1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "Error.h" 13 #include "InputSection.h" 14 #include "LinkerScript.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "lld/Support/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/LTO/LTO.h" 25 #include "llvm/MC/StringTableBuilder.h" 26 #include "llvm/Object/ELFObjectFile.h" 27 #include "llvm/Support/Path.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::sys::fs; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 namespace { 39 // In ELF object file all section addresses are zero. If we have multiple 40 // .text sections (when using -ffunction-section or comdat group) then 41 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless 42 // we assign each section some unique address. This callback method assigns 43 // each section an address equal to its offset in ELF object file. 44 class ObjectInfo : public LoadedObjectInfo { 45 public: 46 uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override { 47 return static_cast<const ELFSectionRef &>(Sec).getOffset(); 48 } 49 std::unique_ptr<LoadedObjectInfo> clone() const override { 50 return std::unique_ptr<LoadedObjectInfo>(); 51 } 52 }; 53 } 54 55 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() { 56 std::unique_ptr<object::ObjectFile> Obj = 57 check(object::ObjectFile::createObjectFile(this->MB), 58 "createObjectFile failed"); 59 60 ObjectInfo ObjInfo; 61 DWARFContextInMemory Dwarf(*Obj, &ObjInfo); 62 DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs)); 63 DataExtractor LineData(Dwarf.getLineSection().Data, 64 ELFT::TargetEndianness == support::little, 65 ELFT::Is64Bits ? 8 : 4); 66 67 // The second parameter is offset in .debug_line section 68 // for compilation unit (CU) of interest. We have only one 69 // CU (object file), so offset is always 0. 70 DwarfLine->getOrParseLineTable(LineData, 0); 71 } 72 73 // Returns source line information for a given offset 74 // using DWARF debug info. 75 template <class ELFT> 76 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase<ELFT> *S, 77 uintX_t Offset) { 78 if (!DwarfLine) 79 initializeDwarfLine(); 80 81 // The offset to CU is 0. 82 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 83 if (!Tbl) 84 return ""; 85 86 // Use fake address calcuated by adding section file offset and offset in 87 // section. See comments for ObjectInfo class. 88 DILineInfo Info; 89 Tbl->getFileLineInfoForAddress( 90 S->Offset + Offset, nullptr, 91 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 92 if (Info.Line == 0) 93 return ""; 94 return convertToUnixPathSeparator(Info.FileName) + ":" + 95 std::to_string(Info.Line); 96 } 97 98 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 99 std::string elf::toString(const InputFile *F) { 100 if (!F) 101 return "(internal)"; 102 if (!F->ArchiveName.empty()) 103 return (F->ArchiveName + "(" + F->getName() + ")").str(); 104 return F->getName(); 105 } 106 107 template <class ELFT> static ELFKind getELFKind() { 108 if (ELFT::TargetEndianness == support::little) 109 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 110 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 111 } 112 113 template <class ELFT> 114 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 115 EKind = getELFKind<ELFT>(); 116 EMachine = getObj().getHeader()->e_machine; 117 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 118 } 119 120 template <class ELFT> 121 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() { 122 return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end()); 123 } 124 125 template <class ELFT> 126 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 127 return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX)); 128 } 129 130 template <class ELFT> 131 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 132 const Elf_Shdr *Symtab) { 133 FirstNonLocal = Symtab->sh_info; 134 Symbols = check(getObj().symbols(Symtab)); 135 if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size()) 136 fatal(toString(this) + ": invalid sh_info in symbol table"); 137 138 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections)); 139 } 140 141 template <class ELFT> 142 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 143 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 144 145 template <class ELFT> 146 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 147 return makeArrayRef(this->SymbolBodies).slice(this->FirstNonLocal); 148 } 149 150 template <class ELFT> 151 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 152 if (this->SymbolBodies.empty()) 153 return this->SymbolBodies; 154 return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1); 155 } 156 157 template <class ELFT> 158 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 159 if (this->SymbolBodies.empty()) 160 return this->SymbolBodies; 161 return makeArrayRef(this->SymbolBodies).slice(1); 162 } 163 164 template <class ELFT> 165 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 166 // Read section and symbol tables. 167 initializeSections(ComdatGroups); 168 initializeSymbols(); 169 } 170 171 // Sections with SHT_GROUP and comdat bits define comdat section groups. 172 // They are identified and deduplicated by group name. This function 173 // returns a group name. 174 template <class ELFT> 175 StringRef 176 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 177 const Elf_Shdr &Sec) { 178 if (this->Symbols.empty()) 179 this->initSymtab(Sections, 180 check(object::getSection<ELFT>(Sections, Sec.sh_link))); 181 const Elf_Sym *Sym = 182 check(object::getSymbol<ELFT>(this->Symbols, Sec.sh_info)); 183 return check(Sym->getName(this->StringTable)); 184 } 185 186 template <class ELFT> 187 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 188 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 189 const ELFFile<ELFT> &Obj = this->getObj(); 190 ArrayRef<Elf_Word> Entries = 191 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 192 if (Entries.empty() || Entries[0] != GRP_COMDAT) 193 fatal(toString(this) + ": unsupported SHT_GROUP format"); 194 return Entries.slice(1); 195 } 196 197 template <class ELFT> 198 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 199 // We don't merge sections if -O0 (default is -O1). This makes sometimes 200 // the linker significantly faster, although the output will be bigger. 201 if (Config->Optimize == 0) 202 return false; 203 204 // Do not merge sections if generating a relocatable object. It makes 205 // the code simpler because we do not need to update relocation addends 206 // to reflect changes introduced by merging. Instead of that we write 207 // such "merge" sections into separate OutputSections and keep SHF_MERGE 208 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 209 // later during a final linking. 210 if (Config->Relocatable) 211 return false; 212 213 // A mergeable section with size 0 is useless because they don't have 214 // any data to merge. A mergeable string section with size 0 can be 215 // argued as invalid because it doesn't end with a null character. 216 // We'll avoid a mess by handling them as if they were non-mergeable. 217 if (Sec.sh_size == 0) 218 return false; 219 220 // Check for sh_entsize. The ELF spec is not clear about the zero 221 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 222 // the section does not hold a table of fixed-size entries". We know 223 // that Rust 1.13 produces a string mergeable section with a zero 224 // sh_entsize. Here we just accept it rather than being picky about it. 225 uintX_t EntSize = Sec.sh_entsize; 226 if (EntSize == 0) 227 return false; 228 if (Sec.sh_size % EntSize) 229 fatal(toString(this) + 230 ": SHF_MERGE section size must be a multiple of sh_entsize"); 231 232 uintX_t Flags = Sec.sh_flags; 233 if (!(Flags & SHF_MERGE)) 234 return false; 235 if (Flags & SHF_WRITE) 236 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 237 238 // Don't try to merge if the alignment is larger than the sh_entsize and this 239 // is not SHF_STRINGS. 240 // 241 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 242 // It would be equivalent for the producer of the .o to just set a larger 243 // sh_entsize. 244 if (Flags & SHF_STRINGS) 245 return true; 246 247 return Sec.sh_addralign <= EntSize; 248 } 249 250 template <class ELFT> 251 void elf::ObjectFile<ELFT>::initializeSections( 252 DenseSet<CachedHashStringRef> &ComdatGroups) { 253 ArrayRef<Elf_Shdr> ObjSections = check(this->getObj().sections()); 254 const ELFFile<ELFT> &Obj = this->getObj(); 255 uint64_t Size = ObjSections.size(); 256 Sections.resize(Size); 257 unsigned I = -1; 258 StringRef SectionStringTable = check(Obj.getSectionStringTable(ObjSections)); 259 for (const Elf_Shdr &Sec : ObjSections) { 260 ++I; 261 if (Sections[I] == &InputSection<ELFT>::Discarded) 262 continue; 263 264 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 265 // if -r is given, we'll let the final link discard such sections. 266 // This is compatible with GNU. 267 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 268 Sections[I] = &InputSection<ELFT>::Discarded; 269 continue; 270 } 271 272 switch (Sec.sh_type) { 273 case SHT_GROUP: 274 Sections[I] = &InputSection<ELFT>::Discarded; 275 if (ComdatGroups.insert(CachedHashStringRef( 276 getShtGroupSignature(ObjSections, Sec))) 277 .second) 278 continue; 279 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 280 if (SecIndex >= Size) 281 fatal(toString(this) + ": invalid section index in group: " + 282 Twine(SecIndex)); 283 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 284 } 285 break; 286 case SHT_SYMTAB: 287 this->initSymtab(ObjSections, &Sec); 288 break; 289 case SHT_SYMTAB_SHNDX: 290 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, ObjSections)); 291 break; 292 case SHT_STRTAB: 293 case SHT_NULL: 294 break; 295 default: 296 Sections[I] = createInputSection(Sec, SectionStringTable); 297 } 298 299 // .ARM.exidx sections have a reverse dependency on the InputSection they 300 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 301 if (Sec.sh_flags & SHF_LINK_ORDER) { 302 if (Sec.sh_link >= Sections.size()) 303 fatal(toString(this) + ": invalid sh_link index: " + 304 Twine(Sec.sh_link)); 305 auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]); 306 IS->DependentSection = Sections[I]; 307 } 308 } 309 } 310 311 template <class ELFT> 312 InputSectionBase<ELFT> * 313 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 314 uint32_t Idx = Sec.sh_info; 315 if (Idx >= Sections.size()) 316 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 317 InputSectionBase<ELFT> *Target = Sections[Idx]; 318 319 // Strictly speaking, a relocation section must be included in the 320 // group of the section it relocates. However, LLVM 3.3 and earlier 321 // would fail to do so, so we gracefully handle that case. 322 if (Target == &InputSection<ELFT>::Discarded) 323 return nullptr; 324 325 if (!Target) 326 fatal(toString(this) + ": unsupported relocation reference"); 327 return Target; 328 } 329 330 template <class ELFT> 331 InputSectionBase<ELFT> * 332 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec, 333 StringRef SectionStringTable) { 334 StringRef Name = 335 check(this->getObj().getSectionName(&Sec, SectionStringTable)); 336 337 switch (Sec.sh_type) { 338 case SHT_ARM_ATTRIBUTES: 339 // FIXME: ARM meta-data section. At present attributes are ignored, 340 // they can be used to reason about object compatibility. 341 return &InputSection<ELFT>::Discarded; 342 case SHT_RELA: 343 case SHT_REL: { 344 // This section contains relocation information. 345 // If -r is given, we do not interpret or apply relocation 346 // but just copy relocation sections to output. 347 if (Config->Relocatable) 348 return make<InputSection<ELFT>>(this, &Sec, Name); 349 350 // Find the relocation target section and associate this 351 // section with it. 352 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 353 if (!Target) 354 return nullptr; 355 if (Target->FirstRelocation) 356 fatal(toString(this) + 357 ": multiple relocation sections to one section are not supported"); 358 if (!isa<InputSection<ELFT>>(Target) && !isa<EhInputSection<ELFT>>(Target)) 359 fatal(toString(this) + 360 ": relocations pointing to SHF_MERGE are not supported"); 361 362 size_t NumRelocations; 363 if (Sec.sh_type == SHT_RELA) { 364 ArrayRef<Elf_Rela> Rels = check(this->getObj().relas(&Sec)); 365 Target->FirstRelocation = Rels.begin(); 366 NumRelocations = Rels.size(); 367 Target->AreRelocsRela = true; 368 } else { 369 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec)); 370 Target->FirstRelocation = Rels.begin(); 371 NumRelocations = Rels.size(); 372 Target->AreRelocsRela = false; 373 } 374 assert(isUInt<31>(NumRelocations)); 375 Target->NumRelocations = NumRelocations; 376 return nullptr; 377 } 378 } 379 380 // .note.GNU-stack is a marker section to control the presence of 381 // PT_GNU_STACK segment in outputs. Since the presence of the segment 382 // is controlled only by the command line option (-z execstack) in LLD, 383 // .note.GNU-stack is ignored. 384 if (Name == ".note.GNU-stack") 385 return &InputSection<ELFT>::Discarded; 386 387 if (Name == ".note.GNU-split-stack") { 388 error("objects using splitstacks are not supported"); 389 return &InputSection<ELFT>::Discarded; 390 } 391 392 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 393 return &InputSection<ELFT>::Discarded; 394 395 // The linker merges EH (exception handling) frames and creates a 396 // .eh_frame_hdr section for runtime. So we handle them with a special 397 // class. For relocatable outputs, they are just passed through. 398 if (Name == ".eh_frame" && !Config->Relocatable) 399 return make<EhInputSection<ELFT>>(this, &Sec, Name); 400 401 if (shouldMerge(Sec)) 402 return make<MergeInputSection<ELFT>>(this, &Sec, Name); 403 return make<InputSection<ELFT>>(this, &Sec, Name); 404 } 405 406 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 407 SymbolBodies.reserve(this->Symbols.size()); 408 for (const Elf_Sym &Sym : this->Symbols) 409 SymbolBodies.push_back(createSymbolBody(&Sym)); 410 } 411 412 template <class ELFT> 413 InputSectionBase<ELFT> * 414 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 415 uint32_t Index = this->getSectionIndex(Sym); 416 if (Index >= Sections.size()) 417 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 418 InputSectionBase<ELFT> *S = Sections[Index]; 419 420 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could 421 // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be 422 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 423 // In this case it is fine for section to be null here as we do not 424 // allocate sections of these types. 425 if (!S) { 426 if (Index == 0 || Sym.getType() == STT_SECTION || 427 Sym.getType() == STT_NOTYPE) 428 return nullptr; 429 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 430 } 431 432 if (S == &InputSection<ELFT>::Discarded) 433 return S; 434 return S->Repl; 435 } 436 437 template <class ELFT> 438 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 439 int Binding = Sym->getBinding(); 440 InputSectionBase<ELFT> *Sec = getSection(*Sym); 441 442 uint8_t StOther = Sym->st_other; 443 uint8_t Type = Sym->getType(); 444 uintX_t Value = Sym->st_value; 445 uintX_t Size = Sym->st_size; 446 447 if (Binding == STB_LOCAL) { 448 if (Sym->getType() == STT_FILE) 449 SourceFile = check(Sym->getName(this->StringTable)); 450 451 if (this->StringTable.size() <= Sym->st_name) 452 fatal(toString(this) + ": invalid symbol name offset"); 453 454 StringRefZ Name = this->StringTable.data() + Sym->st_name; 455 if (Sym->st_shndx == SHN_UNDEF) 456 return new (BAlloc) 457 Undefined(Name, /*IsLocal=*/true, StOther, Type, this); 458 459 return new (BAlloc) DefinedRegular<ELFT>(Name, /*IsLocal=*/true, StOther, 460 Type, Value, Size, Sec, this); 461 } 462 463 StringRef Name = check(Sym->getName(this->StringTable)); 464 465 switch (Sym->st_shndx) { 466 case SHN_UNDEF: 467 return elf::Symtab<ELFT>::X 468 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 469 /*CanOmitFromDynSym=*/false, this) 470 ->body(); 471 case SHN_COMMON: 472 if (Value == 0 || Value >= UINT32_MAX) 473 fatal(toString(this) + ": common symbol '" + Name + 474 "' has invalid alignment: " + Twine(Value)); 475 return elf::Symtab<ELFT>::X 476 ->addCommon(Name, Size, Value, Binding, StOther, Type, this) 477 ->body(); 478 } 479 480 switch (Binding) { 481 default: 482 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 483 case STB_GLOBAL: 484 case STB_WEAK: 485 case STB_GNU_UNIQUE: 486 if (Sec == &InputSection<ELFT>::Discarded) 487 return elf::Symtab<ELFT>::X 488 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 489 /*CanOmitFromDynSym=*/false, this) 490 ->body(); 491 return elf::Symtab<ELFT>::X 492 ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this) 493 ->body(); 494 } 495 } 496 497 template <class ELFT> void ArchiveFile::parse() { 498 File = check(Archive::create(MB), 499 MB.getBufferIdentifier() + ": failed to parse archive"); 500 501 // Read the symbol table to construct Lazy objects. 502 for (const Archive::Symbol &Sym : File->symbols()) 503 Symtab<ELFT>::X->addLazyArchive(this, Sym); 504 } 505 506 // Returns a buffer pointing to a member file containing a given symbol. 507 std::pair<MemoryBufferRef, uint64_t> 508 ArchiveFile::getMember(const Archive::Symbol *Sym) { 509 Archive::Child C = 510 check(Sym->getMember(), 511 "could not get the member for symbol " + Sym->getName()); 512 513 if (!Seen.insert(C.getChildOffset()).second) 514 return {MemoryBufferRef(), 0}; 515 516 MemoryBufferRef Ret = 517 check(C.getMemoryBufferRef(), 518 "could not get the buffer for the member defining symbol " + 519 Sym->getName()); 520 521 if (C.getParent()->isThin() && Driver->Cpio) 522 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 523 Ret.getBuffer()); 524 if (C.getParent()->isThin()) 525 return {Ret, 0}; 526 return {Ret, C.getChildOffset()}; 527 } 528 529 template <class ELFT> 530 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 531 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 532 533 template <class ELFT> 534 const typename ELFT::Shdr * 535 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 536 return check( 537 this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX)); 538 } 539 540 // Partially parse the shared object file so that we can call 541 // getSoName on this object. 542 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 543 const Elf_Shdr *DynamicSec = nullptr; 544 545 const ELFFile<ELFT> Obj = this->getObj(); 546 ArrayRef<Elf_Shdr> Sections = check(Obj.sections()); 547 for (const Elf_Shdr &Sec : Sections) { 548 switch (Sec.sh_type) { 549 default: 550 continue; 551 case SHT_DYNSYM: 552 this->initSymtab(Sections, &Sec); 553 break; 554 case SHT_DYNAMIC: 555 DynamicSec = &Sec; 556 break; 557 case SHT_SYMTAB_SHNDX: 558 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, Sections)); 559 break; 560 case SHT_GNU_versym: 561 this->VersymSec = &Sec; 562 break; 563 case SHT_GNU_verdef: 564 this->VerdefSec = &Sec; 565 break; 566 } 567 } 568 569 if (this->VersymSec && this->Symbols.empty()) 570 error("SHT_GNU_versym should be associated with symbol table"); 571 572 // DSOs are identified by soname, and they usually contain 573 // DT_SONAME tag in their header. But if they are missing, 574 // filenames are used as default sonames. 575 SoName = sys::path::filename(this->getName()); 576 577 if (!DynamicSec) 578 return; 579 580 ArrayRef<Elf_Dyn> Arr = 581 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 582 toString(this) + ": getSectionContentsAsArray failed"); 583 for (const Elf_Dyn &Dyn : Arr) { 584 if (Dyn.d_tag == DT_SONAME) { 585 uintX_t Val = Dyn.getVal(); 586 if (Val >= this->StringTable.size()) 587 fatal(toString(this) + ": invalid DT_SONAME entry"); 588 SoName = StringRef(this->StringTable.data() + Val); 589 return; 590 } 591 } 592 } 593 594 // Parse the version definitions in the object file if present. Returns a vector 595 // whose nth element contains a pointer to the Elf_Verdef for version identifier 596 // n. Version identifiers that are not definitions map to nullptr. The array 597 // always has at least length 1. 598 template <class ELFT> 599 std::vector<const typename ELFT::Verdef *> 600 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 601 std::vector<const Elf_Verdef *> Verdefs(1); 602 // We only need to process symbol versions for this DSO if it has both a 603 // versym and a verdef section, which indicates that the DSO contains symbol 604 // version definitions. 605 if (!VersymSec || !VerdefSec) 606 return Verdefs; 607 608 // The location of the first global versym entry. 609 const char *Base = this->MB.getBuffer().data(); 610 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 611 this->FirstNonLocal; 612 613 // We cannot determine the largest verdef identifier without inspecting 614 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 615 // sequentially starting from 1, so we predict that the largest identifier 616 // will be VerdefCount. 617 unsigned VerdefCount = VerdefSec->sh_info; 618 Verdefs.resize(VerdefCount + 1); 619 620 // Build the Verdefs array by following the chain of Elf_Verdef objects 621 // from the start of the .gnu.version_d section. 622 const char *Verdef = Base + VerdefSec->sh_offset; 623 for (unsigned I = 0; I != VerdefCount; ++I) { 624 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 625 Verdef += CurVerdef->vd_next; 626 unsigned VerdefIndex = CurVerdef->vd_ndx; 627 if (Verdefs.size() <= VerdefIndex) 628 Verdefs.resize(VerdefIndex + 1); 629 Verdefs[VerdefIndex] = CurVerdef; 630 } 631 632 return Verdefs; 633 } 634 635 // Fully parse the shared object file. This must be called after parseSoName(). 636 template <class ELFT> void SharedFile<ELFT>::parseRest() { 637 // Create mapping from version identifiers to Elf_Verdef entries. 638 const Elf_Versym *Versym = nullptr; 639 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 640 641 Elf_Sym_Range Syms = this->getGlobalSymbols(); 642 for (const Elf_Sym &Sym : Syms) { 643 unsigned VersymIndex = 0; 644 if (Versym) { 645 VersymIndex = Versym->vs_index; 646 ++Versym; 647 } 648 649 StringRef Name = check(Sym.getName(this->StringTable)); 650 if (Sym.isUndefined()) { 651 Undefs.push_back(Name); 652 continue; 653 } 654 655 if (Versym) { 656 // Ignore local symbols and non-default versions. 657 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 658 continue; 659 } 660 661 const Elf_Verdef *V = 662 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 663 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 664 } 665 } 666 667 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 668 Triple T(check(getBitcodeTargetTriple(MB))); 669 if (T.isLittleEndian()) 670 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 671 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 672 } 673 674 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 675 Triple T(check(getBitcodeTargetTriple(MB))); 676 switch (T.getArch()) { 677 case Triple::aarch64: 678 return EM_AARCH64; 679 case Triple::arm: 680 return EM_ARM; 681 case Triple::mips: 682 case Triple::mipsel: 683 case Triple::mips64: 684 case Triple::mips64el: 685 return EM_MIPS; 686 case Triple::ppc: 687 return EM_PPC; 688 case Triple::ppc64: 689 return EM_PPC64; 690 case Triple::x86: 691 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 692 case Triple::x86_64: 693 return EM_X86_64; 694 default: 695 fatal(MB.getBufferIdentifier() + 696 ": could not infer e_machine from bitcode target triple " + T.str()); 697 } 698 } 699 700 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 701 EKind = getBitcodeELFKind(MB); 702 EMachine = getBitcodeMachineKind(MB); 703 } 704 705 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 706 switch (GvVisibility) { 707 case GlobalValue::DefaultVisibility: 708 return STV_DEFAULT; 709 case GlobalValue::HiddenVisibility: 710 return STV_HIDDEN; 711 case GlobalValue::ProtectedVisibility: 712 return STV_PROTECTED; 713 } 714 llvm_unreachable("unknown visibility"); 715 } 716 717 template <class ELFT> 718 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 719 const lto::InputFile::Symbol &ObjSym, 720 BitcodeFile *F) { 721 StringRef NameRef = Saver.save(ObjSym.getName()); 722 uint32_t Flags = ObjSym.getFlags(); 723 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 724 725 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 726 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 727 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 728 729 int C = check(ObjSym.getComdatIndex()); 730 if (C != -1 && !KeptComdats[C]) 731 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 732 Visibility, Type, CanOmitFromDynSym, 733 F); 734 735 if (Flags & BasicSymbolRef::SF_Undefined) 736 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 737 Visibility, Type, CanOmitFromDynSym, 738 F); 739 740 if (Flags & BasicSymbolRef::SF_Common) 741 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 742 ObjSym.getCommonAlignment(), Binding, 743 Visibility, STT_OBJECT, F); 744 745 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 746 CanOmitFromDynSym, F); 747 } 748 749 template <class ELFT> 750 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 751 752 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 753 // (the fully resolved path of the archive) + member name + offset of the 754 // member in the archive. 755 // ThinLTO uses the MemoryBufferRef identifier to access its internal 756 // data structures and if two archives define two members with the same name, 757 // this causes a collision which result in only one of the objects being 758 // taken into consideration at LTO time (which very likely causes undefined 759 // symbols later in the link stage). 760 Obj = check(lto::InputFile::create(MemoryBufferRef( 761 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() + 762 utostr(OffsetInArchive))))); 763 764 std::vector<bool> KeptComdats; 765 for (StringRef S : Obj->getComdatTable()) { 766 StringRef N = Saver.save(S); 767 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second); 768 } 769 770 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 771 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 772 } 773 774 template <template <class> class T> 775 static InputFile *createELFFile(MemoryBufferRef MB) { 776 unsigned char Size; 777 unsigned char Endian; 778 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 779 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 780 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 781 782 size_t BufSize = MB.getBuffer().size(); 783 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 784 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 785 fatal(MB.getBufferIdentifier() + ": file is too short"); 786 787 InputFile *Obj; 788 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 789 Obj = make<T<ELF32LE>>(MB); 790 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 791 Obj = make<T<ELF32BE>>(MB); 792 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 793 Obj = make<T<ELF64LE>>(MB); 794 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 795 Obj = make<T<ELF64BE>>(MB); 796 else 797 fatal(MB.getBufferIdentifier() + ": invalid file class"); 798 799 if (!Config->FirstElf) 800 Config->FirstElf = Obj; 801 return Obj; 802 } 803 804 template <class ELFT> void BinaryFile::parse() { 805 StringRef Buf = MB.getBuffer(); 806 ArrayRef<uint8_t> Data = 807 makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size()); 808 809 std::string Filename = MB.getBufferIdentifier(); 810 std::transform(Filename.begin(), Filename.end(), Filename.begin(), 811 [](char C) { return isalnum(C) ? C : '_'; }); 812 Filename = "_binary_" + Filename; 813 StringRef StartName = Saver.save(Twine(Filename) + "_start"); 814 StringRef EndName = Saver.save(Twine(Filename) + "_end"); 815 StringRef SizeName = Saver.save(Twine(Filename) + "_size"); 816 817 auto *Section = 818 make<InputSection<ELFT>>(SHF_ALLOC, SHT_PROGBITS, 8, Data, ".data"); 819 Sections.push_back(Section); 820 821 elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0, 822 STB_GLOBAL, Section, nullptr); 823 elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT, 824 Data.size(), 0, STB_GLOBAL, Section, 825 nullptr); 826 elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT, 827 Data.size(), 0, STB_GLOBAL, nullptr, 828 nullptr); 829 } 830 831 static bool isBitcode(MemoryBufferRef MB) { 832 using namespace sys::fs; 833 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 834 } 835 836 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 837 uint64_t OffsetInArchive) { 838 InputFile *F = 839 isBitcode(MB) ? make<BitcodeFile>(MB) : createELFFile<ObjectFile>(MB); 840 F->ArchiveName = ArchiveName; 841 F->OffsetInArchive = OffsetInArchive; 842 return F; 843 } 844 845 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 846 return createELFFile<SharedFile>(MB); 847 } 848 849 MemoryBufferRef LazyObjectFile::getBuffer() { 850 if (Seen) 851 return MemoryBufferRef(); 852 Seen = true; 853 return MB; 854 } 855 856 template <class ELFT> void LazyObjectFile::parse() { 857 for (StringRef Sym : getSymbols()) 858 Symtab<ELFT>::X->addLazyObject(Sym, *this); 859 } 860 861 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 862 typedef typename ELFT::Shdr Elf_Shdr; 863 typedef typename ELFT::Sym Elf_Sym; 864 typedef typename ELFT::SymRange Elf_Sym_Range; 865 866 const ELFFile<ELFT> Obj(this->MB.getBuffer()); 867 ArrayRef<Elf_Shdr> Sections = check(Obj.sections()); 868 for (const Elf_Shdr &Sec : Sections) { 869 if (Sec.sh_type != SHT_SYMTAB) 870 continue; 871 Elf_Sym_Range Syms = check(Obj.symbols(&Sec)); 872 uint32_t FirstNonLocal = Sec.sh_info; 873 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec, Sections)); 874 std::vector<StringRef> V; 875 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 876 if (Sym.st_shndx != SHN_UNDEF) 877 V.push_back(check(Sym.getName(StringTable))); 878 return V; 879 } 880 return {}; 881 } 882 883 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 884 std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); 885 std::vector<StringRef> V; 886 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 887 if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) 888 V.push_back(Saver.save(Sym.getName())); 889 return V; 890 } 891 892 // Returns a vector of globally-visible defined symbol names. 893 std::vector<StringRef> LazyObjectFile::getSymbols() { 894 if (isBitcode(this->MB)) 895 return getBitcodeSymbols(); 896 897 unsigned char Size; 898 unsigned char Endian; 899 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 900 if (Size == ELFCLASS32) { 901 if (Endian == ELFDATA2LSB) 902 return getElfSymbols<ELF32LE>(); 903 return getElfSymbols<ELF32BE>(); 904 } 905 if (Endian == ELFDATA2LSB) 906 return getElfSymbols<ELF64LE>(); 907 return getElfSymbols<ELF64BE>(); 908 } 909 910 template void ArchiveFile::parse<ELF32LE>(); 911 template void ArchiveFile::parse<ELF32BE>(); 912 template void ArchiveFile::parse<ELF64LE>(); 913 template void ArchiveFile::parse<ELF64BE>(); 914 915 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 916 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 917 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 918 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 919 920 template void LazyObjectFile::parse<ELF32LE>(); 921 template void LazyObjectFile::parse<ELF32BE>(); 922 template void LazyObjectFile::parse<ELF64LE>(); 923 template void LazyObjectFile::parse<ELF64BE>(); 924 925 template class elf::ELFFileBase<ELF32LE>; 926 template class elf::ELFFileBase<ELF32BE>; 927 template class elf::ELFFileBase<ELF64LE>; 928 template class elf::ELFFileBase<ELF64BE>; 929 930 template class elf::ObjectFile<ELF32LE>; 931 template class elf::ObjectFile<ELF32BE>; 932 template class elf::ObjectFile<ELF64LE>; 933 template class elf::ObjectFile<ELF64BE>; 934 935 template class elf::SharedFile<ELF32LE>; 936 template class elf::SharedFile<ELF32BE>; 937 template class elf::SharedFile<ELF64LE>; 938 template class elf::SharedFile<ELF64BE>; 939 940 template void BinaryFile::parse<ELF32LE>(); 941 template void BinaryFile::parse<ELF32BE>(); 942 template void BinaryFile::parse<ELF64LE>(); 943 template void BinaryFile::parse<ELF64BE>(); 944