1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 using namespace llvm;
23 using namespace llvm::ELF;
24 using namespace llvm::object;
25 using namespace llvm::sys::fs;
26 
27 using namespace lld;
28 using namespace lld::elf;
29 
30 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
31 std::string elf::getFilename(InputFile *F) {
32   if (!F)
33     return "(internal)";
34   if (!F->ArchiveName.empty())
35     return (F->ArchiveName + "(" + F->getName() + ")").str();
36   return F->getName();
37 }
38 
39 template <class ELFT>
40 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
41   std::error_code EC;
42   ELFFile<ELFT> F(MB.getBuffer(), EC);
43   check(EC);
44   return F;
45 }
46 
47 template <class ELFT>
48 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
49     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {}
50 
51 template <class ELFT>
52 ELFKind ELFFileBase<ELFT>::getELFKind() {
53   if (ELFT::TargetEndianness == support::little)
54     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
55   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
56 }
57 
58 template <class ELFT>
59 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
60   if (!Symtab)
61     return Elf_Sym_Range(nullptr, nullptr);
62   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
63   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
64   uint32_t FirstNonLocal = Symtab->sh_info;
65   if (FirstNonLocal > NumSymbols)
66     fatal("invalid sh_info in symbol table");
67 
68   if (OnlyGlobals)
69     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
70   return makeArrayRef(Syms.begin(), Syms.end());
71 }
72 
73 template <class ELFT>
74 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
75   uint32_t I = Sym.st_shndx;
76   if (I == ELF::SHN_XINDEX)
77     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
78   if (I >= ELF::SHN_LORESERVE)
79     return 0;
80   return I;
81 }
82 
83 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
84   if (!Symtab)
85     return;
86   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
87 }
88 
89 template <class ELFT>
90 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
91     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
92 
93 template <class ELFT>
94 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
95   if (!this->Symtab)
96     return this->SymbolBodies;
97   uint32_t FirstNonLocal = this->Symtab->sh_info;
98   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
99 }
100 
101 template <class ELFT>
102 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
103   if (!this->Symtab)
104     return this->SymbolBodies;
105   uint32_t FirstNonLocal = this->Symtab->sh_info;
106   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
107 }
108 
109 template <class ELFT>
110 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
111   if (!this->Symtab)
112     return this->SymbolBodies;
113   return makeArrayRef(this->SymbolBodies).slice(1);
114 }
115 
116 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
117   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
118     return MipsOptions->Reginfo->ri_gp_value;
119   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
120     return MipsReginfo->Reginfo->ri_gp_value;
121   return 0;
122 }
123 
124 template <class ELFT>
125 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
126   // Read section and symbol tables.
127   initializeSections(ComdatGroups);
128   initializeSymbols();
129 }
130 
131 // Sections with SHT_GROUP and comdat bits define comdat section groups.
132 // They are identified and deduplicated by group name. This function
133 // returns a group name.
134 template <class ELFT>
135 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
136   const ELFFile<ELFT> &Obj = this->ELFObj;
137   uint32_t SymtabdSectionIndex = Sec.sh_link;
138   const Elf_Shdr *SymtabSec = check(Obj.getSection(SymtabdSectionIndex));
139   uint32_t SymIndex = Sec.sh_info;
140   const Elf_Sym *Sym = Obj.getSymbol(SymtabSec, SymIndex);
141   StringRef StringTable = check(Obj.getStringTableForSymtab(*SymtabSec));
142   return check(Sym->getName(StringTable));
143 }
144 
145 template <class ELFT>
146 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
147 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
148   const ELFFile<ELFT> &Obj = this->ELFObj;
149   ArrayRef<Elf_Word> Entries =
150       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
151   if (Entries.empty() || Entries[0] != GRP_COMDAT)
152     fatal("unsupported SHT_GROUP format");
153   return Entries.slice(1);
154 }
155 
156 template <class ELFT> static bool shouldMerge(const typename ELFT::Shdr &Sec) {
157   typedef typename ELFT::uint uintX_t;
158 
159   // We don't merge sections if -O0 (default is -O1). This makes sometimes
160   // the linker significantly faster, although the output will be bigger.
161   if (Config->Optimize == 0)
162     return false;
163 
164   uintX_t Flags = Sec.sh_flags;
165   if (!(Flags & SHF_MERGE))
166     return false;
167   if (Flags & SHF_WRITE)
168     fatal("writable SHF_MERGE sections are not supported");
169   uintX_t EntSize = Sec.sh_entsize;
170   if (!EntSize || Sec.sh_size % EntSize)
171     fatal("SHF_MERGE section size must be a multiple of sh_entsize");
172 
173   // Don't try to merge if the alignment is larger than the sh_entsize and this
174   // is not SHF_STRINGS.
175   //
176   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
177   // It would be equivalent for the producer of the .o to just set a larger
178   // sh_entsize.
179   if (Flags & SHF_STRINGS)
180     return true;
181 
182   return Sec.sh_addralign <= EntSize;
183 }
184 
185 template <class ELFT>
186 void elf::ObjectFile<ELFT>::initializeSections(
187     DenseSet<StringRef> &ComdatGroups) {
188   uint64_t Size = this->ELFObj.getNumSections();
189   Sections.resize(Size);
190   unsigned I = -1;
191   const ELFFile<ELFT> &Obj = this->ELFObj;
192   for (const Elf_Shdr &Sec : Obj.sections()) {
193     ++I;
194     if (Sections[I] == &InputSection<ELFT>::Discarded)
195       continue;
196 
197     switch (Sec.sh_type) {
198     case SHT_GROUP:
199       Sections[I] = &InputSection<ELFT>::Discarded;
200       if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
201         continue;
202       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
203         if (SecIndex >= Size)
204           fatal("invalid section index in group");
205         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
206       }
207       break;
208     case SHT_SYMTAB:
209       this->Symtab = &Sec;
210       break;
211     case SHT_SYMTAB_SHNDX:
212       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
213       break;
214     case SHT_STRTAB:
215     case SHT_NULL:
216       break;
217     case SHT_RELA:
218     case SHT_REL: {
219       // This section contains relocation information.
220       // If -r is given, we do not interpret or apply relocation
221       // but just copy relocation sections to output.
222       if (Config->Relocatable) {
223         Sections[I] = new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
224         break;
225       }
226 
227       // Find the relocation target section and associate this
228       // section with it.
229       InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
230       if (!Target)
231         break;
232       if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
233         S->RelocSections.push_back(&Sec);
234         break;
235       }
236       if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
237         if (S->RelocSection)
238           fatal("multiple relocation sections to .eh_frame are not supported");
239         S->RelocSection = &Sec;
240         break;
241       }
242       fatal("relocations pointing to SHF_MERGE are not supported");
243     }
244     case SHT_ARM_ATTRIBUTES:
245       // FIXME: ARM meta-data section. At present attributes are ignored,
246       // they can be used to reason about object compatibility.
247       Sections[I] = &InputSection<ELFT>::Discarded;
248       break;
249     default:
250       Sections[I] = createInputSection(Sec);
251     }
252   }
253 }
254 
255 template <class ELFT>
256 InputSectionBase<ELFT> *
257 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
258   uint32_t Idx = Sec.sh_info;
259   if (Idx >= Sections.size())
260     fatal("invalid relocated section index");
261   InputSectionBase<ELFT> *Target = Sections[Idx];
262 
263   // Strictly speaking, a relocation section must be included in the
264   // group of the section it relocates. However, LLVM 3.3 and earlier
265   // would fail to do so, so we gracefully handle that case.
266   if (Target == &InputSection<ELFT>::Discarded)
267     return nullptr;
268 
269   if (!Target)
270     fatal("unsupported relocation reference");
271   return Target;
272 }
273 
274 template <class ELFT>
275 InputSectionBase<ELFT> *
276 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
277   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
278 
279   // .note.GNU-stack is a marker section to control the presence of
280   // PT_GNU_STACK segment in outputs. Since the presence of the segment
281   // is controlled only by the command line option (-z execstack) in LLD,
282   // .note.GNU-stack is ignored.
283   if (Name == ".note.GNU-stack")
284     return &InputSection<ELFT>::Discarded;
285 
286   if (Name == ".note.GNU-split-stack") {
287     error("objects using splitstacks are not supported");
288     return &InputSection<ELFT>::Discarded;
289   }
290 
291   if (Config->StripDebug && Name.startswith(".debug"))
292     return &InputSection<ELFT>::Discarded;
293 
294   // A MIPS object file has a special sections that contain register
295   // usage info, which need to be handled by the linker specially.
296   if (Config->EMachine == EM_MIPS) {
297     if (Name == ".reginfo") {
298       MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec));
299       return MipsReginfo.get();
300     }
301     if (Name == ".MIPS.options") {
302       MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec));
303       return MipsOptions.get();
304     }
305   }
306 
307   // We dont need special handling of .eh_frame sections if relocatable
308   // output was choosen. Proccess them as usual input sections.
309   if (!Config->Relocatable && Name == ".eh_frame")
310     return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec);
311   if (shouldMerge<ELFT>(Sec))
312     return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec);
313   return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
314 }
315 
316 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
317   this->initStringTable();
318   Elf_Sym_Range Syms = this->getElfSymbols(false);
319   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
320   SymbolBodies.reserve(NumSymbols);
321   for (const Elf_Sym &Sym : Syms)
322     SymbolBodies.push_back(createSymbolBody(&Sym));
323 }
324 
325 template <class ELFT>
326 InputSectionBase<ELFT> *
327 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
328   uint32_t Index = this->getSectionIndex(Sym);
329   if (Index == 0)
330     return nullptr;
331   if (Index >= Sections.size() || !Sections[Index])
332     fatal("invalid section index");
333   InputSectionBase<ELFT> *S = Sections[Index];
334   if (S == &InputSectionBase<ELFT>::Discarded)
335     return S;
336   return S->Repl;
337 }
338 
339 template <class ELFT>
340 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
341   unsigned char Binding = Sym->getBinding();
342   InputSectionBase<ELFT> *Sec = getSection(*Sym);
343   if (Binding == STB_LOCAL) {
344     if (Sym->st_shndx == SHN_UNDEF)
345       return new (Alloc) Undefined(Sym->st_name, Sym->st_other, Sym->getType());
346     return new (Alloc) DefinedRegular<ELFT>(*Sym, Sec);
347   }
348 
349   StringRef Name = check(Sym->getName(this->StringTable));
350 
351   switch (Sym->st_shndx) {
352   case SHN_UNDEF:
353     return elf::Symtab<ELFT>::X
354         ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
355                        /*CanOmitFromDynSym*/ false, this)
356         ->body();
357   case SHN_COMMON:
358     return elf::Symtab<ELFT>::X
359         ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other,
360                     Sym->getType(), this)
361         ->body();
362   }
363 
364   switch (Binding) {
365   default:
366     fatal("unexpected binding");
367   case STB_GLOBAL:
368   case STB_WEAK:
369   case STB_GNU_UNIQUE:
370     if (Sec == &InputSection<ELFT>::Discarded)
371       return elf::Symtab<ELFT>::X
372           ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
373                          /*CanOmitFromDynSym*/ false, this)
374           ->body();
375     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
376   }
377 }
378 
379 template <class ELFT> void ArchiveFile::parse() {
380   File = check(Archive::create(MB), "failed to parse archive");
381 
382   // Read the symbol table to construct Lazy objects.
383   for (const Archive::Symbol &Sym : File->symbols())
384     Symtab<ELFT>::X->addLazyArchive(this, Sym);
385 }
386 
387 // Returns a buffer pointing to a member file containing a given symbol.
388 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
389   Archive::Child C =
390       check(Sym->getMember(),
391             "could not get the member for symbol " + Sym->getName());
392 
393   if (!Seen.insert(C.getChildOffset()).second)
394     return MemoryBufferRef();
395 
396   MemoryBufferRef Ret =
397       check(C.getMemoryBufferRef(),
398             "could not get the buffer for the member defining symbol " +
399                 Sym->getName());
400 
401   if (C.getParent()->isThin() && Driver->Cpio)
402     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
403                          Ret.getBuffer());
404 
405   return Ret;
406 }
407 
408 template <class ELFT>
409 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
410     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
411 
412 template <class ELFT>
413 const typename ELFT::Shdr *
414 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
415   uint32_t Index = this->getSectionIndex(Sym);
416   if (Index == 0)
417     return nullptr;
418   return check(this->ELFObj.getSection(Index));
419 }
420 
421 // Partially parse the shared object file so that we can call
422 // getSoName on this object.
423 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
424   typedef typename ELFT::Dyn Elf_Dyn;
425   typedef typename ELFT::uint uintX_t;
426   const Elf_Shdr *DynamicSec = nullptr;
427 
428   const ELFFile<ELFT> Obj = this->ELFObj;
429   for (const Elf_Shdr &Sec : Obj.sections()) {
430     switch (Sec.sh_type) {
431     default:
432       continue;
433     case SHT_DYNSYM:
434       this->Symtab = &Sec;
435       break;
436     case SHT_DYNAMIC:
437       DynamicSec = &Sec;
438       break;
439     case SHT_SYMTAB_SHNDX:
440       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
441       break;
442     case SHT_GNU_versym:
443       this->VersymSec = &Sec;
444       break;
445     case SHT_GNU_verdef:
446       this->VerdefSec = &Sec;
447       break;
448     }
449   }
450 
451   this->initStringTable();
452   SoName = this->getName();
453 
454   if (!DynamicSec)
455     return;
456   auto *Begin =
457       reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset);
458   const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn);
459 
460   for (const Elf_Dyn &Dyn : make_range(Begin, End)) {
461     if (Dyn.d_tag == DT_SONAME) {
462       uintX_t Val = Dyn.getVal();
463       if (Val >= this->StringTable.size())
464         fatal("invalid DT_SONAME entry");
465       SoName = StringRef(this->StringTable.data() + Val);
466       return;
467     }
468   }
469 }
470 
471 // Parse the version definitions in the object file if present. Returns a vector
472 // whose nth element contains a pointer to the Elf_Verdef for version identifier
473 // n. Version identifiers that are not definitions map to nullptr. The array
474 // always has at least length 1.
475 template <class ELFT>
476 std::vector<const typename ELFT::Verdef *>
477 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
478   std::vector<const Elf_Verdef *> Verdefs(1);
479   // We only need to process symbol versions for this DSO if it has both a
480   // versym and a verdef section, which indicates that the DSO contains symbol
481   // version definitions.
482   if (!VersymSec || !VerdefSec)
483     return Verdefs;
484 
485   // The location of the first global versym entry.
486   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
487                                                 VersymSec->sh_offset) +
488            this->Symtab->sh_info;
489 
490   // We cannot determine the largest verdef identifier without inspecting
491   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
492   // sequentially starting from 1, so we predict that the largest identifier
493   // will be VerdefCount.
494   unsigned VerdefCount = VerdefSec->sh_info;
495   Verdefs.resize(VerdefCount + 1);
496 
497   // Build the Verdefs array by following the chain of Elf_Verdef objects
498   // from the start of the .gnu.version_d section.
499   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
500   for (unsigned I = 0; I != VerdefCount; ++I) {
501     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
502     Verdef += CurVerdef->vd_next;
503     unsigned VerdefIndex = CurVerdef->vd_ndx;
504     if (Verdefs.size() <= VerdefIndex)
505       Verdefs.resize(VerdefIndex + 1);
506     Verdefs[VerdefIndex] = CurVerdef;
507   }
508 
509   return Verdefs;
510 }
511 
512 // Fully parse the shared object file. This must be called after parseSoName().
513 template <class ELFT> void SharedFile<ELFT>::parseRest() {
514   // Create mapping from version identifiers to Elf_Verdef entries.
515   const Elf_Versym *Versym = nullptr;
516   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
517 
518   Elf_Sym_Range Syms = this->getElfSymbols(true);
519   for (const Elf_Sym &Sym : Syms) {
520     unsigned VersymIndex = 0;
521     if (Versym) {
522       VersymIndex = Versym->vs_index;
523       ++Versym;
524     }
525 
526     StringRef Name = check(Sym.getName(this->StringTable));
527     if (Sym.isUndefined()) {
528       Undefs.push_back(Name);
529       continue;
530     }
531 
532     if (Versym) {
533       // Ignore local symbols and non-default versions.
534       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
535         continue;
536     }
537 
538     const Elf_Verdef *V =
539         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
540     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
541   }
542 }
543 
544 BitcodeFile::BitcodeFile(MemoryBufferRef M) : InputFile(BitcodeKind, M) {}
545 
546 static uint8_t getGvVisibility(const GlobalValue *GV) {
547   switch (GV->getVisibility()) {
548   case GlobalValue::DefaultVisibility:
549     return STV_DEFAULT;
550   case GlobalValue::HiddenVisibility:
551     return STV_HIDDEN;
552   case GlobalValue::ProtectedVisibility:
553     return STV_PROTECTED;
554   }
555   llvm_unreachable("unknown visibility");
556 }
557 
558 template <class ELFT>
559 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats,
560                                   const IRObjectFile &Obj,
561                                   const BasicSymbolRef &Sym) {
562   const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl());
563 
564   SmallString<64> Name;
565   raw_svector_ostream OS(Name);
566   Sym.printName(OS);
567   StringRef NameRef = Saver.save(StringRef(Name));
568 
569   uint32_t Flags = Sym.getFlags();
570   bool IsWeak = Flags & BasicSymbolRef::SF_Weak;
571   uint32_t Binding = IsWeak ? STB_WEAK : STB_GLOBAL;
572 
573   uint8_t Type = STT_NOTYPE;
574   bool CanOmitFromDynSym = false;
575   // FIXME: Expose a thread-local flag for module asm symbols.
576   if (GV) {
577     if (GV->isThreadLocal())
578       Type = STT_TLS;
579     CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV);
580   }
581 
582   uint8_t Visibility;
583   if (GV)
584     Visibility = getGvVisibility(GV);
585   else
586     // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose
587     // protected visibility.
588     Visibility = STV_DEFAULT;
589 
590   if (GV)
591     if (const Comdat *C = GV->getComdat())
592       if (!KeptComdats.count(C))
593         return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
594                                              CanOmitFromDynSym, this);
595 
596   const Module &M = Obj.getModule();
597   if (Flags & BasicSymbolRef::SF_Undefined)
598     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
599                                          CanOmitFromDynSym, this);
600   if (Flags & BasicSymbolRef::SF_Common) {
601     // FIXME: Set SF_Common flag correctly for module asm symbols, and expose
602     // size and alignment.
603     assert(GV);
604     const DataLayout &DL = M.getDataLayout();
605     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
606     return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(),
607                                       Binding, Visibility, STT_OBJECT, this);
608   }
609   return Symtab<ELFT>::X->addBitcode(NameRef, IsWeak, Visibility, Type,
610                                      CanOmitFromDynSym, this);
611 }
612 
613 bool BitcodeFile::shouldSkip(uint32_t Flags) {
614   if (!(Flags & BasicSymbolRef::SF_Global))
615     return true;
616   if (Flags & BasicSymbolRef::SF_FormatSpecific)
617     return true;
618   return false;
619 }
620 
621 template <class ELFT>
622 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
623   Obj = check(IRObjectFile::create(MB, Driver->Context));
624   const Module &M = Obj->getModule();
625 
626   DenseSet<const Comdat *> KeptComdats;
627   for (const auto &P : M.getComdatSymbolTable()) {
628     StringRef N = Saver.save(P.first());
629     if (ComdatGroups.insert(N).second)
630       KeptComdats.insert(&P.second);
631   }
632 
633   for (const BasicSymbolRef &Sym : Obj->symbols())
634     if (!shouldSkip(Sym.getFlags()))
635       Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym));
636 }
637 
638 template <typename T>
639 static std::unique_ptr<InputFile> createELFFileAux(MemoryBufferRef MB) {
640   std::unique_ptr<T> Ret = llvm::make_unique<T>(MB);
641 
642   if (!Config->FirstElf)
643     Config->FirstElf = Ret.get();
644 
645   if (Config->EKind == ELFNoneKind) {
646     Config->EKind = Ret->getELFKind();
647     Config->EMachine = Ret->getEMachine();
648     if (Config->EMachine == EM_MIPS && Config->EKind == ELF64LEKind)
649       Config->Mips64EL = true;
650   }
651 
652   return std::move(Ret);
653 }
654 
655 template <template <class> class T>
656 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) {
657   unsigned char Size;
658   unsigned char Endian;
659   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
660   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
661     fatal("invalid data encoding: " + MB.getBufferIdentifier());
662 
663   if (Size == ELFCLASS32) {
664     if (Endian == ELFDATA2LSB)
665       return createELFFileAux<T<ELF32LE>>(MB);
666     return createELFFileAux<T<ELF32BE>>(MB);
667   }
668   if (Size == ELFCLASS64) {
669     if (Endian == ELFDATA2LSB)
670       return createELFFileAux<T<ELF64LE>>(MB);
671     return createELFFileAux<T<ELF64BE>>(MB);
672   }
673   fatal("invalid file class: " + MB.getBufferIdentifier());
674 }
675 
676 static bool isBitcode(MemoryBufferRef MB) {
677   using namespace sys::fs;
678   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
679 }
680 
681 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB,
682                                                  StringRef ArchiveName) {
683   std::unique_ptr<InputFile> F;
684   if (isBitcode(MB))
685     F.reset(new BitcodeFile(MB));
686   else
687     F = createELFFile<ObjectFile>(MB);
688   F->ArchiveName = ArchiveName;
689   return F;
690 }
691 
692 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) {
693   return createELFFile<SharedFile>(MB);
694 }
695 
696 MemoryBufferRef LazyObjectFile::getBuffer() {
697   if (Seen)
698     return MemoryBufferRef();
699   Seen = true;
700   return MB;
701 }
702 
703 template <class ELFT>
704 void LazyObjectFile::parse() {
705   for (StringRef Sym : getSymbols())
706     Symtab<ELFT>::X->addLazyObject(Sym, *this);
707 }
708 
709 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
710   typedef typename ELFT::Shdr Elf_Shdr;
711   typedef typename ELFT::Sym Elf_Sym;
712   typedef typename ELFT::SymRange Elf_Sym_Range;
713 
714   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
715   for (const Elf_Shdr &Sec : Obj.sections()) {
716     if (Sec.sh_type != SHT_SYMTAB)
717       continue;
718     Elf_Sym_Range Syms = Obj.symbols(&Sec);
719     uint32_t FirstNonLocal = Sec.sh_info;
720     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
721     std::vector<StringRef> V;
722     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
723       if (Sym.st_shndx != SHN_UNDEF)
724         V.push_back(check(Sym.getName(StringTable)));
725     return V;
726   }
727   return {};
728 }
729 
730 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
731   LLVMContext Context;
732   std::unique_ptr<IRObjectFile> Obj =
733       check(IRObjectFile::create(this->MB, Context));
734   std::vector<StringRef> V;
735   for (const BasicSymbolRef &Sym : Obj->symbols()) {
736     uint32_t Flags = Sym.getFlags();
737     if (BitcodeFile::shouldSkip(Flags))
738       continue;
739     if (Flags & BasicSymbolRef::SF_Undefined)
740       continue;
741     SmallString<64> Name;
742     raw_svector_ostream OS(Name);
743     Sym.printName(OS);
744     V.push_back(Saver.save(StringRef(Name)));
745   }
746   return V;
747 }
748 
749 // Returns a vector of globally-visible defined symbol names.
750 std::vector<StringRef> LazyObjectFile::getSymbols() {
751   if (isBitcode(this->MB))
752     return getBitcodeSymbols();
753 
754   unsigned char Size;
755   unsigned char Endian;
756   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
757   if (Size == ELFCLASS32) {
758     if (Endian == ELFDATA2LSB)
759       return getElfSymbols<ELF32LE>();
760     return getElfSymbols<ELF32BE>();
761   }
762   if (Endian == ELFDATA2LSB)
763     return getElfSymbols<ELF64LE>();
764   return getElfSymbols<ELF64BE>();
765 }
766 
767 template void ArchiveFile::parse<ELF32LE>();
768 template void ArchiveFile::parse<ELF32BE>();
769 template void ArchiveFile::parse<ELF64LE>();
770 template void ArchiveFile::parse<ELF64BE>();
771 
772 template void BitcodeFile::parse<ELF32LE>(llvm::DenseSet<StringRef> &);
773 template void BitcodeFile::parse<ELF32BE>(llvm::DenseSet<StringRef> &);
774 template void BitcodeFile::parse<ELF64LE>(llvm::DenseSet<StringRef> &);
775 template void BitcodeFile::parse<ELF64BE>(llvm::DenseSet<StringRef> &);
776 
777 template void LazyObjectFile::parse<ELF32LE>();
778 template void LazyObjectFile::parse<ELF32BE>();
779 template void LazyObjectFile::parse<ELF64LE>();
780 template void LazyObjectFile::parse<ELF64BE>();
781 
782 template class elf::ELFFileBase<ELF32LE>;
783 template class elf::ELFFileBase<ELF32BE>;
784 template class elf::ELFFileBase<ELF64LE>;
785 template class elf::ELFFileBase<ELF64BE>;
786 
787 template class elf::ObjectFile<ELF32LE>;
788 template class elf::ObjectFile<ELF32BE>;
789 template class elf::ObjectFile<ELF64LE>;
790 template class elf::ObjectFile<ELF64BE>;
791 
792 template class elf::SharedFile<ELF32LE>;
793 template class elf::SharedFile<ELF32BE>;
794 template class elf::SharedFile<ELF64LE>;
795 template class elf::SharedFile<ELF64BE>;
796