
864   if (!target)
865     fatal(toString(this) + ": unsupported relocation reference");
866   return target;
867 }
868 
869 // Create a regular InputSection class that has the same contents
870 // as a given section.
871 static InputSection *toRegularSection(MergeInputSection *sec) {
872   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
873                             sec->data(), sec->name);
874 }
875 
876 template <class ELFT>
877 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
878   StringRef name = getSectionName(sec);
879 
880   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
881     ARMAttributeParser attributes;
882     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
883     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
884                                                  ? support::little
885                                                  : support::big)) {
886       auto *isec = make<InputSection>(*this, sec, name);
887       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
888     } else {
889       updateSupportedARMFeatures(attributes);
890       updateARMVFPArgs(attributes, this);
891 
892       // FIXME: Retain the first attribute section we see. The eglibc ARM
893       // dynamic loaders require the presence of an attribute section for dlopen
894       // to work. In a full implementation we would merge all attribute
895       // sections.
896       if (in.attributes == nullptr) {
897         in.attributes = make<InputSection>(*this, sec, name);
898         return in.attributes;
899       }
900       return &InputSection::discarded;
901     }
902   }
903 
904   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
905     RISCVAttributeParser attributes;
906     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
907     if (Error e = attributes.parse(contents, support::little)) {
908       auto *isec = make<InputSection>(*this, sec, name);
909       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
910     } else {
911       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
912       // present.
913 
914       // FIXME: Retain the first attribute section we see. Tools such as
915       // llvm-objdump make use of the attribute section to determine which
916       // standard extensions to enable. In a full implementation we would merge
917       // all attribute sections.
918       if (in.attributes == nullptr) {
919         in.attributes = make<InputSection>(*this, sec, name);
920         return in.attributes;
921       }
922       return &InputSection::discarded;
923     }
924   }
925 
926   switch (sec.sh_type) {
927   case SHT_LLVM_DEPENDENT_LIBRARIES: {
928     if (config->relocatable)
929       break;
930     ArrayRef<char> data =
931         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
932     if (!data.empty() && data.back() != '\0') {
933       error(toString(this) +
934             ": corrupted dependent libraries section (unterminated string): " +
935             name);
936       return &InputSection::discarded;
937     }
938     for (const char *d = data.begin(), *e = data.end(); d < e;) {
939       StringRef s(d);
940       addDependentLibrary(s, this);
941       d += s.size() + 1;
942     }
943     return &InputSection::discarded;
944   }
945   case SHT_RELA:
946   case SHT_REL: {
947     // Find a relocation target section and associate this section with that.
948     // Target may have been discarded if it is in a different section group
949     // and the group is discarded, even though it's a violation of the
950     // spec. We handle that situation gracefully by discarding dangling
951     // relocation sections.
952     InputSectionBase *target = getRelocTarget(sec);
953     if (!target)
954       return nullptr;
955 
956     // ELF spec allows mergeable sections with relocations, but they are
957     // rare, and it is in practice hard to merge such sections by contents,
958     // because applying relocations at end of linking changes section
959     // contents. So, we simply handle such sections as non-mergeable ones.
960     // Degrading like this is acceptable because section merging is optional.
961     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
962       target = toRegularSection(ms);
963       this->sections[sec.sh_info] = target;
964     }
965 
966     if (target->firstRelocation)
967       fatal(toString(this) +
968             ": multiple relocation sections to one section are not supported");
969 
970     if (sec.sh_type == SHT_RELA) {
971       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this);
972       target->firstRelocation = rels.begin();
973       target->numRelocations = rels.size();
974       target->areRelocsRela = true;
975     } else {
976       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this);
977       target->firstRelocation = rels.begin();
978       target->numRelocations = rels.size();
979       target->areRelocsRela = false;
980     }
981     assert(isUInt<31>(target->numRelocations));
982 
983     // Relocation sections are usually removed from the output, so return
984     // `nullptr` for the normal case. However, if -r or --emit-relocs is
985     // specified, we need to copy them to the output. (Some post link analysis
986     // tools specify --emit-relocs to obtain the information.)
987     if (!config->relocatable && !config->emitRelocs)
988       return nullptr;
989     InputSection *relocSec = make<InputSection>(*this, sec, name);
990     // If the relocated section is discarded (due to /DISCARD/ or
991     // --gc-sections), the relocation section should be discarded as well.
992     target->dependentSections.push_back(relocSec);
993     return relocSec;
994   }
995   }
996 
997   // The GNU linker uses .note.GNU-stack section as a marker indicating
998   // that the code in the object file does not expect that the stack is
999   // executable (in terms of NX bit). If all input files have the marker,
1000   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
1001   // make the stack non-executable. Most object files have this section as
1002   // of 2017.
1003   //
1004   // But making the stack non-executable is a norm today for security
1005   // reasons. Failure to do so may result in a serious security issue.
1006   // Therefore, we make LLD always add PT_GNU_STACK unless it is
1007   // explicitly told to do otherwise (by -z execstack). Because the stack
1008   // executable-ness is controlled solely by command line options,
1009   // .note.GNU-stack sections are simply ignored.
1010   if (name == ".note.GNU-stack")
1011     return &InputSection::discarded;
1012 
1013   // Object files that use processor features such as Intel Control-Flow
1014   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1015   // .note.gnu.property section containing a bitfield of feature bits like the
1016   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1017   //
1018   // Since we merge bitmaps from multiple object files to create a new
1019   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1020   // file's .note.gnu.property section.
1021   if (name == ".note.gnu.property") {
1022     this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1023     return &InputSection::discarded;
1024   }
1025 
1026   // Split stacks is a feature to support a discontiguous stack,
1027   // commonly used in the programming language Go. For the details,
1028   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1029   // for split stack will include a .note.GNU-split-stack section.
1030   if (name == ".note.GNU-split-stack") {
1031     if (config->relocatable) {
1032       error("cannot mix split-stack and non-split-stack in a relocatable link");
1033       return &InputSection::discarded;
1034     }
1035     this->splitStack = true;
1036     return &InputSection::discarded;
1037   }
1038 
1039   // An object file cmpiled for split stack, but where some of the
1040   // functions were compiled with the no_split_stack_attribute will
1041   // include a .note.GNU-no-split-stack section.
1042   if (name == ".note.GNU-no-split-stack") {
1043     this->someNoSplitStack = true;
1044     return &InputSection::discarded;
1045   }
1046 
1047   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1048   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1049   // sections. Drop those sections to avoid duplicate symbol errors.
1050   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1051   // fixed for a while.
1052   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1053       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1054     return &InputSection::discarded;
1055 
1056   // If we are creating a new .build-id section, strip existing .build-id
1057   // sections so that the output won't have more than one .build-id.
1058   // This is not usually a problem because input object files normally don't
1059   // have .build-id sections, but you can create such files by
1060   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1061   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1062     return &InputSection::discarded;
1063 
1064   // The linker merges EH (exception handling) frames and creates a
1065   // .eh_frame_hdr section for runtime. So we handle them with a special
1066   // class. For relocatable outputs, they are just passed through.
1067   if (name == ".eh_frame" && !config->relocatable)
1068     return make<EhInputSection>(*this, sec, name);
1069 
1070   if (shouldMerge(sec, name))
1071     return make<MergeInputSection>(*this, sec, name);
1072   return make<InputSection>(*this, sec, name);
1073 }
1074 
1075 template <class ELFT>
1076 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1077   return CHECK(getObj().getSectionName(sec, sectionStringTable), this);
1078 }
1079 
1080 // Initialize this->Symbols. this->Symbols is a parallel array as
1081 // its corresponding ELF symbol table.
1082 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1083   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1084   this->symbols.resize(eSyms.size());
1085 
1086   // Fill in InputFile::symbols. Some entries have been initialized
1087   // because of LazyObjFile.
1088   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1089     if (this->symbols[i])
1090       continue;
1091     const Elf_Sym &eSym = eSyms[i];
1092     uint32_t secIdx = getSectionIndex(eSym);
1093     if (secIdx >= this->sections.size())
1094       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1095     if (eSym.getBinding() != STB_LOCAL) {
1096       if (i < firstGlobal)
1097         error(toString(this) + ": non-local symbol (" + Twine(i) +
1098               ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1099               ")");
1100       this->symbols[i] =
1101           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1102       continue;
1103     }
1104 
1105     // Handle local symbols. Local symbols are not added to the symbol
1106     // table because they are not visible from other object files. We
1107     // allocate symbol instances and add their pointers to symbols.
1108     if (i >= firstGlobal)
1109       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1110                   ") found at index >= .symtab's sh_info (" +
1111                   Twine(firstGlobal) + ")");
1112 
1113     InputSectionBase *sec = this->sections[secIdx];
1114     uint8_t type = eSym.getType();
1115     if (type == STT_FILE)
1116       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1117     if (this->stringTable.size() <= eSym.st_name)
1118       fatal(toString(this) + ": invalid symbol name offset");
1119     StringRefZ name = this->stringTable.data() + eSym.st_name;
1120 
1121     if (eSym.st_shndx == SHN_UNDEF)
1122       this->symbols[i] =
1123           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1124     else if (sec == &InputSection::discarded)
1125       this->symbols[i] =
1126           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1127                           /*discardedSecIdx=*/secIdx);
1128     else
1129       this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1130                                        type, eSym.st_value, eSym.st_size, sec);
1131   }
1132 
1133   // Symbol resolution of non-local symbols.
1134   SmallVector<unsigned, 32> unds;
1135   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1136     const Elf_Sym &eSym = eSyms[i];
1137     uint8_t binding = eSym.getBinding();
1138     if (binding == STB_LOCAL)
1139       continue; // Errored above.
1140 
1141     uint32_t secIdx = getSectionIndex(eSym);
1142     InputSectionBase *sec = this->sections[secIdx];
1143     uint8_t stOther = eSym.st_other;
1144     uint8_t type = eSym.getType();
1145     uint64_t value = eSym.st_value;
1146     uint64_t size = eSym.st_size;
1147     StringRefZ name = this->stringTable.data() + eSym.st_name;
1148 
1149     // Handle global undefined symbols.
1150     if (eSym.st_shndx == SHN_UNDEF) {
1151       unds.push_back(i);
1152       continue;
1153     }
1154 
1155     // Handle global common symbols.
1156     if (eSym.st_shndx == SHN_COMMON) {
1157       if (value == 0 || value >= UINT32_MAX)
1158         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1159               "' has invalid alignment: " + Twine(value));
1160       this->symbols[i]->resolve(
1161           CommonSymbol{this, name, binding, stOther, type, value, size});
1162       continue;
1163     }
1164 
1165     // If a defined symbol is in a discarded section, handle it as if it
1166     // were an undefined symbol. Such symbol doesn't comply with the
1167     // standard, but in practice, a .eh_frame often directly refer
1168     // COMDAT member sections, and if a comdat group is discarded, some
1169     // defined symbol in a .eh_frame becomes dangling symbols.
1170     if (sec == &InputSection::discarded) {
1171       Undefined und{this, name, binding, stOther, type, secIdx};
1172       Symbol *sym = this->symbols[i];
1173       // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
1174       // containing this object has not finished processing, i.e. this symbol is
1175       // a result of a lazy symbol fetch. We should demote the lazy symbol to an
1176       // Undefined so that any relocations outside of the group to it will
1177       // trigger a discarded section error.
1178       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1179            !cast<ArchiveFile>(sym->file)->parsed) ||
1180           (sym->symbolKind == Symbol::LazyObjectKind &&
1181            cast<LazyObjFile>(sym->file)->fetched))
1182         sym->replace(und);
1183       else
1184         sym->resolve(und);
1185       continue;
1186     }
1187 
1188     // Handle global defined symbols.
1189     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1190         binding == STB_GNU_UNIQUE) {
1191       this->symbols[i]->resolve(
1192           Defined{this, name, binding, stOther, type, value, size, sec});
1193       continue;
1194     }
1195 
1196     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1197   }
1198 
1199   // Undefined symbols (excluding those defined relative to non-prevailing
1200   // sections) can trigger recursive fetch. Process defined symbols first so
1201   // that the relative order between a defined symbol and an undefined symbol
1202   // does not change the symbol resolution behavior. In addition, a set of
1203   // interconnected symbols will all be resolved to the same file, instead of
1204   // being resolved to different files.
1205   for (unsigned i : unds) {
1206     const Elf_Sym &eSym = eSyms[i];
1207     StringRefZ name = this->stringTable.data() + eSym.st_name;
1208     this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(),
1209                                         eSym.st_other, eSym.getType()});
1210     this->symbols[i]->referenced = true;
1211   }
1212 }
1213 
1214 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1215     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1216       file(std::move(file)) {}
1217 
1218 void ArchiveFile::parse() {
1219   for (const Archive::Symbol &sym : file->symbols())
1220     symtab->addSymbol(LazyArchive{*this, sym});
1221 
1222   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1223   // archive has been processed.
1224   parsed = true;
1225 }
1226 
1227 // Returns a buffer pointing to a member file containing a given symbol.
1228 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1229   Archive::Child c =
1230       CHECK(sym.getMember(), toString(this) +
1231                                  ": could not get the member for symbol " +
1232                                  toELFString(sym));
1233 
1234   if (!seen.insert(c.getChildOffset()).second)
1235     return;
1236 
1237   MemoryBufferRef mb =
1238       CHECK(c.getMemoryBufferRef(),
1239             toString(this) +
1240                 ": could not get the buffer for the member defining symbol " +
1241                 toELFString(sym));
1242 
1243   if (tar && c.getParent()->isThin())
1244     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1245 
1246   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1247   file->groupId = groupId;
1248   parseFile(file);
1249 }
1250 
1251 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1252 // A tentative definition will be promoted to a global definition if there are
1253 // no non-tentative definitions to dominate it. When we hold a tentative
1254 // definition to a symbol and are inspecting archive members for inclusion
1255 // there are 2 ways we can proceed:
1256 //
1257 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1258 //    tentative to real definition has already happened) and not inspect
1259 //    archive members for Global/Weak definitions to replace the tentative
1260 //    definition. An archive member would only be included if it satisfies some
1261 //    other undefined symbol. This is the behavior Gold uses.
1262 //
1263 // 2) Consider the tentative definition as still undefined (ie the promotion to
1264 //    a real definition happens only after all symbol resolution is done).
1265 //    The linker searches archive members for global or weak definitions to
1266 //    replace the tentative definition with. This is the behavior used by
1267 //    GNU ld.
1268 //
1269 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1270 //  COMMON BLOCK model. This behavior is needed for proper initalization in old
1271 //  (pre F90) FORTRAN code that is packaged into an archive.
1272 //
1273 //  The following functions search archive members for definitions to replace
1274 //  tentative definitions (implementing behavior 2).
1275 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1276                                   StringRef archiveName) {
1277   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1278   for (const irsymtab::Reader::SymbolRef &sym :
1279        symtabFile.TheReader.symbols()) {
1280     if (sym.isGlobal() && sym.getName() == symName)
1281       return !sym.isUndefined() && !sym.isCommon();
1282   }
1283   return false;
1284 }
1285 
1286 template <class ELFT>
1287 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1288                            StringRef archiveName) {
1289   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1290   StringRef stringtable = obj->getStringTable();
1291 
1292   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1293     Expected<StringRef> name = sym.getName(stringtable);
1294     if (name && name.get() == symName)
1295       return sym.isDefined() && !sym.isCommon();
1296   }
1297   return false;
1298 }
1299 
1300 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1301                            StringRef archiveName) {
1302   switch (getELFKind(mb, archiveName)) {
1303   case ELF32LEKind:
1304     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1305   case ELF32BEKind:
1306     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1307   case ELF64LEKind:
1308     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1309   case ELF64BEKind:
1310     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1311   default:
1312     llvm_unreachable("getELFKind");
1313   }
1314 }
1315 
1316 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) {
1317   Archive::Child c =
1318       CHECK(sym.getMember(), toString(this) +
1319                                  ": could not get the member for symbol " +
1320                                  toELFString(sym));
1321   MemoryBufferRef mb =
1322       CHECK(c.getMemoryBufferRef(),
1323             toString(this) +
1324                 ": could not get the buffer for the member defining symbol " +
1325                 toELFString(sym));
1326 
1327   if (isBitcode(mb))
1328     return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1329 
1330   return isNonCommonDef(mb, sym.getName(), getName());
1331 }
1332 
1333 size_t ArchiveFile::getMemberCount() const {
1334   size_t count = 0;
1335   Error err = Error::success();
1336   for (const Archive::Child &c : file->children(err)) {
1337     (void)c;
1338     ++count;
1339   }
1340   // This function is used by --print-archive-stats=, where an error does not
1341   // really matter.
1342   consumeError(std::move(err));
1343   return count;
1344 }
1345 
1346 unsigned SharedFile::vernauxNum;
1347 
1348 // Parse the version definitions in the object file if present, and return a
1349 // vector whose nth element contains a pointer to the Elf_Verdef for version
1350 // identifier n. Version identifiers that are not definitions map to nullptr.
1351 template <typename ELFT>
1352 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1353                                               const typename ELFT::Shdr *sec) {
1354   if (!sec)
1355     return {};
1356 
1357   // We cannot determine the largest verdef identifier without inspecting
1358   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1359   // sequentially starting from 1, so we predict that the largest identifier
1360   // will be verdefCount.
1361   unsigned verdefCount = sec->sh_info;
1362   std::vector<const void *> verdefs(verdefCount + 1);
1363 
1364   // Build the Verdefs array by following the chain of Elf_Verdef objects
1365   // from the start of the .gnu.version_d section.
1366   const uint8_t *verdef = base + sec->sh_offset;
1367   for (unsigned i = 0; i != verdefCount; ++i) {
1368     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1369     verdef += curVerdef->vd_next;
1370     unsigned verdefIndex = curVerdef->vd_ndx;
1371     verdefs.resize(verdefIndex + 1);
1372     verdefs[verdefIndex] = curVerdef;
1373   }
1374   return verdefs;
1375 }
1376 
1377 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1378 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1379 // implement sophisticated error checking like in llvm-readobj because the value
1380 // of such diagnostics is low.
1381 template <typename ELFT>
1382 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1383                                                const typename ELFT::Shdr *sec) {
1384   if (!sec)
1385     return {};
1386   std::vector<uint32_t> verneeds;
1387   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1388   const uint8_t *verneedBuf = data.begin();
1389   for (unsigned i = 0; i != sec->sh_info; ++i) {
1390     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1391       fatal(toString(this) + " has an invalid Verneed");
1392     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1393     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1394     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1395       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1396         fatal(toString(this) + " has an invalid Vernaux");
1397       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1398       if (aux->vna_name >= this->stringTable.size())
1399         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1400       uint16_t version = aux->vna_other & VERSYM_VERSION;
1401       if (version >= verneeds.size())
1402         verneeds.resize(version + 1);
1403       verneeds[version] = aux->vna_name;
1404       vernauxBuf += aux->vna_next;
1405     }
1406     verneedBuf += vn->vn_next;
1407   }
1408   return verneeds;
1409 }
1410 
1411 // We do not usually care about alignments of data in shared object
1412 // files because the loader takes care of it. However, if we promote a
1413 // DSO symbol to point to .bss due to copy relocation, we need to keep
1414 // the original alignment requirements. We infer it in this function.
1415 template <typename ELFT>
1416 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1417                              const typename ELFT::Sym &sym) {
1418   uint64_t ret = UINT64_MAX;
1419   if (sym.st_value)
1420     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1421   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1422     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1423   return (ret > UINT32_MAX) ? 0 : ret;
1424 }
1425 
1426 // Fully parse the shared object file.
1427 //
1428 // This function parses symbol versions. If a DSO has version information,
1429 // the file has a ".gnu.version_d" section which contains symbol version
1430 // definitions. Each symbol is associated to one version through a table in
1431 // ".gnu.version" section. That table is a parallel array for the symbol
1432 // table, and each table entry contains an index in ".gnu.version_d".
1433 //
1434 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1435 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1436 // ".gnu.version_d".
1437 //
1438 // The file format for symbol versioning is perhaps a bit more complicated
1439 // than necessary, but you can easily understand the code if you wrap your
1440 // head around the data structure described above.
1441 template <class ELFT> void SharedFile::parse() {
1442   using Elf_Dyn = typename ELFT::Dyn;
1443   using Elf_Shdr = typename ELFT::Shdr;
1444   using Elf_Sym = typename ELFT::Sym;
1445   using Elf_Verdef = typename ELFT::Verdef;
1446   using Elf_Versym = typename ELFT::Versym;
1447 
1448   ArrayRef<Elf_Dyn> dynamicTags;
1449   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1450   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1451 
1452   const Elf_Shdr *versymSec = nullptr;
1453   const Elf_Shdr *verdefSec = nullptr;
1454   const Elf_Shdr *verneedSec = nullptr;
1455 
1456   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1457   for (const Elf_Shdr &sec : sections) {
1458     switch (sec.sh_type) {
1459     default:
1460       continue;
1461     case SHT_DYNAMIC:
1462       dynamicTags =
1463           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1464       break;
1465     case SHT_GNU_versym:
1466       versymSec = &sec;
1467       break;
1468     case SHT_GNU_verdef:
1469       verdefSec = &sec;
1470       break;
1471     case SHT_GNU_verneed:
1472       verneedSec = &sec;
1473       break;
1474     }
1475   }
1476 
1477   if (versymSec && numELFSyms == 0) {
1478     error("SHT_GNU_versym should be associated with symbol table");
1479     return;
1480   }
1481 
1482   // Search for a DT_SONAME tag to initialize this->soName.
1483   for (const Elf_Dyn &dyn : dynamicTags) {
1484     if (dyn.d_tag == DT_NEEDED) {
1485       uint64_t val = dyn.getVal();
1486       if (val >= this->stringTable.size())
1487         fatal(toString(this) + ": invalid DT_NEEDED entry");
1488       dtNeeded.push_back(this->stringTable.data() + val);
1489     } else if (dyn.d_tag == DT_SONAME) {
1490       uint64_t val = dyn.getVal();
1491       if (val >= this->stringTable.size())
1492         fatal(toString(this) + ": invalid DT_SONAME entry");
1493       soName = this->stringTable.data() + val;
1494     }
1495   }
1496 
1497   // DSOs are uniquified not by filename but by soname.
1498   DenseMap<StringRef, SharedFile *>::iterator it;
1499   bool wasInserted;
1500   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1501 
1502   // If a DSO appears more than once on the command line with and without
1503   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1504   // user can add an extra DSO with --no-as-needed to force it to be added to
1505   // the dependency list.
1506   it->second->isNeeded |= isNeeded;
1507   if (!wasInserted)
1508     return;
1509 
1510   sharedFiles.push_back(this);
1511 
1512   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1513   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1514 
1515   // Parse ".gnu.version" section which is a parallel array for the symbol
1516   // table. If a given file doesn't have a ".gnu.version" section, we use
1517   // VER_NDX_GLOBAL.
1518   size_t size = numELFSyms - firstGlobal;
1519   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1520   if (versymSec) {
1521     ArrayRef<Elf_Versym> versym =
1522         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1523               this)
1524             .slice(firstGlobal);
1525     for (size_t i = 0; i < size; ++i)
1526       versyms[i] = versym[i].vs_index;
1527   }
1528 
1529   // System libraries can have a lot of symbols with versions. Using a
1530   // fixed buffer for computing the versions name (foo@ver) can save a
1531   // lot of allocations.
1532   SmallString<0> versionedNameBuffer;
1533 
1534   // Add symbols to the symbol table.
1535   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1536   for (size_t i = 0; i < syms.size(); ++i) {
1537     const Elf_Sym &sym = syms[i];
1538 
1539     // ELF spec requires that all local symbols precede weak or global
1540     // symbols in each symbol table, and the index of first non-local symbol
1541     // is stored to sh_info. If a local symbol appears after some non-local
1542     // symbol, that's a violation of the spec.
1543     StringRef name = CHECK(sym.getName(this->stringTable), this);
1544     if (sym.getBinding() == STB_LOCAL) {
1545       warn("found local symbol '" + name +
1546            "' in global part of symbol table in file " + toString(this));
1547       continue;
1548     }
1549 
1550     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1551     if (sym.isUndefined()) {
1552       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1553       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1554       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1555         if (idx >= verneeds.size()) {
1556           error("corrupt input file: version need index " + Twine(idx) +
1557                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1558                 toString(this));
1559           continue;
1560         }
1561         StringRef verName = this->stringTable.data() + verneeds[idx];
1562         versionedNameBuffer.clear();
1563         name =
1564             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1565       }
1566       Symbol *s = symtab->addSymbol(
1567           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1568       s->exportDynamic = true;
1569       continue;
1570     }
1571 
1572     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1573     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1574     // workaround for this bug.
1575     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1576         name == "_gp_disp")
1577       continue;
1578 
1579     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1580     if (!(versyms[i] & VERSYM_HIDDEN)) {
1581       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1582                                      sym.st_other, sym.getType(), sym.st_value,
1583                                      sym.st_size, alignment, idx});
1584     }
1585 
1586     // Also add the symbol with the versioned name to handle undefined symbols
1587     // with explicit versions.
1588     if (idx == VER_NDX_GLOBAL)
1589       continue;
1590 
1591     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1592       error("corrupt input file: version definition index " + Twine(idx) +
1593             " for symbol " + name + " is out of bounds\n>>> defined in " +
1594             toString(this));
1595       continue;
1596     }
1597 
1598     StringRef verName =
1599         this->stringTable.data() +
1600         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1601     versionedNameBuffer.clear();
1602     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1603     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1604                                    sym.st_other, sym.getType(), sym.st_value,
1605                                    sym.st_size, alignment, idx});
1606   }
1607 }
1608 
1609 static ELFKind getBitcodeELFKind(const Triple &t) {
1610   if (t.isLittleEndian())
1611     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1612   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1613 }
1614 
1615 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1616   switch (t.getArch()) {
1617   case Triple::aarch64:
1618   case Triple::aarch64_be:
1619     return EM_AARCH64;
1620   case Triple::amdgcn:
1621   case Triple::r600:
1622     return EM_AMDGPU;
1623   case Triple::arm:
1624   case Triple::thumb:
1625     return EM_ARM;
1626   case Triple::avr:
1627     return EM_AVR;
1628   case Triple::mips:
1629   case Triple::mipsel:
1630   case Triple::mips64:
1631   case Triple::mips64el:
1632     return EM_MIPS;
1633   case Triple::msp430:
1634     return EM_MSP430;
1635   case Triple::ppc:
1636   case Triple::ppcle:
1637     return EM_PPC;
1638   case Triple::ppc64:
1639   case Triple::ppc64le:
1640     return EM_PPC64;
1641   case Triple::riscv32:
1642   case Triple::riscv64:
1643     return EM_RISCV;
1644   case Triple::x86:
1645     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1646   case Triple::x86_64:
1647     return EM_X86_64;
1648   default:
1649     error(path + ": could not infer e_machine from bitcode target triple " +
1650           t.str());
1651     return EM_NONE;
1652   }
1653 }
1654 
1655 static uint8_t getOsAbi(const Triple &t) {
1656   switch (t.getOS()) {
1657   case Triple::AMDHSA:
1658     return ELF::ELFOSABI_AMDGPU_HSA;
1659   case Triple::AMDPAL:
1660     return ELF::ELFOSABI_AMDGPU_PAL;
1661   case Triple::Mesa3D:
1662     return ELF::ELFOSABI_AMDGPU_MESA3D;
1663   default:
1664     return ELF::ELFOSABI_NONE;
1665   }
1666 }
1667 
1668 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1669                          uint64_t offsetInArchive)
1670     : InputFile(BitcodeKind, mb) {
1671   this->archiveName = std::string(archiveName);
1672 
1673   std::string path = mb.getBufferIdentifier().str();
1674   if (config->thinLTOIndexOnly)
1675     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1676 
1677   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1678   // name. If two archives define two members with the same name, this
1679   // causes a collision which result in only one of the objects being taken
1680   // into consideration at LTO time (which very likely causes undefined
1681   // symbols later in the link stage). So we append file offset to make
1682   // filename unique.
1683   StringRef name =
1684       archiveName.empty()
1685           ? saver.save(path)
1686           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1687                        utostr(offsetInArchive) + ")");
1688   MemoryBufferRef mbref(mb.getBuffer(), name);
1689 
1690   obj = CHECK(lto::InputFile::create(mbref), this);
1691 
1692   Triple t(obj->getTargetTriple());
1693   ekind = getBitcodeELFKind(t);
1694   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1695   osabi = getOsAbi(t);
1696 }
1697 
1698 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1699   switch (gvVisibility) {
1700   case GlobalValue::DefaultVisibility:
1701     return STV_DEFAULT;
1702   case GlobalValue::HiddenVisibility:
1703     return STV_HIDDEN;
1704   case GlobalValue::ProtectedVisibility:
1705     return STV_PROTECTED;
1706   }
1707   llvm_unreachable("unknown visibility");
1708 }
1709 
1710 template <class ELFT>
1711 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1712                                    const lto::InputFile::Symbol &objSym,
1713                                    BitcodeFile &f) {
1714   StringRef name = saver.save(objSym.getName());
1715   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1716   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1717   uint8_t visibility = mapVisibility(objSym.getVisibility());
1718   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1719 
1720   int c = objSym.getComdatIndex();
1721   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1722     Undefined newSym(&f, name, binding, visibility, type);
1723     if (canOmitFromDynSym)
1724       newSym.exportDynamic = false;
1725     Symbol *ret = symtab->addSymbol(newSym);
1726     ret->referenced = true;
1727     return ret;
1728   }
1729 
1730   if (objSym.isCommon())
1731     return symtab->addSymbol(
1732         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1733                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1734 
1735   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1736   if (canOmitFromDynSym)
1737     newSym.exportDynamic = false;
1738   return symtab->addSymbol(newSym);
1739 }
1740 
1741 template <class ELFT> void BitcodeFile::parse() {
1742   std::vector<bool> keptComdats;
1743   for (StringRef s : obj->getComdatTable())
1744     keptComdats.push_back(
1745         symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1746 
1747   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1748     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1749 
1750   for (auto l : obj->getDependentLibraries())
1751     addDependentLibrary(l, this);
1752 }
1753 
1754 void BinaryFile::parse() {
1755   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1756   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1757                                      8, data, ".data");
1758   sections.push_back(section);
1759 
1760   // For each input file foo that is embedded to a result as a binary
1761   // blob, we define _binary_foo_{start,end,size} symbols, so that
1762   // user programs can access blobs by name. Non-alphanumeric
1763   // characters in a filename are replaced with underscore.
1764   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1765   for (size_t i = 0; i < s.size(); ++i)
1766     if (!isAlnum(s[i]))
1767       s[i] = '_';
1768 
1769   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1770                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1771   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1772                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1773   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1774                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1775 }
1776 
1777 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1778                                  uint64_t offsetInArchive) {
1779   if (isBitcode(mb))
1780     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1781 
1782   switch (getELFKind(mb, archiveName)) {
1783   case ELF32LEKind:
1784     return make<ObjFile<ELF32LE>>(mb, archiveName);
1785   case ELF32BEKind:
1786     return make<ObjFile<ELF32BE>>(mb, archiveName);
1787   case ELF64LEKind:
1788     return make<ObjFile<ELF64LE>>(mb, archiveName);
1789   case ELF64BEKind:
1790     return make<ObjFile<ELF64BE>>(mb, archiveName);
1791   default:
1792     llvm_unreachable("getELFKind");
1793   }
1794 }
1795 
1796 void LazyObjFile::fetch() {
1797   if (fetched)
1798     return;
1799   fetched = true;
1800 
1801   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1802   file->groupId = groupId;
1803 
1804   // Copy symbol vector so that the new InputFile doesn't have to
1805   // insert the same defined symbols to the symbol table again.
1806   file->symbols = std::move(symbols);
1807 
1808   parseFile(file);
1809 }
1810 
1811 template <class ELFT> void LazyObjFile::parse() {
1812   using Elf_Sym = typename ELFT::Sym;
1813 
1814   // A lazy object file wraps either a bitcode file or an ELF file.
1815   if (isBitcode(this->mb)) {
1816     std::unique_ptr<lto::InputFile> obj =
1817         CHECK(lto::InputFile::create(this->mb), this);
1818     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1819       if (sym.isUndefined())
1820         continue;
1821       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1822     }
1823     return;
1824   }
1825 
1826   if (getELFKind(this->mb, archiveName) != config->ekind) {
1827     error("incompatible file: " + this->mb.getBufferIdentifier());
1828     return;
1829   }
1830 
1831   // Find a symbol table.
1832   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1833   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1834 
1835   for (const typename ELFT::Shdr &sec : sections) {
1836     if (sec.sh_type != SHT_SYMTAB)
1837       continue;
1838 
1839     // A symbol table is found.
1840     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1841     uint32_t firstGlobal = sec.sh_info;
1842     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1843     this->symbols.resize(eSyms.size());
1844 
1845     // Get existing symbols or insert placeholder symbols.
1846     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1847       if (eSyms[i].st_shndx != SHN_UNDEF)
1848         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1849 
1850     // Replace existing symbols with LazyObject symbols.
1851     //
1852     // resolve() may trigger this->fetch() if an existing symbol is an
1853     // undefined symbol. If that happens, this LazyObjFile has served
1854     // its purpose, and we can exit from the loop early.
1855     for (Symbol *sym : this->symbols) {
1856       if (!sym)
1857         continue;
1858       sym->resolve(LazyObject{*this, sym->getName()});
1859 
1860       // If fetched, stop iterating because this->symbols has been transferred
1861       // to the instantiated ObjFile.
1862       if (fetched)
1863         return;
1864     }
1865     return;
1866   }
1867 }
1868 
1869 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) {
1870   if (isBitcode(mb))
1871     return isBitcodeNonCommonDef(mb, name, archiveName);
1872 
1873   return isNonCommonDef(mb, name, archiveName);
1874 }
1875 
1876 std::string elf::replaceThinLTOSuffix(StringRef path) {
1877   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1878   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1879 
1880   if (path.consume_back(suffix))
1881     return (path + repl).str();
1882   return std::string(path);
1883 }
1884 
1885 template void BitcodeFile::parse<ELF32LE>();
1886 template void BitcodeFile::parse<ELF32BE>();
1887 template void BitcodeFile::parse<ELF64LE>();
1888 template void BitcodeFile::parse<ELF64BE>();
1889 
1890 template void LazyObjFile::parse<ELF32LE>();
1891 template void LazyObjFile::parse<ELF32BE>();
1892 template void LazyObjFile::parse<ELF64LE>();
1893 template void LazyObjFile::parse<ELF64BE>();
1894 
1895 template class elf::ObjFile<ELF32LE>;
1896 template class elf::ObjFile<ELF32BE>;
1897 template class elf::ObjFile<ELF64LE>;
1898 template class elf::ObjFile<ELF64BE>;
1899 
1900 template void SharedFile::parse<ELF32LE>();
1901 template void SharedFile::parse<ELF32BE>();
1902 template void SharedFile::parse<ELF64LE>();
1903 template void SharedFile::parse<ELF64BE>();
1904