1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/TarWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::sys;
37 using namespace llvm::sys::fs;
38 using namespace llvm::support::endian;
39 
40 namespace lld {
41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
42 std::string toString(const elf::InputFile *f) {
43   if (!f)
44     return "<internal>";
45 
46   if (f->toStringCache.empty()) {
47     if (f->archiveName.empty())
48       f->toStringCache = f->getName();
49     else
50       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
51   }
52   return f->toStringCache;
53 }
54 
55 namespace elf {
56 bool InputFile::isInGroup;
57 uint32_t InputFile::nextGroupId;
58 std::vector<BinaryFile *> binaryFiles;
59 std::vector<BitcodeFile *> bitcodeFiles;
60 std::vector<LazyObjFile *> lazyObjFiles;
61 std::vector<InputFile *> objectFiles;
62 std::vector<SharedFile *> sharedFiles;
63 
64 std::unique_ptr<TarWriter> tar;
65 
66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
67   unsigned char size;
68   unsigned char endian;
69   std::tie(size, endian) = getElfArchType(mb.getBuffer());
70 
71   auto report = [&](StringRef msg) {
72     StringRef filename = mb.getBufferIdentifier();
73     if (archiveName.empty())
74       fatal(filename + ": " + msg);
75     else
76       fatal(archiveName + "(" + filename + "): " + msg);
77   };
78 
79   if (!mb.getBuffer().startswith(ElfMagic))
80     report("not an ELF file");
81   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
82     report("corrupted ELF file: invalid data encoding");
83   if (size != ELFCLASS32 && size != ELFCLASS64)
84     report("corrupted ELF file: invalid file class");
85 
86   size_t bufSize = mb.getBuffer().size();
87   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
88       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
89     report("corrupted ELF file: file is too short");
90 
91   if (size == ELFCLASS32)
92     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
93   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
94 }
95 
96 InputFile::InputFile(Kind k, MemoryBufferRef m)
97     : mb(m), groupId(nextGroupId), fileKind(k) {
98   // All files within the same --{start,end}-group get the same group ID.
99   // Otherwise, a new file will get a new group ID.
100   if (!isInGroup)
101     ++nextGroupId;
102 }
103 
104 Optional<MemoryBufferRef> readFile(StringRef path) {
105   // The --chroot option changes our virtual root directory.
106   // This is useful when you are dealing with files created by --reproduce.
107   if (!config->chroot.empty() && path.startswith("/"))
108     path = saver.save(config->chroot + path);
109 
110   log(path);
111 
112   auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
113   if (auto ec = mbOrErr.getError()) {
114     error("cannot open " + path + ": " + ec.message());
115     return None;
116   }
117 
118   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
119   MemoryBufferRef mbref = mb->getMemBufferRef();
120   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
121 
122   if (tar)
123     tar->append(relativeToRoot(path), mbref.getBuffer());
124   return mbref;
125 }
126 
127 // All input object files must be for the same architecture
128 // (e.g. it does not make sense to link x86 object files with
129 // MIPS object files.) This function checks for that error.
130 static bool isCompatible(InputFile *file) {
131   if (!file->isElf() && !isa<BitcodeFile>(file))
132     return true;
133 
134   if (file->ekind == config->ekind && file->emachine == config->emachine) {
135     if (config->emachine != EM_MIPS)
136       return true;
137     if (isMipsN32Abi(file) == config->mipsN32Abi)
138       return true;
139   }
140 
141   if (!config->emulation.empty()) {
142     error(toString(file) + " is incompatible with " + config->emulation);
143     return false;
144   }
145 
146   InputFile *existing;
147   if (!objectFiles.empty())
148     existing = objectFiles[0];
149   else if (!sharedFiles.empty())
150     existing = sharedFiles[0];
151   else
152     existing = bitcodeFiles[0];
153 
154   error(toString(file) + " is incompatible with " + toString(existing));
155   return false;
156 }
157 
158 template <class ELFT> static void doParseFile(InputFile *file) {
159   if (!isCompatible(file))
160     return;
161 
162   // Binary file
163   if (auto *f = dyn_cast<BinaryFile>(file)) {
164     binaryFiles.push_back(f);
165     f->parse();
166     return;
167   }
168 
169   // .a file
170   if (auto *f = dyn_cast<ArchiveFile>(file)) {
171     f->parse();
172     return;
173   }
174 
175   // Lazy object file
176   if (auto *f = dyn_cast<LazyObjFile>(file)) {
177     lazyObjFiles.push_back(f);
178     f->parse<ELFT>();
179     return;
180   }
181 
182   if (config->trace)
183     message(toString(file));
184 
185   // .so file
186   if (auto *f = dyn_cast<SharedFile>(file)) {
187     f->parse<ELFT>();
188     return;
189   }
190 
191   // LLVM bitcode file
192   if (auto *f = dyn_cast<BitcodeFile>(file)) {
193     bitcodeFiles.push_back(f);
194     f->parse<ELFT>();
195     return;
196   }
197 
198   // Regular object file
199   objectFiles.push_back(file);
200   cast<ObjFile<ELFT>>(file)->parse();
201 }
202 
203 // Add symbols in File to the symbol table.
204 void parseFile(InputFile *file) {
205   switch (config->ekind) {
206   case ELF32LEKind:
207     doParseFile<ELF32LE>(file);
208     return;
209   case ELF32BEKind:
210     doParseFile<ELF32BE>(file);
211     return;
212   case ELF64LEKind:
213     doParseFile<ELF64LE>(file);
214     return;
215   case ELF64BEKind:
216     doParseFile<ELF64BE>(file);
217     return;
218   default:
219     llvm_unreachable("unknown ELFT");
220   }
221 }
222 
223 // Concatenates arguments to construct a string representing an error location.
224 static std::string createFileLineMsg(StringRef path, unsigned line) {
225   std::string filename = path::filename(path);
226   std::string lineno = ":" + std::to_string(line);
227   if (filename == path)
228     return filename + lineno;
229   return filename + lineno + " (" + path.str() + lineno + ")";
230 }
231 
232 template <class ELFT>
233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
234                                 InputSectionBase &sec, uint64_t offset) {
235   // In DWARF, functions and variables are stored to different places.
236   // First, lookup a function for a given offset.
237   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
238     return createFileLineMsg(info->FileName, info->Line);
239 
240   // If it failed, lookup again as a variable.
241   if (Optional<std::pair<std::string, unsigned>> fileLine =
242           file.getVariableLoc(sym.getName()))
243     return createFileLineMsg(fileLine->first, fileLine->second);
244 
245   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
246   return file.sourceFile;
247 }
248 
249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
250                                  uint64_t offset) {
251   if (kind() != ObjKind)
252     return "";
253   switch (config->ekind) {
254   default:
255     llvm_unreachable("Invalid kind");
256   case ELF32LEKind:
257     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
258   case ELF32BEKind:
259     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
260   case ELF64LEKind:
261     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
262   case ELF64BEKind:
263     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
264   }
265 }
266 
267 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
268   dwarf = make<DWARFCache>(std::make_unique<DWARFContext>(
269       std::make_unique<LLDDwarfObj<ELFT>>(this)));
270 }
271 
272 // Returns the pair of file name and line number describing location of data
273 // object (variable, array, etc) definition.
274 template <class ELFT>
275 Optional<std::pair<std::string, unsigned>>
276 ObjFile<ELFT>::getVariableLoc(StringRef name) {
277   llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
278 
279   return dwarf->getVariableLoc(name);
280 }
281 
282 // Returns source line information for a given offset
283 // using DWARF debug info.
284 template <class ELFT>
285 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
286                                                   uint64_t offset) {
287   llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
288 
289   // Detect SectionIndex for specified section.
290   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
291   ArrayRef<InputSectionBase *> sections = s->file->getSections();
292   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
293     if (s == sections[curIndex]) {
294       sectionIndex = curIndex;
295       break;
296     }
297   }
298 
299   // Use fake address calcuated by adding section file offset and offset in
300   // section. See comments for ObjectInfo class.
301   return dwarf->getDILineInfo(s->getOffsetInFile() + offset, sectionIndex);
302 }
303 
304 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
305   ekind = getELFKind(mb, "");
306 
307   switch (ekind) {
308   case ELF32LEKind:
309     init<ELF32LE>();
310     break;
311   case ELF32BEKind:
312     init<ELF32BE>();
313     break;
314   case ELF64LEKind:
315     init<ELF64LE>();
316     break;
317   case ELF64BEKind:
318     init<ELF64BE>();
319     break;
320   default:
321     llvm_unreachable("getELFKind");
322   }
323 }
324 
325 template <typename Elf_Shdr>
326 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
327   for (const Elf_Shdr &sec : sections)
328     if (sec.sh_type == type)
329       return &sec;
330   return nullptr;
331 }
332 
333 template <class ELFT> void ELFFileBase::init() {
334   using Elf_Shdr = typename ELFT::Shdr;
335   using Elf_Sym = typename ELFT::Sym;
336 
337   // Initialize trivial attributes.
338   const ELFFile<ELFT> &obj = getObj<ELFT>();
339   emachine = obj.getHeader()->e_machine;
340   osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
341   abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
342 
343   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
344 
345   // Find a symbol table.
346   bool isDSO =
347       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
348   const Elf_Shdr *symtabSec =
349       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
350 
351   if (!symtabSec)
352     return;
353 
354   // Initialize members corresponding to a symbol table.
355   firstGlobal = symtabSec->sh_info;
356 
357   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
358   if (firstGlobal == 0 || firstGlobal > eSyms.size())
359     fatal(toString(this) + ": invalid sh_info in symbol table");
360 
361   elfSyms = reinterpret_cast<const void *>(eSyms.data());
362   numELFSyms = eSyms.size();
363   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
364 }
365 
366 template <class ELFT>
367 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
368   return CHECK(
369       this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable),
370       this);
371 }
372 
373 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
374   if (this->symbols.empty())
375     return {};
376   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
377 }
378 
379 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
380   return makeArrayRef(this->symbols).slice(this->firstGlobal);
381 }
382 
383 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
384   // Read a section table. justSymbols is usually false.
385   if (this->justSymbols)
386     initializeJustSymbols();
387   else
388     initializeSections(ignoreComdats);
389 
390   // Read a symbol table.
391   initializeSymbols();
392 }
393 
394 // Sections with SHT_GROUP and comdat bits define comdat section groups.
395 // They are identified and deduplicated by group name. This function
396 // returns a group name.
397 template <class ELFT>
398 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
399                                               const Elf_Shdr &sec) {
400   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
401   if (sec.sh_info >= symbols.size())
402     fatal(toString(this) + ": invalid symbol index");
403   const typename ELFT::Sym &sym = symbols[sec.sh_info];
404   StringRef signature = CHECK(sym.getName(this->stringTable), this);
405 
406   // As a special case, if a symbol is a section symbol and has no name,
407   // we use a section name as a signature.
408   //
409   // Such SHT_GROUP sections are invalid from the perspective of the ELF
410   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
411   // older produce such sections as outputs for the -r option, so we need
412   // a bug-compatibility.
413   if (signature.empty() && sym.getType() == STT_SECTION)
414     return getSectionName(sec);
415   return signature;
416 }
417 
418 template <class ELFT>
419 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
420   // On a regular link we don't merge sections if -O0 (default is -O1). This
421   // sometimes makes the linker significantly faster, although the output will
422   // be bigger.
423   //
424   // Doing the same for -r would create a problem as it would combine sections
425   // with different sh_entsize. One option would be to just copy every SHF_MERGE
426   // section as is to the output. While this would produce a valid ELF file with
427   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
428   // they see two .debug_str. We could have separate logic for combining
429   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
430   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
431   // logic for -r.
432   if (config->optimize == 0 && !config->relocatable)
433     return false;
434 
435   // A mergeable section with size 0 is useless because they don't have
436   // any data to merge. A mergeable string section with size 0 can be
437   // argued as invalid because it doesn't end with a null character.
438   // We'll avoid a mess by handling them as if they were non-mergeable.
439   if (sec.sh_size == 0)
440     return false;
441 
442   // Check for sh_entsize. The ELF spec is not clear about the zero
443   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
444   // the section does not hold a table of fixed-size entries". We know
445   // that Rust 1.13 produces a string mergeable section with a zero
446   // sh_entsize. Here we just accept it rather than being picky about it.
447   uint64_t entSize = sec.sh_entsize;
448   if (entSize == 0)
449     return false;
450   if (sec.sh_size % entSize)
451     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
452           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
453           Twine(entSize) + ")");
454 
455   uint64_t flags = sec.sh_flags;
456   if (!(flags & SHF_MERGE))
457     return false;
458   if (flags & SHF_WRITE)
459     fatal(toString(this) + ":(" + name +
460           "): writable SHF_MERGE section is not supported");
461 
462   return true;
463 }
464 
465 // This is for --just-symbols.
466 //
467 // --just-symbols is a very minor feature that allows you to link your
468 // output against other existing program, so that if you load both your
469 // program and the other program into memory, your output can refer the
470 // other program's symbols.
471 //
472 // When the option is given, we link "just symbols". The section table is
473 // initialized with null pointers.
474 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
475   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
476   this->sections.resize(sections.size());
477 }
478 
479 // An ELF object file may contain a `.deplibs` section. If it exists, the
480 // section contains a list of library specifiers such as `m` for libm. This
481 // function resolves a given name by finding the first matching library checking
482 // the various ways that a library can be specified to LLD. This ELF extension
483 // is a form of autolinking and is called `dependent libraries`. It is currently
484 // unique to LLVM and lld.
485 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
486   if (!config->dependentLibraries)
487     return;
488   if (fs::exists(specifier))
489     driver->addFile(specifier, /*withLOption=*/false);
490   else if (Optional<std::string> s = findFromSearchPaths(specifier))
491     driver->addFile(*s, /*withLOption=*/true);
492   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
493     driver->addFile(*s, /*withLOption=*/true);
494   else
495     error(toString(f) +
496           ": unable to find library from dependent library specifier: " +
497           specifier);
498 }
499 
500 template <class ELFT>
501 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
502   const ELFFile<ELFT> &obj = this->getObj();
503 
504   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
505   uint64_t size = objSections.size();
506   this->sections.resize(size);
507   this->sectionStringTable =
508       CHECK(obj.getSectionStringTable(objSections), this);
509 
510   std::vector<ArrayRef<Elf_Word>> selectedGroups;
511 
512   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
513     if (this->sections[i] == &InputSection::discarded)
514       continue;
515     const Elf_Shdr &sec = objSections[i];
516 
517     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
518       cgProfile =
519           check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec));
520 
521     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
522     // if -r is given, we'll let the final link discard such sections.
523     // This is compatible with GNU.
524     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
525       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
526         // We ignore the address-significance table if we know that the object
527         // file was created by objcopy or ld -r. This is because these tools
528         // will reorder the symbols in the symbol table, invalidating the data
529         // in the address-significance table, which refers to symbols by index.
530         if (sec.sh_link != 0)
531           this->addrsigSec = &sec;
532         else if (config->icf == ICFLevel::Safe)
533           warn(toString(this) + ": --icf=safe is incompatible with object "
534                                 "files created using objcopy or ld -r");
535       }
536       this->sections[i] = &InputSection::discarded;
537       continue;
538     }
539 
540     switch (sec.sh_type) {
541     case SHT_GROUP: {
542       // De-duplicate section groups by their signatures.
543       StringRef signature = getShtGroupSignature(objSections, sec);
544       this->sections[i] = &InputSection::discarded;
545 
546 
547       ArrayRef<Elf_Word> entries =
548           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this);
549       if (entries.empty())
550         fatal(toString(this) + ": empty SHT_GROUP");
551 
552       // The first word of a SHT_GROUP section contains flags. Currently,
553       // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
554       // An group with the empty flag doesn't define anything; such sections
555       // are just skipped.
556       if (entries[0] == 0)
557         continue;
558 
559       if (entries[0] != GRP_COMDAT)
560         fatal(toString(this) + ": unsupported SHT_GROUP format");
561 
562       bool isNew =
563           ignoreComdats ||
564           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
565               .second;
566       if (isNew) {
567         if (config->relocatable)
568           this->sections[i] = createInputSection(sec);
569         selectedGroups.push_back(entries);
570         continue;
571       }
572 
573       // Otherwise, discard group members.
574       for (uint32_t secIndex : entries.slice(1)) {
575         if (secIndex >= size)
576           fatal(toString(this) +
577                 ": invalid section index in group: " + Twine(secIndex));
578         this->sections[secIndex] = &InputSection::discarded;
579       }
580       break;
581     }
582     case SHT_SYMTAB_SHNDX:
583       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
584       break;
585     case SHT_SYMTAB:
586     case SHT_STRTAB:
587     case SHT_NULL:
588       break;
589     default:
590       this->sections[i] = createInputSection(sec);
591     }
592   }
593 
594   // This block handles SHF_LINK_ORDER.
595   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
596     if (this->sections[i] == &InputSection::discarded)
597       continue;
598     const Elf_Shdr &sec = objSections[i];
599     if (!(sec.sh_flags & SHF_LINK_ORDER))
600       continue;
601 
602     // .ARM.exidx sections have a reverse dependency on the InputSection they
603     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
604     InputSectionBase *linkSec = nullptr;
605     if (sec.sh_link < this->sections.size())
606       linkSec = this->sections[sec.sh_link];
607     if (!linkSec)
608       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
609 
610     InputSection *isec = cast<InputSection>(this->sections[i]);
611     linkSec->dependentSections.push_back(isec);
612     if (!isa<InputSection>(linkSec))
613       error("a section " + isec->name +
614             " with SHF_LINK_ORDER should not refer a non-regular section: " +
615             toString(linkSec));
616   }
617 
618   // For each secion group, connect its members in a circular doubly-linked list
619   // via nextInSectionGroup. See the comment in markLive().
620   for (ArrayRef<Elf_Word> entries : selectedGroups) {
621     InputSectionBase *head;
622     InputSectionBase *prev = nullptr;
623     for (uint32_t secIndex : entries.slice(1)) {
624       if (secIndex >= this->sections.size())
625         continue;
626       InputSectionBase *s = this->sections[secIndex];
627       if (!s || s == &InputSection::discarded)
628         continue;
629       if (prev)
630         prev->nextInSectionGroup = s;
631       else
632         head = s;
633       prev = s;
634     }
635     if (prev)
636       prev->nextInSectionGroup = head;
637   }
638 }
639 
640 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
641 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
642 // the input objects have been compiled.
643 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
644                              const InputFile *f) {
645   if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
646     // If an ABI tag isn't present then it is implicitly given the value of 0
647     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
648     // including some in glibc that don't use FP args (and should have value 3)
649     // don't have the attribute so we do not consider an implicit value of 0
650     // as a clash.
651     return;
652 
653   unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
654   ARMVFPArgKind arg;
655   switch (vfpArgs) {
656   case ARMBuildAttrs::BaseAAPCS:
657     arg = ARMVFPArgKind::Base;
658     break;
659   case ARMBuildAttrs::HardFPAAPCS:
660     arg = ARMVFPArgKind::VFP;
661     break;
662   case ARMBuildAttrs::ToolChainFPPCS:
663     // Tool chain specific convention that conforms to neither AAPCS variant.
664     arg = ARMVFPArgKind::ToolChain;
665     break;
666   case ARMBuildAttrs::CompatibleFPAAPCS:
667     // Object compatible with all conventions.
668     return;
669   default:
670     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
671     return;
672   }
673   // Follow ld.bfd and error if there is a mix of calling conventions.
674   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
675     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
676   else
677     config->armVFPArgs = arg;
678 }
679 
680 // The ARM support in lld makes some use of instructions that are not available
681 // on all ARM architectures. Namely:
682 // - Use of BLX instruction for interworking between ARM and Thumb state.
683 // - Use of the extended Thumb branch encoding in relocation.
684 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
685 // The ARM Attributes section contains information about the architecture chosen
686 // at compile time. We follow the convention that if at least one input object
687 // is compiled with an architecture that supports these features then lld is
688 // permitted to use them.
689 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
690   if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
691     return;
692   auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
693   switch (arch) {
694   case ARMBuildAttrs::Pre_v4:
695   case ARMBuildAttrs::v4:
696   case ARMBuildAttrs::v4T:
697     // Architectures prior to v5 do not support BLX instruction
698     break;
699   case ARMBuildAttrs::v5T:
700   case ARMBuildAttrs::v5TE:
701   case ARMBuildAttrs::v5TEJ:
702   case ARMBuildAttrs::v6:
703   case ARMBuildAttrs::v6KZ:
704   case ARMBuildAttrs::v6K:
705     config->armHasBlx = true;
706     // Architectures used in pre-Cortex processors do not support
707     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
708     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
709     break;
710   default:
711     // All other Architectures have BLX and extended branch encoding
712     config->armHasBlx = true;
713     config->armJ1J2BranchEncoding = true;
714     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
715       // All Architectures used in Cortex processors with the exception
716       // of v6-M and v6S-M have the MOVT and MOVW instructions.
717       config->armHasMovtMovw = true;
718     break;
719   }
720 }
721 
722 // If a source file is compiled with x86 hardware-assisted call flow control
723 // enabled, the generated object file contains feature flags indicating that
724 // fact. This function reads the feature flags and returns it.
725 //
726 // Essentially we want to read a single 32-bit value in this function, but this
727 // function is rather complicated because the value is buried deep inside a
728 // .note.gnu.property section.
729 //
730 // The section consists of one or more NOTE records. Each NOTE record consists
731 // of zero or more type-length-value fields. We want to find a field of a
732 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
733 // the ABI is unnecessarily complicated.
734 template <class ELFT>
735 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) {
736   using Elf_Nhdr = typename ELFT::Nhdr;
737   using Elf_Note = typename ELFT::Note;
738 
739   uint32_t featuresSet = 0;
740   while (!data.empty()) {
741     // Read one NOTE record.
742     if (data.size() < sizeof(Elf_Nhdr))
743       fatal(toString(obj) + ": .note.gnu.property: section too short");
744 
745     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
746     if (data.size() < nhdr->getSize())
747       fatal(toString(obj) + ": .note.gnu.property: section too short");
748 
749     Elf_Note note(*nhdr);
750     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
751       data = data.slice(nhdr->getSize());
752       continue;
753     }
754 
755     uint32_t featureAndType = config->emachine == EM_AARCH64
756                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
757                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
758 
759     // Read a body of a NOTE record, which consists of type-length-value fields.
760     ArrayRef<uint8_t> desc = note.getDesc();
761     while (!desc.empty()) {
762       if (desc.size() < 8)
763         fatal(toString(obj) + ": .note.gnu.property: section too short");
764 
765       uint32_t type = read32le(desc.data());
766       uint32_t size = read32le(desc.data() + 4);
767 
768       if (type == featureAndType) {
769         // We found a FEATURE_1_AND field. There may be more than one of these
770         // in a .note.gnu.property section, for a relocatable object we
771         // accumulate the bits set.
772         featuresSet |= read32le(desc.data() + 8);
773       }
774 
775       // On 64-bit, a payload may be followed by a 4-byte padding to make its
776       // size a multiple of 8.
777       if (ELFT::Is64Bits)
778         size = alignTo(size, 8);
779 
780       desc = desc.slice(size + 8); // +8 for Type and Size
781     }
782 
783     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
784     data = data.slice(nhdr->getSize());
785   }
786 
787   return featuresSet;
788 }
789 
790 template <class ELFT>
791 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
792   uint32_t idx = sec.sh_info;
793   if (idx >= this->sections.size())
794     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
795   InputSectionBase *target = this->sections[idx];
796 
797   // Strictly speaking, a relocation section must be included in the
798   // group of the section it relocates. However, LLVM 3.3 and earlier
799   // would fail to do so, so we gracefully handle that case.
800   if (target == &InputSection::discarded)
801     return nullptr;
802 
803   if (!target)
804     fatal(toString(this) + ": unsupported relocation reference");
805   return target;
806 }
807 
808 // Create a regular InputSection class that has the same contents
809 // as a given section.
810 static InputSection *toRegularSection(MergeInputSection *sec) {
811   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
812                             sec->data(), sec->name);
813 }
814 
815 template <class ELFT>
816 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
817   StringRef name = getSectionName(sec);
818 
819   switch (sec.sh_type) {
820   case SHT_ARM_ATTRIBUTES: {
821     if (config->emachine != EM_ARM)
822       break;
823     ARMAttributeParser attributes;
824     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
825     attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind);
826     updateSupportedARMFeatures(attributes);
827     updateARMVFPArgs(attributes, this);
828 
829     // FIXME: Retain the first attribute section we see. The eglibc ARM
830     // dynamic loaders require the presence of an attribute section for dlopen
831     // to work. In a full implementation we would merge all attribute sections.
832     if (in.armAttributes == nullptr) {
833       in.armAttributes = make<InputSection>(*this, sec, name);
834       return in.armAttributes;
835     }
836     return &InputSection::discarded;
837   }
838   case SHT_LLVM_DEPENDENT_LIBRARIES: {
839     if (config->relocatable)
840       break;
841     ArrayRef<char> data =
842         CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this);
843     if (!data.empty() && data.back() != '\0') {
844       error(toString(this) +
845             ": corrupted dependent libraries section (unterminated string): " +
846             name);
847       return &InputSection::discarded;
848     }
849     for (const char *d = data.begin(), *e = data.end(); d < e;) {
850       StringRef s(d);
851       addDependentLibrary(s, this);
852       d += s.size() + 1;
853     }
854     return &InputSection::discarded;
855   }
856   case SHT_RELA:
857   case SHT_REL: {
858     // Find a relocation target section and associate this section with that.
859     // Target may have been discarded if it is in a different section group
860     // and the group is discarded, even though it's a violation of the
861     // spec. We handle that situation gracefully by discarding dangling
862     // relocation sections.
863     InputSectionBase *target = getRelocTarget(sec);
864     if (!target)
865       return nullptr;
866 
867     // ELF spec allows mergeable sections with relocations, but they are
868     // rare, and it is in practice hard to merge such sections by contents,
869     // because applying relocations at end of linking changes section
870     // contents. So, we simply handle such sections as non-mergeable ones.
871     // Degrading like this is acceptable because section merging is optional.
872     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
873       target = toRegularSection(ms);
874       this->sections[sec.sh_info] = target;
875     }
876 
877     // This section contains relocation information.
878     // If -r is given, we do not interpret or apply relocation
879     // but just copy relocation sections to output.
880     if (config->relocatable) {
881       InputSection *relocSec = make<InputSection>(*this, sec, name);
882       // We want to add a dependency to target, similar like we do for
883       // -emit-relocs below. This is useful for the case when linker script
884       // contains the "/DISCARD/". It is perhaps uncommon to use a script with
885       // -r, but we faced it in the Linux kernel and have to handle such case
886       // and not to crash.
887       target->dependentSections.push_back(relocSec);
888       return relocSec;
889     }
890 
891     if (target->firstRelocation)
892       fatal(toString(this) +
893             ": multiple relocation sections to one section are not supported");
894 
895     if (sec.sh_type == SHT_RELA) {
896       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this);
897       target->firstRelocation = rels.begin();
898       target->numRelocations = rels.size();
899       target->areRelocsRela = true;
900     } else {
901       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this);
902       target->firstRelocation = rels.begin();
903       target->numRelocations = rels.size();
904       target->areRelocsRela = false;
905     }
906     assert(isUInt<31>(target->numRelocations));
907 
908     // Relocation sections processed by the linker are usually removed
909     // from the output, so returning `nullptr` for the normal case.
910     // However, if -emit-relocs is given, we need to leave them in the output.
911     // (Some post link analysis tools need this information.)
912     if (config->emitRelocs) {
913       InputSection *relocSec = make<InputSection>(*this, sec, name);
914       // We will not emit relocation section if target was discarded.
915       target->dependentSections.push_back(relocSec);
916       return relocSec;
917     }
918     return nullptr;
919   }
920   }
921 
922   // The GNU linker uses .note.GNU-stack section as a marker indicating
923   // that the code in the object file does not expect that the stack is
924   // executable (in terms of NX bit). If all input files have the marker,
925   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
926   // make the stack non-executable. Most object files have this section as
927   // of 2017.
928   //
929   // But making the stack non-executable is a norm today for security
930   // reasons. Failure to do so may result in a serious security issue.
931   // Therefore, we make LLD always add PT_GNU_STACK unless it is
932   // explicitly told to do otherwise (by -z execstack). Because the stack
933   // executable-ness is controlled solely by command line options,
934   // .note.GNU-stack sections are simply ignored.
935   if (name == ".note.GNU-stack")
936     return &InputSection::discarded;
937 
938   // Object files that use processor features such as Intel Control-Flow
939   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
940   // .note.gnu.property section containing a bitfield of feature bits like the
941   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
942   //
943   // Since we merge bitmaps from multiple object files to create a new
944   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
945   // file's .note.gnu.property section.
946   if (name == ".note.gnu.property") {
947     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
948     this->andFeatures = readAndFeatures(this, contents);
949     return &InputSection::discarded;
950   }
951 
952   // Split stacks is a feature to support a discontiguous stack,
953   // commonly used in the programming language Go. For the details,
954   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
955   // for split stack will include a .note.GNU-split-stack section.
956   if (name == ".note.GNU-split-stack") {
957     if (config->relocatable) {
958       error("cannot mix split-stack and non-split-stack in a relocatable link");
959       return &InputSection::discarded;
960     }
961     this->splitStack = true;
962     return &InputSection::discarded;
963   }
964 
965   // An object file cmpiled for split stack, but where some of the
966   // functions were compiled with the no_split_stack_attribute will
967   // include a .note.GNU-no-split-stack section.
968   if (name == ".note.GNU-no-split-stack") {
969     this->someNoSplitStack = true;
970     return &InputSection::discarded;
971   }
972 
973   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
974   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
975   // sections. Drop those sections to avoid duplicate symbol errors.
976   // FIXME: This is glibc PR20543, we should remove this hack once that has been
977   // fixed for a while.
978   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
979       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
980     return &InputSection::discarded;
981 
982   // If we are creating a new .build-id section, strip existing .build-id
983   // sections so that the output won't have more than one .build-id.
984   // This is not usually a problem because input object files normally don't
985   // have .build-id sections, but you can create such files by
986   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
987   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
988     return &InputSection::discarded;
989 
990   // The linker merges EH (exception handling) frames and creates a
991   // .eh_frame_hdr section for runtime. So we handle them with a special
992   // class. For relocatable outputs, they are just passed through.
993   if (name == ".eh_frame" && !config->relocatable)
994     return make<EhInputSection>(*this, sec, name);
995 
996   if (shouldMerge(sec, name))
997     return make<MergeInputSection>(*this, sec, name);
998   return make<InputSection>(*this, sec, name);
999 }
1000 
1001 template <class ELFT>
1002 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1003   return CHECK(getObj().getSectionName(&sec, sectionStringTable), this);
1004 }
1005 
1006 // Initialize this->Symbols. this->Symbols is a parallel array as
1007 // its corresponding ELF symbol table.
1008 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1009   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1010   this->symbols.resize(eSyms.size());
1011 
1012   // Our symbol table may have already been partially initialized
1013   // because of LazyObjFile.
1014   for (size_t i = 0, end = eSyms.size(); i != end; ++i)
1015     if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL)
1016       this->symbols[i] =
1017           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1018 
1019   // Fill this->Symbols. A symbol is either local or global.
1020   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1021     const Elf_Sym &eSym = eSyms[i];
1022 
1023     // Read symbol attributes.
1024     uint32_t secIdx = getSectionIndex(eSym);
1025     if (secIdx >= this->sections.size())
1026       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1027 
1028     InputSectionBase *sec = this->sections[secIdx];
1029     uint8_t binding = eSym.getBinding();
1030     uint8_t stOther = eSym.st_other;
1031     uint8_t type = eSym.getType();
1032     uint64_t value = eSym.st_value;
1033     uint64_t size = eSym.st_size;
1034     StringRefZ name = this->stringTable.data() + eSym.st_name;
1035 
1036     // Handle local symbols. Local symbols are not added to the symbol
1037     // table because they are not visible from other object files. We
1038     // allocate symbol instances and add their pointers to Symbols.
1039     if (binding == STB_LOCAL) {
1040       if (eSym.getType() == STT_FILE)
1041         sourceFile = CHECK(eSym.getName(this->stringTable), this);
1042 
1043       if (this->stringTable.size() <= eSym.st_name)
1044         fatal(toString(this) + ": invalid symbol name offset");
1045 
1046       if (eSym.st_shndx == SHN_UNDEF)
1047         this->symbols[i] = make<Undefined>(this, name, binding, stOther, type);
1048       else if (sec == &InputSection::discarded)
1049         this->symbols[i] = make<Undefined>(this, name, binding, stOther, type,
1050                                            /*DiscardedSecIdx=*/secIdx);
1051       else
1052         this->symbols[i] =
1053             make<Defined>(this, name, binding, stOther, type, value, size, sec);
1054       continue;
1055     }
1056 
1057     // Handle global undefined symbols.
1058     if (eSym.st_shndx == SHN_UNDEF) {
1059       this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
1060       this->symbols[i]->referenced = true;
1061       continue;
1062     }
1063 
1064     // Handle global common symbols.
1065     if (eSym.st_shndx == SHN_COMMON) {
1066       if (value == 0 || value >= UINT32_MAX)
1067         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1068               "' has invalid alignment: " + Twine(value));
1069       this->symbols[i]->resolve(
1070           CommonSymbol{this, name, binding, stOther, type, value, size});
1071       continue;
1072     }
1073 
1074     // If a defined symbol is in a discarded section, handle it as if it
1075     // were an undefined symbol. Such symbol doesn't comply with the
1076     // standard, but in practice, a .eh_frame often directly refer
1077     // COMDAT member sections, and if a comdat group is discarded, some
1078     // defined symbol in a .eh_frame becomes dangling symbols.
1079     if (sec == &InputSection::discarded) {
1080       this->symbols[i]->resolve(
1081           Undefined{this, name, binding, stOther, type, secIdx});
1082       continue;
1083     }
1084 
1085     // Handle global defined symbols.
1086     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1087         binding == STB_GNU_UNIQUE) {
1088       this->symbols[i]->resolve(
1089           Defined{this, name, binding, stOther, type, value, size, sec});
1090       continue;
1091     }
1092 
1093     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1094   }
1095 }
1096 
1097 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1098     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1099       file(std::move(file)) {}
1100 
1101 void ArchiveFile::parse() {
1102   for (const Archive::Symbol &sym : file->symbols())
1103     symtab->addSymbol(LazyArchive{*this, sym});
1104 }
1105 
1106 // Returns a buffer pointing to a member file containing a given symbol.
1107 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1108   Archive::Child c =
1109       CHECK(sym.getMember(), toString(this) +
1110                                  ": could not get the member for symbol " +
1111                                  toELFString(sym));
1112 
1113   if (!seen.insert(c.getChildOffset()).second)
1114     return;
1115 
1116   MemoryBufferRef mb =
1117       CHECK(c.getMemoryBufferRef(),
1118             toString(this) +
1119                 ": could not get the buffer for the member defining symbol " +
1120                 toELFString(sym));
1121 
1122   if (tar && c.getParent()->isThin())
1123     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1124 
1125   InputFile *file = createObjectFile(
1126       mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset());
1127   file->groupId = groupId;
1128   parseFile(file);
1129 }
1130 
1131 unsigned SharedFile::vernauxNum;
1132 
1133 // Parse the version definitions in the object file if present, and return a
1134 // vector whose nth element contains a pointer to the Elf_Verdef for version
1135 // identifier n. Version identifiers that are not definitions map to nullptr.
1136 template <typename ELFT>
1137 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1138                                               const typename ELFT::Shdr *sec) {
1139   if (!sec)
1140     return {};
1141 
1142   // We cannot determine the largest verdef identifier without inspecting
1143   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1144   // sequentially starting from 1, so we predict that the largest identifier
1145   // will be verdefCount.
1146   unsigned verdefCount = sec->sh_info;
1147   std::vector<const void *> verdefs(verdefCount + 1);
1148 
1149   // Build the Verdefs array by following the chain of Elf_Verdef objects
1150   // from the start of the .gnu.version_d section.
1151   const uint8_t *verdef = base + sec->sh_offset;
1152   for (unsigned i = 0; i != verdefCount; ++i) {
1153     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1154     verdef += curVerdef->vd_next;
1155     unsigned verdefIndex = curVerdef->vd_ndx;
1156     verdefs.resize(verdefIndex + 1);
1157     verdefs[verdefIndex] = curVerdef;
1158   }
1159   return verdefs;
1160 }
1161 
1162 // We do not usually care about alignments of data in shared object
1163 // files because the loader takes care of it. However, if we promote a
1164 // DSO symbol to point to .bss due to copy relocation, we need to keep
1165 // the original alignment requirements. We infer it in this function.
1166 template <typename ELFT>
1167 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1168                              const typename ELFT::Sym &sym) {
1169   uint64_t ret = UINT64_MAX;
1170   if (sym.st_value)
1171     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1172   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1173     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1174   return (ret > UINT32_MAX) ? 0 : ret;
1175 }
1176 
1177 // Fully parse the shared object file.
1178 //
1179 // This function parses symbol versions. If a DSO has version information,
1180 // the file has a ".gnu.version_d" section which contains symbol version
1181 // definitions. Each symbol is associated to one version through a table in
1182 // ".gnu.version" section. That table is a parallel array for the symbol
1183 // table, and each table entry contains an index in ".gnu.version_d".
1184 //
1185 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1186 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1187 // ".gnu.version_d".
1188 //
1189 // The file format for symbol versioning is perhaps a bit more complicated
1190 // than necessary, but you can easily understand the code if you wrap your
1191 // head around the data structure described above.
1192 template <class ELFT> void SharedFile::parse() {
1193   using Elf_Dyn = typename ELFT::Dyn;
1194   using Elf_Shdr = typename ELFT::Shdr;
1195   using Elf_Sym = typename ELFT::Sym;
1196   using Elf_Verdef = typename ELFT::Verdef;
1197   using Elf_Versym = typename ELFT::Versym;
1198 
1199   ArrayRef<Elf_Dyn> dynamicTags;
1200   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1201   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1202 
1203   const Elf_Shdr *versymSec = nullptr;
1204   const Elf_Shdr *verdefSec = nullptr;
1205 
1206   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1207   for (const Elf_Shdr &sec : sections) {
1208     switch (sec.sh_type) {
1209     default:
1210       continue;
1211     case SHT_DYNAMIC:
1212       dynamicTags =
1213           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this);
1214       break;
1215     case SHT_GNU_versym:
1216       versymSec = &sec;
1217       break;
1218     case SHT_GNU_verdef:
1219       verdefSec = &sec;
1220       break;
1221     }
1222   }
1223 
1224   if (versymSec && numELFSyms == 0) {
1225     error("SHT_GNU_versym should be associated with symbol table");
1226     return;
1227   }
1228 
1229   // Search for a DT_SONAME tag to initialize this->soName.
1230   for (const Elf_Dyn &dyn : dynamicTags) {
1231     if (dyn.d_tag == DT_NEEDED) {
1232       uint64_t val = dyn.getVal();
1233       if (val >= this->stringTable.size())
1234         fatal(toString(this) + ": invalid DT_NEEDED entry");
1235       dtNeeded.push_back(this->stringTable.data() + val);
1236     } else if (dyn.d_tag == DT_SONAME) {
1237       uint64_t val = dyn.getVal();
1238       if (val >= this->stringTable.size())
1239         fatal(toString(this) + ": invalid DT_SONAME entry");
1240       soName = this->stringTable.data() + val;
1241     }
1242   }
1243 
1244   // DSOs are uniquified not by filename but by soname.
1245   DenseMap<StringRef, SharedFile *>::iterator it;
1246   bool wasInserted;
1247   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1248 
1249   // If a DSO appears more than once on the command line with and without
1250   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1251   // user can add an extra DSO with --no-as-needed to force it to be added to
1252   // the dependency list.
1253   it->second->isNeeded |= isNeeded;
1254   if (!wasInserted)
1255     return;
1256 
1257   sharedFiles.push_back(this);
1258 
1259   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1260 
1261   // Parse ".gnu.version" section which is a parallel array for the symbol
1262   // table. If a given file doesn't have a ".gnu.version" section, we use
1263   // VER_NDX_GLOBAL.
1264   size_t size = numELFSyms - firstGlobal;
1265   std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL);
1266   if (versymSec) {
1267     ArrayRef<Elf_Versym> versym =
1268         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec),
1269               this)
1270             .slice(firstGlobal);
1271     for (size_t i = 0; i < size; ++i)
1272       versyms[i] = versym[i].vs_index;
1273   }
1274 
1275   // System libraries can have a lot of symbols with versions. Using a
1276   // fixed buffer for computing the versions name (foo@ver) can save a
1277   // lot of allocations.
1278   SmallString<0> versionedNameBuffer;
1279 
1280   // Add symbols to the symbol table.
1281   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1282   for (size_t i = 0; i < syms.size(); ++i) {
1283     const Elf_Sym &sym = syms[i];
1284 
1285     // ELF spec requires that all local symbols precede weak or global
1286     // symbols in each symbol table, and the index of first non-local symbol
1287     // is stored to sh_info. If a local symbol appears after some non-local
1288     // symbol, that's a violation of the spec.
1289     StringRef name = CHECK(sym.getName(this->stringTable), this);
1290     if (sym.getBinding() == STB_LOCAL) {
1291       warn("found local symbol '" + name +
1292            "' in global part of symbol table in file " + toString(this));
1293       continue;
1294     }
1295 
1296     if (sym.isUndefined()) {
1297       Symbol *s = symtab->addSymbol(
1298           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1299       s->exportDynamic = true;
1300       continue;
1301     }
1302 
1303     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1304     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1305     // workaround for this bug.
1306     uint32_t idx = versyms[i] & ~VERSYM_HIDDEN;
1307     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1308         name == "_gp_disp")
1309       continue;
1310 
1311     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1312     if (!(versyms[i] & VERSYM_HIDDEN)) {
1313       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1314                                      sym.st_other, sym.getType(), sym.st_value,
1315                                      sym.st_size, alignment, idx});
1316     }
1317 
1318     // Also add the symbol with the versioned name to handle undefined symbols
1319     // with explicit versions.
1320     if (idx == VER_NDX_GLOBAL)
1321       continue;
1322 
1323     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1324       error("corrupt input file: version definition index " + Twine(idx) +
1325             " for symbol " + name + " is out of bounds\n>>> defined in " +
1326             toString(this));
1327       continue;
1328     }
1329 
1330     StringRef verName =
1331         this->stringTable.data() +
1332         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1333     versionedNameBuffer.clear();
1334     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1335     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1336                                    sym.st_other, sym.getType(), sym.st_value,
1337                                    sym.st_size, alignment, idx});
1338   }
1339 }
1340 
1341 static ELFKind getBitcodeELFKind(const Triple &t) {
1342   if (t.isLittleEndian())
1343     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1344   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1345 }
1346 
1347 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1348   switch (t.getArch()) {
1349   case Triple::aarch64:
1350     return EM_AARCH64;
1351   case Triple::amdgcn:
1352   case Triple::r600:
1353     return EM_AMDGPU;
1354   case Triple::arm:
1355   case Triple::thumb:
1356     return EM_ARM;
1357   case Triple::avr:
1358     return EM_AVR;
1359   case Triple::mips:
1360   case Triple::mipsel:
1361   case Triple::mips64:
1362   case Triple::mips64el:
1363     return EM_MIPS;
1364   case Triple::msp430:
1365     return EM_MSP430;
1366   case Triple::ppc:
1367     return EM_PPC;
1368   case Triple::ppc64:
1369   case Triple::ppc64le:
1370     return EM_PPC64;
1371   case Triple::riscv32:
1372   case Triple::riscv64:
1373     return EM_RISCV;
1374   case Triple::x86:
1375     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1376   case Triple::x86_64:
1377     return EM_X86_64;
1378   default:
1379     error(path + ": could not infer e_machine from bitcode target triple " +
1380           t.str());
1381     return EM_NONE;
1382   }
1383 }
1384 
1385 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1386                          uint64_t offsetInArchive)
1387     : InputFile(BitcodeKind, mb) {
1388   this->archiveName = archiveName;
1389 
1390   std::string path = mb.getBufferIdentifier().str();
1391   if (config->thinLTOIndexOnly)
1392     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1393 
1394   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1395   // name. If two archives define two members with the same name, this
1396   // causes a collision which result in only one of the objects being taken
1397   // into consideration at LTO time (which very likely causes undefined
1398   // symbols later in the link stage). So we append file offset to make
1399   // filename unique.
1400   StringRef name = archiveName.empty()
1401                        ? saver.save(path)
1402                        : saver.save(archiveName + "(" + path + " at " +
1403                                     utostr(offsetInArchive) + ")");
1404   MemoryBufferRef mbref(mb.getBuffer(), name);
1405 
1406   obj = CHECK(lto::InputFile::create(mbref), this);
1407 
1408   Triple t(obj->getTargetTriple());
1409   ekind = getBitcodeELFKind(t);
1410   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1411 }
1412 
1413 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1414   switch (gvVisibility) {
1415   case GlobalValue::DefaultVisibility:
1416     return STV_DEFAULT;
1417   case GlobalValue::HiddenVisibility:
1418     return STV_HIDDEN;
1419   case GlobalValue::ProtectedVisibility:
1420     return STV_PROTECTED;
1421   }
1422   llvm_unreachable("unknown visibility");
1423 }
1424 
1425 template <class ELFT>
1426 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1427                                    const lto::InputFile::Symbol &objSym,
1428                                    BitcodeFile &f) {
1429   StringRef name = saver.save(objSym.getName());
1430   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1431   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1432   uint8_t visibility = mapVisibility(objSym.getVisibility());
1433   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1434 
1435   int c = objSym.getComdatIndex();
1436   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1437     Undefined newSym(&f, name, binding, visibility, type);
1438     if (canOmitFromDynSym)
1439       newSym.exportDynamic = false;
1440     Symbol *ret = symtab->addSymbol(newSym);
1441     ret->referenced = true;
1442     return ret;
1443   }
1444 
1445   if (objSym.isCommon())
1446     return symtab->addSymbol(
1447         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1448                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1449 
1450   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1451   if (canOmitFromDynSym)
1452     newSym.exportDynamic = false;
1453   return symtab->addSymbol(newSym);
1454 }
1455 
1456 template <class ELFT> void BitcodeFile::parse() {
1457   std::vector<bool> keptComdats;
1458   for (StringRef s : obj->getComdatTable())
1459     keptComdats.push_back(
1460         symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1461 
1462   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1463     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1464 
1465   for (auto l : obj->getDependentLibraries())
1466     addDependentLibrary(l, this);
1467 }
1468 
1469 void BinaryFile::parse() {
1470   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1471   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1472                                      8, data, ".data");
1473   sections.push_back(section);
1474 
1475   // For each input file foo that is embedded to a result as a binary
1476   // blob, we define _binary_foo_{start,end,size} symbols, so that
1477   // user programs can access blobs by name. Non-alphanumeric
1478   // characters in a filename are replaced with underscore.
1479   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1480   for (size_t i = 0; i < s.size(); ++i)
1481     if (!isAlnum(s[i]))
1482       s[i] = '_';
1483 
1484   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1485                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1486   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1487                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1488   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1489                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1490 }
1491 
1492 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1493                             uint64_t offsetInArchive) {
1494   if (isBitcode(mb))
1495     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1496 
1497   switch (getELFKind(mb, archiveName)) {
1498   case ELF32LEKind:
1499     return make<ObjFile<ELF32LE>>(mb, archiveName);
1500   case ELF32BEKind:
1501     return make<ObjFile<ELF32BE>>(mb, archiveName);
1502   case ELF64LEKind:
1503     return make<ObjFile<ELF64LE>>(mb, archiveName);
1504   case ELF64BEKind:
1505     return make<ObjFile<ELF64BE>>(mb, archiveName);
1506   default:
1507     llvm_unreachable("getELFKind");
1508   }
1509 }
1510 
1511 void LazyObjFile::fetch() {
1512   if (mb.getBuffer().empty())
1513     return;
1514 
1515   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1516   file->groupId = groupId;
1517 
1518   mb = {};
1519 
1520   // Copy symbol vector so that the new InputFile doesn't have to
1521   // insert the same defined symbols to the symbol table again.
1522   file->symbols = std::move(symbols);
1523 
1524   parseFile(file);
1525 }
1526 
1527 template <class ELFT> void LazyObjFile::parse() {
1528   using Elf_Sym = typename ELFT::Sym;
1529 
1530   // A lazy object file wraps either a bitcode file or an ELF file.
1531   if (isBitcode(this->mb)) {
1532     std::unique_ptr<lto::InputFile> obj =
1533         CHECK(lto::InputFile::create(this->mb), this);
1534     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1535       if (sym.isUndefined())
1536         continue;
1537       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1538     }
1539     return;
1540   }
1541 
1542   if (getELFKind(this->mb, archiveName) != config->ekind) {
1543     error("incompatible file: " + this->mb.getBufferIdentifier());
1544     return;
1545   }
1546 
1547   // Find a symbol table.
1548   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1549   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1550 
1551   for (const typename ELFT::Shdr &sec : sections) {
1552     if (sec.sh_type != SHT_SYMTAB)
1553       continue;
1554 
1555     // A symbol table is found.
1556     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1557     uint32_t firstGlobal = sec.sh_info;
1558     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1559     this->symbols.resize(eSyms.size());
1560 
1561     // Get existing symbols or insert placeholder symbols.
1562     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1563       if (eSyms[i].st_shndx != SHN_UNDEF)
1564         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1565 
1566     // Replace existing symbols with LazyObject symbols.
1567     //
1568     // resolve() may trigger this->fetch() if an existing symbol is an
1569     // undefined symbol. If that happens, this LazyObjFile has served
1570     // its purpose, and we can exit from the loop early.
1571     for (Symbol *sym : this->symbols) {
1572       if (!sym)
1573         continue;
1574       sym->resolve(LazyObject{*this, sym->getName()});
1575 
1576       // MemoryBuffer is emptied if this file is instantiated as ObjFile.
1577       if (mb.getBuffer().empty())
1578         return;
1579     }
1580     return;
1581   }
1582 }
1583 
1584 std::string replaceThinLTOSuffix(StringRef path) {
1585   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1586   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1587 
1588   if (path.consume_back(suffix))
1589     return (path + repl).str();
1590   return path;
1591 }
1592 
1593 template void BitcodeFile::parse<ELF32LE>();
1594 template void BitcodeFile::parse<ELF32BE>();
1595 template void BitcodeFile::parse<ELF64LE>();
1596 template void BitcodeFile::parse<ELF64BE>();
1597 
1598 template void LazyObjFile::parse<ELF32LE>();
1599 template void LazyObjFile::parse<ELF32BE>();
1600 template void LazyObjFile::parse<ELF64LE>();
1601 template void LazyObjFile::parse<ELF64BE>();
1602 
1603 template class ObjFile<ELF32LE>;
1604 template class ObjFile<ELF32BE>;
1605 template class ObjFile<ELF64LE>;
1606 template class ObjFile<ELF64BE>;
1607 
1608 template void SharedFile::parse<ELF32LE>();
1609 template void SharedFile::parse<ELF32BE>();
1610 template void SharedFile::parse<ELF64LE>();
1611 template void SharedFile::parse<ELF64BE>();
1612 
1613 } // namespace elf
1614 } // namespace lld
1615