1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "InputSection.h" 11 #include "LinkerScript.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/LTO/LTO.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Object/ELFObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Path.h" 28 #include "llvm/Support/TarWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::sys; 35 using namespace llvm::sys::fs; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 bool InputFile::IsInGroup; 41 uint32_t InputFile::NextGroupId; 42 std::vector<BinaryFile *> elf::BinaryFiles; 43 std::vector<BitcodeFile *> elf::BitcodeFiles; 44 std::vector<LazyObjFile *> elf::LazyObjFiles; 45 std::vector<InputFile *> elf::ObjectFiles; 46 std::vector<SharedFile *> elf::SharedFiles; 47 48 std::unique_ptr<TarWriter> elf::Tar; 49 50 InputFile::InputFile(Kind K, MemoryBufferRef M) 51 : MB(M), GroupId(NextGroupId), FileKind(K) { 52 // All files within the same --{start,end}-group get the same group ID. 53 // Otherwise, a new file will get a new group ID. 54 if (!IsInGroup) 55 ++NextGroupId; 56 } 57 58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 59 // The --chroot option changes our virtual root directory. 60 // This is useful when you are dealing with files created by --reproduce. 61 if (!Config->Chroot.empty() && Path.startswith("/")) 62 Path = Saver.save(Config->Chroot + Path); 63 64 log(Path); 65 66 auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); 67 if (auto EC = MBOrErr.getError()) { 68 error("cannot open " + Path + ": " + EC.message()); 69 return None; 70 } 71 72 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 73 MemoryBufferRef MBRef = MB->getMemBufferRef(); 74 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 75 76 if (Tar) 77 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 78 return MBRef; 79 } 80 81 // All input object files must be for the same architecture 82 // (e.g. it does not make sense to link x86 object files with 83 // MIPS object files.) This function checks for that error. 84 static bool isCompatible(InputFile *File) { 85 if (!File->isElf() && !isa<BitcodeFile>(File)) 86 return true; 87 88 if (File->EKind == Config->EKind && File->EMachine == Config->EMachine) { 89 if (Config->EMachine != EM_MIPS) 90 return true; 91 if (isMipsN32Abi(File) == Config->MipsN32Abi) 92 return true; 93 } 94 95 if (!Config->Emulation.empty()) { 96 error(toString(File) + " is incompatible with " + Config->Emulation); 97 } else { 98 InputFile *Existing; 99 if (!ObjectFiles.empty()) 100 Existing = ObjectFiles[0]; 101 else if (!SharedFiles.empty()) 102 Existing = SharedFiles[0]; 103 else 104 Existing = BitcodeFiles[0]; 105 106 error(toString(File) + " is incompatible with " + toString(Existing)); 107 } 108 109 return false; 110 } 111 112 template <class ELFT> static void doParseFile(InputFile *File) { 113 // Comdat groups define "link once" sections. If two comdat groups have the 114 // same name, only one of them is linked, and the other is ignored. This set 115 // is used to uniquify them. 116 static llvm::DenseSet<llvm::CachedHashStringRef> ComdatGroups; 117 118 if (!isCompatible(File)) 119 return; 120 121 // Binary file 122 if (auto *F = dyn_cast<BinaryFile>(File)) { 123 BinaryFiles.push_back(F); 124 F->parse(); 125 return; 126 } 127 128 // .a file 129 if (auto *F = dyn_cast<ArchiveFile>(File)) { 130 F->parse(); 131 return; 132 } 133 134 // Lazy object file 135 if (auto *F = dyn_cast<LazyObjFile>(File)) { 136 LazyObjFiles.push_back(F); 137 F->parse<ELFT>(); 138 return; 139 } 140 141 if (Config->Trace) 142 message(toString(File)); 143 144 // .so file 145 if (auto *F = dyn_cast<SharedFile>(File)) { 146 F->parse<ELFT>(); 147 return; 148 } 149 150 // LLVM bitcode file 151 if (auto *F = dyn_cast<BitcodeFile>(File)) { 152 BitcodeFiles.push_back(F); 153 F->parse<ELFT>(ComdatGroups); 154 return; 155 } 156 157 // Regular object file 158 ObjectFiles.push_back(File); 159 cast<ObjFile<ELFT>>(File)->parse(ComdatGroups); 160 } 161 162 // Add symbols in File to the symbol table. 163 void elf::parseFile(InputFile *File) { 164 switch (Config->EKind) { 165 case ELF32LEKind: 166 doParseFile<ELF32LE>(File); 167 return; 168 case ELF32BEKind: 169 doParseFile<ELF32BE>(File); 170 return; 171 case ELF64LEKind: 172 doParseFile<ELF64LE>(File); 173 return; 174 case ELF64BEKind: 175 doParseFile<ELF64BE>(File); 176 return; 177 default: 178 llvm_unreachable("unknown ELFT"); 179 } 180 } 181 182 // Concatenates arguments to construct a string representing an error location. 183 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 184 std::string Filename = path::filename(Path); 185 std::string Lineno = ":" + std::to_string(Line); 186 if (Filename == Path) 187 return Filename + Lineno; 188 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 189 } 190 191 template <class ELFT> 192 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 193 InputSectionBase &Sec, uint64_t Offset) { 194 // In DWARF, functions and variables are stored to different places. 195 // First, lookup a function for a given offset. 196 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 197 return createFileLineMsg(Info->FileName, Info->Line); 198 199 // If it failed, lookup again as a variable. 200 if (Optional<std::pair<std::string, unsigned>> FileLine = 201 File.getVariableLoc(Sym.getName())) 202 return createFileLineMsg(FileLine->first, FileLine->second); 203 204 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 205 return File.SourceFile; 206 } 207 208 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 209 uint64_t Offset) { 210 if (kind() != ObjKind) 211 return ""; 212 switch (Config->EKind) { 213 default: 214 llvm_unreachable("Invalid kind"); 215 case ELF32LEKind: 216 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 217 case ELF32BEKind: 218 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 219 case ELF64LEKind: 220 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 221 case ELF64BEKind: 222 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 223 } 224 } 225 226 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 227 Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 228 for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) { 229 auto Report = [](Error Err) { 230 handleAllErrors(std::move(Err), 231 [](ErrorInfoBase &Info) { warn(Info.message()); }); 232 }; 233 Expected<const DWARFDebugLine::LineTable *> ExpectedLT = 234 Dwarf->getLineTableForUnit(CU.get(), Report); 235 const DWARFDebugLine::LineTable *LT = nullptr; 236 if (ExpectedLT) 237 LT = *ExpectedLT; 238 else 239 Report(ExpectedLT.takeError()); 240 if (!LT) 241 continue; 242 LineTables.push_back(LT); 243 244 // Loop over variable records and insert them to VariableLoc. 245 for (const auto &Entry : CU->dies()) { 246 DWARFDie Die(CU.get(), &Entry); 247 // Skip all tags that are not variables. 248 if (Die.getTag() != dwarf::DW_TAG_variable) 249 continue; 250 251 // Skip if a local variable because we don't need them for generating 252 // error messages. In general, only non-local symbols can fail to be 253 // linked. 254 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 255 continue; 256 257 // Get the source filename index for the variable. 258 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 259 if (!LT->hasFileAtIndex(File)) 260 continue; 261 262 // Get the line number on which the variable is declared. 263 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 264 265 // Here we want to take the variable name to add it into VariableLoc. 266 // Variable can have regular and linkage name associated. At first, we try 267 // to get linkage name as it can be different, for example when we have 268 // two variables in different namespaces of the same object. Use common 269 // name otherwise, but handle the case when it also absent in case if the 270 // input object file lacks some debug info. 271 StringRef Name = 272 dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), 273 dwarf::toString(Die.find(dwarf::DW_AT_name), "")); 274 if (!Name.empty()) 275 VariableLoc.insert({Name, {LT, File, Line}}); 276 } 277 } 278 } 279 280 // Returns the pair of file name and line number describing location of data 281 // object (variable, array, etc) definition. 282 template <class ELFT> 283 Optional<std::pair<std::string, unsigned>> 284 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 285 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 286 287 // Return if we have no debug information about data object. 288 auto It = VariableLoc.find(Name); 289 if (It == VariableLoc.end()) 290 return None; 291 292 // Take file name string from line table. 293 std::string FileName; 294 if (!It->second.LT->getFileNameByIndex( 295 It->second.File, nullptr, 296 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 297 return None; 298 299 return std::make_pair(FileName, It->second.Line); 300 } 301 302 // Returns source line information for a given offset 303 // using DWARF debug info. 304 template <class ELFT> 305 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 306 uint64_t Offset) { 307 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 308 309 // Detect SectionIndex for specified section. 310 uint64_t SectionIndex = object::SectionedAddress::UndefSection; 311 ArrayRef<InputSectionBase *> Sections = S->File->getSections(); 312 for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) { 313 if (S == Sections[CurIndex]) { 314 SectionIndex = CurIndex; 315 break; 316 } 317 } 318 319 // Use fake address calcuated by adding section file offset and offset in 320 // section. See comments for ObjectInfo class. 321 DILineInfo Info; 322 for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) { 323 if (LT->getFileLineInfoForAddress( 324 {S->getOffsetInFile() + Offset, SectionIndex}, nullptr, 325 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) 326 return Info; 327 } 328 return None; 329 } 330 331 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 332 std::string lld::toString(const InputFile *F) { 333 if (!F) 334 return "<internal>"; 335 336 if (F->ToStringCache.empty()) { 337 if (F->ArchiveName.empty()) 338 F->ToStringCache = F->getName(); 339 else 340 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 341 } 342 return F->ToStringCache; 343 } 344 345 ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {} 346 347 template <class ELFT> void ELFFileBase::parseHeader() { 348 if (ELFT::TargetEndianness == support::little) 349 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 350 else 351 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 352 353 EMachine = getObj<ELFT>().getHeader()->e_machine; 354 OSABI = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 355 ABIVersion = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 356 } 357 358 template <class ELFT> 359 void ELFFileBase::initSymtab(ArrayRef<typename ELFT::Shdr> Sections, 360 const typename ELFT::Shdr *Symtab) { 361 FirstGlobal = Symtab->sh_info; 362 ArrayRef<typename ELFT::Sym> ELFSyms = 363 CHECK(getObj<ELFT>().symbols(Symtab), this); 364 if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size()) 365 fatal(toString(this) + ": invalid sh_info in symbol table"); 366 this->ELFSyms = reinterpret_cast<const void *>(ELFSyms.data()); 367 this->NumELFSyms = ELFSyms.size(); 368 369 StringTable = 370 CHECK(getObj<ELFT>().getStringTableForSymtab(*Symtab, Sections), this); 371 } 372 373 template <class ELFT> 374 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 375 : ELFFileBase(ObjKind, M) { 376 parseHeader<ELFT>(); 377 this->ArchiveName = ArchiveName; 378 } 379 380 template <class ELFT> 381 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 382 return CHECK( 383 this->getObj().getSectionIndex(&Sym, getELFSyms<ELFT>(), ShndxTable), 384 this); 385 } 386 387 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 388 if (this->Symbols.empty()) 389 return {}; 390 return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); 391 } 392 393 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 394 return makeArrayRef(this->Symbols).slice(this->FirstGlobal); 395 } 396 397 template <class ELFT> 398 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 399 // Read a section table. JustSymbols is usually false. 400 if (this->JustSymbols) 401 initializeJustSymbols(); 402 else 403 initializeSections(ComdatGroups); 404 405 // Read a symbol table. 406 initializeSymbols(); 407 } 408 409 // Sections with SHT_GROUP and comdat bits define comdat section groups. 410 // They are identified and deduplicated by group name. This function 411 // returns a group name. 412 template <class ELFT> 413 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 414 const Elf_Shdr &Sec) { 415 // Group signatures are stored as symbol names in object files. 416 // sh_info contains a symbol index, so we fetch a symbol and read its name. 417 if (this->getELFSyms<ELFT>().empty()) 418 this->initSymtab<ELFT>( 419 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 420 421 const Elf_Sym *Sym = 422 CHECK(object::getSymbol<ELFT>(this->getELFSyms<ELFT>(), Sec.sh_info), this); 423 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 424 425 // As a special case, if a symbol is a section symbol and has no name, 426 // we use a section name as a signature. 427 // 428 // Such SHT_GROUP sections are invalid from the perspective of the ELF 429 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 430 // older produce such sections as outputs for the -r option, so we need 431 // a bug-compatibility. 432 if (Signature.empty() && Sym->getType() == STT_SECTION) 433 return getSectionName(Sec); 434 return Signature; 435 } 436 437 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 438 // On a regular link we don't merge sections if -O0 (default is -O1). This 439 // sometimes makes the linker significantly faster, although the output will 440 // be bigger. 441 // 442 // Doing the same for -r would create a problem as it would combine sections 443 // with different sh_entsize. One option would be to just copy every SHF_MERGE 444 // section as is to the output. While this would produce a valid ELF file with 445 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 446 // they see two .debug_str. We could have separate logic for combining 447 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 448 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 449 // logic for -r. 450 if (Config->Optimize == 0 && !Config->Relocatable) 451 return false; 452 453 // A mergeable section with size 0 is useless because they don't have 454 // any data to merge. A mergeable string section with size 0 can be 455 // argued as invalid because it doesn't end with a null character. 456 // We'll avoid a mess by handling them as if they were non-mergeable. 457 if (Sec.sh_size == 0) 458 return false; 459 460 // Check for sh_entsize. The ELF spec is not clear about the zero 461 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 462 // the section does not hold a table of fixed-size entries". We know 463 // that Rust 1.13 produces a string mergeable section with a zero 464 // sh_entsize. Here we just accept it rather than being picky about it. 465 uint64_t EntSize = Sec.sh_entsize; 466 if (EntSize == 0) 467 return false; 468 if (Sec.sh_size % EntSize) 469 fatal(toString(this) + 470 ": SHF_MERGE section size must be a multiple of sh_entsize"); 471 472 uint64_t Flags = Sec.sh_flags; 473 if (!(Flags & SHF_MERGE)) 474 return false; 475 if (Flags & SHF_WRITE) 476 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 477 478 return true; 479 } 480 481 // This is for --just-symbols. 482 // 483 // --just-symbols is a very minor feature that allows you to link your 484 // output against other existing program, so that if you load both your 485 // program and the other program into memory, your output can refer the 486 // other program's symbols. 487 // 488 // When the option is given, we link "just symbols". The section table is 489 // initialized with null pointers. 490 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 491 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 492 this->Sections.resize(ObjSections.size()); 493 494 for (const Elf_Shdr &Sec : ObjSections) { 495 if (Sec.sh_type != SHT_SYMTAB) 496 continue; 497 this->initSymtab<ELFT>(ObjSections, &Sec); 498 return; 499 } 500 } 501 502 template <class ELFT> 503 void ObjFile<ELFT>::initializeSections( 504 DenseSet<CachedHashStringRef> &ComdatGroups) { 505 const ELFFile<ELFT> &Obj = this->getObj(); 506 507 ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); 508 uint64_t Size = ObjSections.size(); 509 this->Sections.resize(Size); 510 this->SectionStringTable = 511 CHECK(Obj.getSectionStringTable(ObjSections), this); 512 513 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 514 if (this->Sections[I] == &InputSection::Discarded) 515 continue; 516 const Elf_Shdr &Sec = ObjSections[I]; 517 518 if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 519 CGProfile = 520 check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec)); 521 522 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 523 // if -r is given, we'll let the final link discard such sections. 524 // This is compatible with GNU. 525 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 526 if (Sec.sh_type == SHT_LLVM_ADDRSIG) { 527 // We ignore the address-significance table if we know that the object 528 // file was created by objcopy or ld -r. This is because these tools 529 // will reorder the symbols in the symbol table, invalidating the data 530 // in the address-significance table, which refers to symbols by index. 531 if (Sec.sh_link != 0) 532 this->AddrsigSec = &Sec; 533 else if (Config->ICF == ICFLevel::Safe) 534 warn(toString(this) + ": --icf=safe is incompatible with object " 535 "files created using objcopy or ld -r"); 536 } 537 this->Sections[I] = &InputSection::Discarded; 538 continue; 539 } 540 541 switch (Sec.sh_type) { 542 case SHT_GROUP: { 543 // De-duplicate section groups by their signatures. 544 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 545 this->Sections[I] = &InputSection::Discarded; 546 547 548 ArrayRef<Elf_Word> Entries = 549 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 550 if (Entries.empty()) 551 fatal(toString(this) + ": empty SHT_GROUP"); 552 553 // The first word of a SHT_GROUP section contains flags. Currently, 554 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 555 // An group with the empty flag doesn't define anything; such sections 556 // are just skipped. 557 if (Entries[0] == 0) 558 continue; 559 560 if (Entries[0] != GRP_COMDAT) 561 fatal(toString(this) + ": unsupported SHT_GROUP format"); 562 563 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 564 if (IsNew) { 565 if (Config->Relocatable) 566 this->Sections[I] = createInputSection(Sec); 567 continue; 568 } 569 570 // Otherwise, discard group members. 571 for (uint32_t SecIndex : Entries.slice(1)) { 572 if (SecIndex >= Size) 573 fatal(toString(this) + 574 ": invalid section index in group: " + Twine(SecIndex)); 575 this->Sections[SecIndex] = &InputSection::Discarded; 576 } 577 break; 578 } 579 case SHT_SYMTAB: 580 this->initSymtab<ELFT>(ObjSections, &Sec); 581 break; 582 case SHT_SYMTAB_SHNDX: 583 ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 584 break; 585 case SHT_STRTAB: 586 case SHT_NULL: 587 break; 588 default: 589 this->Sections[I] = createInputSection(Sec); 590 } 591 592 // .ARM.exidx sections have a reverse dependency on the InputSection they 593 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 594 if (Sec.sh_flags & SHF_LINK_ORDER) { 595 InputSectionBase *LinkSec = nullptr; 596 if (Sec.sh_link < this->Sections.size()) 597 LinkSec = this->Sections[Sec.sh_link]; 598 if (!LinkSec) 599 fatal(toString(this) + 600 ": invalid sh_link index: " + Twine(Sec.sh_link)); 601 602 InputSection *IS = cast<InputSection>(this->Sections[I]); 603 LinkSec->DependentSections.push_back(IS); 604 if (!isa<InputSection>(LinkSec)) 605 error("a section " + IS->Name + 606 " with SHF_LINK_ORDER should not refer a non-regular " 607 "section: " + 608 toString(LinkSec)); 609 } 610 } 611 } 612 613 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 614 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 615 // the input objects have been compiled. 616 static void updateARMVFPArgs(const ARMAttributeParser &Attributes, 617 const InputFile *F) { 618 if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 619 // If an ABI tag isn't present then it is implicitly given the value of 0 620 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 621 // including some in glibc that don't use FP args (and should have value 3) 622 // don't have the attribute so we do not consider an implicit value of 0 623 // as a clash. 624 return; 625 626 unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 627 ARMVFPArgKind Arg; 628 switch (VFPArgs) { 629 case ARMBuildAttrs::BaseAAPCS: 630 Arg = ARMVFPArgKind::Base; 631 break; 632 case ARMBuildAttrs::HardFPAAPCS: 633 Arg = ARMVFPArgKind::VFP; 634 break; 635 case ARMBuildAttrs::ToolChainFPPCS: 636 // Tool chain specific convention that conforms to neither AAPCS variant. 637 Arg = ARMVFPArgKind::ToolChain; 638 break; 639 case ARMBuildAttrs::CompatibleFPAAPCS: 640 // Object compatible with all conventions. 641 return; 642 default: 643 error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); 644 return; 645 } 646 // Follow ld.bfd and error if there is a mix of calling conventions. 647 if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) 648 error(toString(F) + ": incompatible Tag_ABI_VFP_args"); 649 else 650 Config->ARMVFPArgs = Arg; 651 } 652 653 // The ARM support in lld makes some use of instructions that are not available 654 // on all ARM architectures. Namely: 655 // - Use of BLX instruction for interworking between ARM and Thumb state. 656 // - Use of the extended Thumb branch encoding in relocation. 657 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 658 // The ARM Attributes section contains information about the architecture chosen 659 // at compile time. We follow the convention that if at least one input object 660 // is compiled with an architecture that supports these features then lld is 661 // permitted to use them. 662 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 663 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 664 return; 665 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 666 switch (Arch) { 667 case ARMBuildAttrs::Pre_v4: 668 case ARMBuildAttrs::v4: 669 case ARMBuildAttrs::v4T: 670 // Architectures prior to v5 do not support BLX instruction 671 break; 672 case ARMBuildAttrs::v5T: 673 case ARMBuildAttrs::v5TE: 674 case ARMBuildAttrs::v5TEJ: 675 case ARMBuildAttrs::v6: 676 case ARMBuildAttrs::v6KZ: 677 case ARMBuildAttrs::v6K: 678 Config->ARMHasBlx = true; 679 // Architectures used in pre-Cortex processors do not support 680 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 681 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 682 break; 683 default: 684 // All other Architectures have BLX and extended branch encoding 685 Config->ARMHasBlx = true; 686 Config->ARMJ1J2BranchEncoding = true; 687 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 688 // All Architectures used in Cortex processors with the exception 689 // of v6-M and v6S-M have the MOVT and MOVW instructions. 690 Config->ARMHasMovtMovw = true; 691 break; 692 } 693 } 694 695 template <class ELFT> 696 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 697 uint32_t Idx = Sec.sh_info; 698 if (Idx >= this->Sections.size()) 699 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 700 InputSectionBase *Target = this->Sections[Idx]; 701 702 // Strictly speaking, a relocation section must be included in the 703 // group of the section it relocates. However, LLVM 3.3 and earlier 704 // would fail to do so, so we gracefully handle that case. 705 if (Target == &InputSection::Discarded) 706 return nullptr; 707 708 if (!Target) 709 fatal(toString(this) + ": unsupported relocation reference"); 710 return Target; 711 } 712 713 // Create a regular InputSection class that has the same contents 714 // as a given section. 715 static InputSection *toRegularSection(MergeInputSection *Sec) { 716 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 717 Sec->data(), Sec->Name); 718 } 719 720 template <class ELFT> 721 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 722 StringRef Name = getSectionName(Sec); 723 724 switch (Sec.sh_type) { 725 case SHT_ARM_ATTRIBUTES: { 726 if (Config->EMachine != EM_ARM) 727 break; 728 ARMAttributeParser Attributes; 729 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 730 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 731 updateSupportedARMFeatures(Attributes); 732 updateARMVFPArgs(Attributes, this); 733 734 // FIXME: Retain the first attribute section we see. The eglibc ARM 735 // dynamic loaders require the presence of an attribute section for dlopen 736 // to work. In a full implementation we would merge all attribute sections. 737 if (In.ARMAttributes == nullptr) { 738 In.ARMAttributes = make<InputSection>(*this, Sec, Name); 739 return In.ARMAttributes; 740 } 741 return &InputSection::Discarded; 742 } 743 case SHT_RELA: 744 case SHT_REL: { 745 // Find a relocation target section and associate this section with that. 746 // Target may have been discarded if it is in a different section group 747 // and the group is discarded, even though it's a violation of the 748 // spec. We handle that situation gracefully by discarding dangling 749 // relocation sections. 750 InputSectionBase *Target = getRelocTarget(Sec); 751 if (!Target) 752 return nullptr; 753 754 // This section contains relocation information. 755 // If -r is given, we do not interpret or apply relocation 756 // but just copy relocation sections to output. 757 if (Config->Relocatable) { 758 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 759 // We want to add a dependency to target, similar like we do for 760 // -emit-relocs below. This is useful for the case when linker script 761 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 762 // -r, but we faced it in the Linux kernel and have to handle such case 763 // and not to crash. 764 Target->DependentSections.push_back(RelocSec); 765 return RelocSec; 766 } 767 768 if (Target->FirstRelocation) 769 fatal(toString(this) + 770 ": multiple relocation sections to one section are not supported"); 771 772 // ELF spec allows mergeable sections with relocations, but they are 773 // rare, and it is in practice hard to merge such sections by contents, 774 // because applying relocations at end of linking changes section 775 // contents. So, we simply handle such sections as non-mergeable ones. 776 // Degrading like this is acceptable because section merging is optional. 777 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 778 Target = toRegularSection(MS); 779 this->Sections[Sec.sh_info] = Target; 780 } 781 782 if (Sec.sh_type == SHT_RELA) { 783 ArrayRef<Elf_Rela> Rels = CHECK(getObj().relas(&Sec), this); 784 Target->FirstRelocation = Rels.begin(); 785 Target->NumRelocations = Rels.size(); 786 Target->AreRelocsRela = true; 787 } else { 788 ArrayRef<Elf_Rel> Rels = CHECK(getObj().rels(&Sec), this); 789 Target->FirstRelocation = Rels.begin(); 790 Target->NumRelocations = Rels.size(); 791 Target->AreRelocsRela = false; 792 } 793 assert(isUInt<31>(Target->NumRelocations)); 794 795 // Relocation sections processed by the linker are usually removed 796 // from the output, so returning `nullptr` for the normal case. 797 // However, if -emit-relocs is given, we need to leave them in the output. 798 // (Some post link analysis tools need this information.) 799 if (Config->EmitRelocs) { 800 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 801 // We will not emit relocation section if target was discarded. 802 Target->DependentSections.push_back(RelocSec); 803 return RelocSec; 804 } 805 return nullptr; 806 } 807 } 808 809 // The GNU linker uses .note.GNU-stack section as a marker indicating 810 // that the code in the object file does not expect that the stack is 811 // executable (in terms of NX bit). If all input files have the marker, 812 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 813 // make the stack non-executable. Most object files have this section as 814 // of 2017. 815 // 816 // But making the stack non-executable is a norm today for security 817 // reasons. Failure to do so may result in a serious security issue. 818 // Therefore, we make LLD always add PT_GNU_STACK unless it is 819 // explicitly told to do otherwise (by -z execstack). Because the stack 820 // executable-ness is controlled solely by command line options, 821 // .note.GNU-stack sections are simply ignored. 822 if (Name == ".note.GNU-stack") 823 return &InputSection::Discarded; 824 825 // Split stacks is a feature to support a discontiguous stack, 826 // commonly used in the programming language Go. For the details, 827 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 828 // for split stack will include a .note.GNU-split-stack section. 829 if (Name == ".note.GNU-split-stack") { 830 if (Config->Relocatable) { 831 error("cannot mix split-stack and non-split-stack in a relocatable link"); 832 return &InputSection::Discarded; 833 } 834 this->SplitStack = true; 835 return &InputSection::Discarded; 836 } 837 838 // An object file cmpiled for split stack, but where some of the 839 // functions were compiled with the no_split_stack_attribute will 840 // include a .note.GNU-no-split-stack section. 841 if (Name == ".note.GNU-no-split-stack") { 842 this->SomeNoSplitStack = true; 843 return &InputSection::Discarded; 844 } 845 846 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 847 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 848 // sections. Drop those sections to avoid duplicate symbol errors. 849 // FIXME: This is glibc PR20543, we should remove this hack once that has been 850 // fixed for a while. 851 if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 852 Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 853 return &InputSection::Discarded; 854 855 // If we are creating a new .build-id section, strip existing .build-id 856 // sections so that the output won't have more than one .build-id. 857 // This is not usually a problem because input object files normally don't 858 // have .build-id sections, but you can create such files by 859 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 860 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 861 return &InputSection::Discarded; 862 863 // The linker merges EH (exception handling) frames and creates a 864 // .eh_frame_hdr section for runtime. So we handle them with a special 865 // class. For relocatable outputs, they are just passed through. 866 if (Name == ".eh_frame" && !Config->Relocatable) 867 return make<EhInputSection>(*this, Sec, Name); 868 869 if (shouldMerge(Sec)) 870 return make<MergeInputSection>(*this, Sec, Name); 871 return make<InputSection>(*this, Sec, Name); 872 } 873 874 template <class ELFT> 875 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 876 return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this); 877 } 878 879 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 880 this->Symbols.reserve(this->getELFSyms<ELFT>().size()); 881 for (const Elf_Sym &Sym : this->getELFSyms<ELFT>()) 882 this->Symbols.push_back(createSymbol(&Sym)); 883 } 884 885 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 886 uint32_t SecIdx = getSectionIndex(*Sym); 887 if (SecIdx >= this->Sections.size()) 888 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 889 890 InputSectionBase *Sec = this->Sections[SecIdx]; 891 uint8_t Binding = Sym->getBinding(); 892 uint8_t StOther = Sym->st_other; 893 uint8_t Type = Sym->getType(); 894 uint64_t Value = Sym->st_value; 895 uint64_t Size = Sym->st_size; 896 897 if (Binding == STB_LOCAL) { 898 if (Sym->getType() == STT_FILE) 899 SourceFile = CHECK(Sym->getName(this->StringTable), this); 900 901 if (this->StringTable.size() <= Sym->st_name) 902 fatal(toString(this) + ": invalid symbol name offset"); 903 904 StringRefZ Name = this->StringTable.data() + Sym->st_name; 905 if (Sym->st_shndx == SHN_UNDEF) 906 return make<Undefined>(this, Name, Binding, StOther, Type); 907 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 908 } 909 910 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 911 912 switch (Sym->st_shndx) { 913 case SHN_UNDEF: 914 return Symtab->addUndefined(Undefined{this, Name, Binding, StOther, Type}); 915 case SHN_COMMON: 916 if (Value == 0 || Value >= UINT32_MAX) 917 fatal(toString(this) + ": common symbol '" + Name + 918 "' has invalid alignment: " + Twine(Value)); 919 return Symtab->addCommon( 920 CommonSymbol{this, Name, Binding, StOther, Type, Value, Size}); 921 } 922 923 switch (Binding) { 924 default: 925 fatal(toString(this) + ": unexpected binding: " + Twine((int)Binding)); 926 case STB_GLOBAL: 927 case STB_WEAK: 928 case STB_GNU_UNIQUE: 929 if (Sec == &InputSection::Discarded) 930 return Symtab->addUndefined( 931 Undefined{this, Name, Binding, StOther, Type}); 932 return Symtab->addDefined( 933 Defined{this, Name, Binding, StOther, Type, Value, Size, Sec}); 934 } 935 } 936 937 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 938 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 939 File(std::move(File)) {} 940 941 void ArchiveFile::parse() { 942 for (const Archive::Symbol &Sym : File->symbols()) 943 Symtab->addLazyArchive(LazyArchive{*this, Sym}); 944 } 945 946 // Returns a buffer pointing to a member file containing a given symbol. 947 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) { 948 Archive::Child C = 949 CHECK(Sym.getMember(), toString(this) + 950 ": could not get the member for symbol " + 951 Sym.getName()); 952 953 if (!Seen.insert(C.getChildOffset()).second) 954 return nullptr; 955 956 MemoryBufferRef MB = 957 CHECK(C.getMemoryBufferRef(), 958 toString(this) + 959 ": could not get the buffer for the member defining symbol " + 960 Sym.getName()); 961 962 if (Tar && C.getParent()->isThin()) 963 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); 964 965 InputFile *File = createObjectFile( 966 MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); 967 File->GroupId = GroupId; 968 return File; 969 } 970 971 unsigned SharedFile::VernauxNum; 972 973 SharedFile::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 974 : ELFFileBase(SharedKind, M), SoName(DefaultSoName), 975 IsNeeded(!Config->AsNeeded) {} 976 977 // Parse the version definitions in the object file if present, and return a 978 // vector whose nth element contains a pointer to the Elf_Verdef for version 979 // identifier n. Version identifiers that are not definitions map to nullptr. 980 template <typename ELFT> 981 static std::vector<const void *> parseVerdefs(const uint8_t *Base, 982 const typename ELFT::Shdr *Sec) { 983 if (!Sec) 984 return {}; 985 986 // We cannot determine the largest verdef identifier without inspecting 987 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 988 // sequentially starting from 1, so we predict that the largest identifier 989 // will be VerdefCount. 990 unsigned VerdefCount = Sec->sh_info; 991 std::vector<const void *> Verdefs(VerdefCount + 1); 992 993 // Build the Verdefs array by following the chain of Elf_Verdef objects 994 // from the start of the .gnu.version_d section. 995 const uint8_t *Verdef = Base + Sec->sh_offset; 996 for (unsigned I = 0; I != VerdefCount; ++I) { 997 auto *CurVerdef = reinterpret_cast<const typename ELFT::Verdef *>(Verdef); 998 Verdef += CurVerdef->vd_next; 999 unsigned VerdefIndex = CurVerdef->vd_ndx; 1000 Verdefs.resize(VerdefIndex + 1); 1001 Verdefs[VerdefIndex] = CurVerdef; 1002 } 1003 return Verdefs; 1004 } 1005 1006 // We do not usually care about alignments of data in shared object 1007 // files because the loader takes care of it. However, if we promote a 1008 // DSO symbol to point to .bss due to copy relocation, we need to keep 1009 // the original alignment requirements. We infer it in this function. 1010 template <typename ELFT> 1011 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> Sections, 1012 const typename ELFT::Sym &Sym) { 1013 uint64_t Ret = UINT64_MAX; 1014 if (Sym.st_value) 1015 Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 1016 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) 1017 Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); 1018 return (Ret > UINT32_MAX) ? 0 : Ret; 1019 } 1020 1021 // Fully parse the shared object file. 1022 // 1023 // This function parses symbol versions. If a DSO has version information, 1024 // the file has a ".gnu.version_d" section which contains symbol version 1025 // definitions. Each symbol is associated to one version through a table in 1026 // ".gnu.version" section. That table is a parallel array for the symbol 1027 // table, and each table entry contains an index in ".gnu.version_d". 1028 // 1029 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1030 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1031 // ".gnu.version_d". 1032 // 1033 // The file format for symbol versioning is perhaps a bit more complicated 1034 // than necessary, but you can easily understand the code if you wrap your 1035 // head around the data structure described above. 1036 template <class ELFT> void SharedFile::parse() { 1037 using Elf_Dyn = typename ELFT::Dyn; 1038 using Elf_Shdr = typename ELFT::Shdr; 1039 using Elf_Sym = typename ELFT::Sym; 1040 using Elf_Verdef = typename ELFT::Verdef; 1041 using Elf_Versym = typename ELFT::Versym; 1042 1043 ArrayRef<Elf_Dyn> DynamicTags; 1044 const ELFFile<ELFT> Obj = this->getObj<ELFT>(); 1045 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 1046 1047 const Elf_Shdr *VersymSec = nullptr; 1048 const Elf_Shdr *VerdefSec = nullptr; 1049 1050 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1051 for (const Elf_Shdr &Sec : Sections) { 1052 switch (Sec.sh_type) { 1053 default: 1054 continue; 1055 case SHT_DYNSYM: 1056 this->initSymtab<ELFT>(Sections, &Sec); 1057 break; 1058 case SHT_DYNAMIC: 1059 DynamicTags = 1060 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(&Sec), this); 1061 break; 1062 case SHT_GNU_versym: 1063 VersymSec = &Sec; 1064 break; 1065 case SHT_GNU_verdef: 1066 VerdefSec = &Sec; 1067 break; 1068 } 1069 } 1070 1071 if (VersymSec && this->getELFSyms<ELFT>().empty()) { 1072 error("SHT_GNU_versym should be associated with symbol table"); 1073 return; 1074 } 1075 1076 // Search for a DT_SONAME tag to initialize this->SoName. 1077 for (const Elf_Dyn &Dyn : DynamicTags) { 1078 if (Dyn.d_tag == DT_NEEDED) { 1079 uint64_t Val = Dyn.getVal(); 1080 if (Val >= this->StringTable.size()) 1081 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1082 DtNeeded.push_back(this->StringTable.data() + Val); 1083 } else if (Dyn.d_tag == DT_SONAME) { 1084 uint64_t Val = Dyn.getVal(); 1085 if (Val >= this->StringTable.size()) 1086 fatal(toString(this) + ": invalid DT_SONAME entry"); 1087 SoName = this->StringTable.data() + Val; 1088 } 1089 } 1090 1091 // DSOs are uniquified not by filename but by soname. 1092 DenseMap<StringRef, SharedFile *>::iterator It; 1093 bool WasInserted; 1094 std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this); 1095 1096 // If a DSO appears more than once on the command line with and without 1097 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1098 // user can add an extra DSO with --no-as-needed to force it to be added to 1099 // the dependency list. 1100 It->second->IsNeeded |= IsNeeded; 1101 if (!WasInserted) 1102 return; 1103 1104 SharedFiles.push_back(this); 1105 1106 Verdefs = parseVerdefs<ELFT>(Obj.base(), VerdefSec); 1107 1108 // Parse ".gnu.version" section which is a parallel array for the symbol 1109 // table. If a given file doesn't have a ".gnu.version" section, we use 1110 // VER_NDX_GLOBAL. 1111 size_t Size = this->getELFSyms<ELFT>().size() - this->FirstGlobal; 1112 std::vector<uint32_t> Versyms(Size, VER_NDX_GLOBAL); 1113 if (VersymSec) { 1114 ArrayRef<Elf_Versym> Versym = 1115 CHECK(Obj.template getSectionContentsAsArray<Elf_Versym>(VersymSec), 1116 this) 1117 .slice(FirstGlobal); 1118 for (size_t I = 0; I < Size; ++I) 1119 Versyms[I] = Versym[I].vs_index; 1120 } 1121 1122 // System libraries can have a lot of symbols with versions. Using a 1123 // fixed buffer for computing the versions name (foo@ver) can save a 1124 // lot of allocations. 1125 SmallString<0> VersionedNameBuffer; 1126 1127 // Add symbols to the symbol table. 1128 ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms<ELFT>(); 1129 for (size_t I = 0; I < Syms.size(); ++I) { 1130 const Elf_Sym &Sym = Syms[I]; 1131 1132 // ELF spec requires that all local symbols precede weak or global 1133 // symbols in each symbol table, and the index of first non-local symbol 1134 // is stored to sh_info. If a local symbol appears after some non-local 1135 // symbol, that's a violation of the spec. 1136 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 1137 if (Sym.getBinding() == STB_LOCAL) { 1138 warn("found local symbol '" + Name + 1139 "' in global part of symbol table in file " + toString(this)); 1140 continue; 1141 } 1142 1143 if (Sym.isUndefined()) { 1144 Symbol *S = Symtab->addUndefined( 1145 Undefined{this, Name, Sym.getBinding(), Sym.st_other, Sym.getType()}); 1146 S->ExportDynamic = true; 1147 continue; 1148 } 1149 1150 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1151 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1152 // workaround for this bug. 1153 uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; 1154 if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && 1155 Name == "_gp_disp") 1156 continue; 1157 1158 uint32_t Alignment = getAlignment<ELFT>(Sections, Sym); 1159 if (!(Versyms[I] & VERSYM_HIDDEN)) { 1160 Symtab->addShared(SharedSymbol{*this, Name, Sym.getBinding(), 1161 Sym.st_other, Sym.getType(), Sym.st_value, 1162 Sym.st_size, Alignment, Idx}); 1163 } 1164 1165 // Also add the symbol with the versioned name to handle undefined symbols 1166 // with explicit versions. 1167 if (Idx == VER_NDX_GLOBAL) 1168 continue; 1169 1170 if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { 1171 error("corrupt input file: version definition index " + Twine(Idx) + 1172 " for symbol " + Name + " is out of bounds\n>>> defined in " + 1173 toString(this)); 1174 continue; 1175 } 1176 1177 StringRef VerName = 1178 this->StringTable.data() + 1179 reinterpret_cast<const Elf_Verdef *>(Verdefs[Idx])->getAux()->vda_name; 1180 VersionedNameBuffer.clear(); 1181 Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); 1182 Symtab->addShared(SharedSymbol{*this, Saver.save(Name), Sym.getBinding(), 1183 Sym.st_other, Sym.getType(), Sym.st_value, 1184 Sym.st_size, Alignment, Idx}); 1185 } 1186 } 1187 1188 static ELFKind getBitcodeELFKind(const Triple &T) { 1189 if (T.isLittleEndian()) 1190 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1191 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1192 } 1193 1194 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 1195 switch (T.getArch()) { 1196 case Triple::aarch64: 1197 return EM_AARCH64; 1198 case Triple::amdgcn: 1199 case Triple::r600: 1200 return EM_AMDGPU; 1201 case Triple::arm: 1202 case Triple::thumb: 1203 return EM_ARM; 1204 case Triple::avr: 1205 return EM_AVR; 1206 case Triple::mips: 1207 case Triple::mipsel: 1208 case Triple::mips64: 1209 case Triple::mips64el: 1210 return EM_MIPS; 1211 case Triple::msp430: 1212 return EM_MSP430; 1213 case Triple::ppc: 1214 return EM_PPC; 1215 case Triple::ppc64: 1216 case Triple::ppc64le: 1217 return EM_PPC64; 1218 case Triple::x86: 1219 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 1220 case Triple::x86_64: 1221 return EM_X86_64; 1222 default: 1223 error(Path + ": could not infer e_machine from bitcode target triple " + 1224 T.str()); 1225 return EM_NONE; 1226 } 1227 } 1228 1229 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 1230 uint64_t OffsetInArchive) 1231 : InputFile(BitcodeKind, MB) { 1232 this->ArchiveName = ArchiveName; 1233 1234 std::string Path = MB.getBufferIdentifier().str(); 1235 if (Config->ThinLTOIndexOnly) 1236 Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); 1237 1238 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1239 // name. If two archives define two members with the same name, this 1240 // causes a collision which result in only one of the objects being taken 1241 // into consideration at LTO time (which very likely causes undefined 1242 // symbols later in the link stage). So we append file offset to make 1243 // filename unique. 1244 StringRef Name = ArchiveName.empty() 1245 ? Saver.save(Path) 1246 : Saver.save(ArchiveName + "(" + Path + " at " + 1247 utostr(OffsetInArchive) + ")"); 1248 MemoryBufferRef MBRef(MB.getBuffer(), Name); 1249 1250 Obj = CHECK(lto::InputFile::create(MBRef), this); 1251 1252 Triple T(Obj->getTargetTriple()); 1253 EKind = getBitcodeELFKind(T); 1254 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 1255 } 1256 1257 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 1258 switch (GvVisibility) { 1259 case GlobalValue::DefaultVisibility: 1260 return STV_DEFAULT; 1261 case GlobalValue::HiddenVisibility: 1262 return STV_HIDDEN; 1263 case GlobalValue::ProtectedVisibility: 1264 return STV_PROTECTED; 1265 } 1266 llvm_unreachable("unknown visibility"); 1267 } 1268 1269 template <class ELFT> 1270 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 1271 const lto::InputFile::Symbol &ObjSym, 1272 BitcodeFile &F) { 1273 StringRef Name = Saver.save(ObjSym.getName()); 1274 uint8_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1275 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 1276 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 1277 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 1278 1279 int C = ObjSym.getComdatIndex(); 1280 if (ObjSym.isUndefined() || (C != -1 && !KeptComdats[C])) { 1281 Undefined New(&F, Name, Binding, Visibility, Type); 1282 if (CanOmitFromDynSym) 1283 New.ExportDynamic = false; 1284 return Symtab->addUndefined(New); 1285 } 1286 1287 if (ObjSym.isCommon()) 1288 return Symtab->addCommon( 1289 CommonSymbol{&F, Name, Binding, Visibility, STT_OBJECT, 1290 ObjSym.getCommonAlignment(), ObjSym.getCommonSize()}); 1291 1292 Defined New(&F, Name, Binding, Visibility, Type, 0, 0, nullptr); 1293 if (CanOmitFromDynSym) 1294 New.ExportDynamic = false; 1295 return Symtab->addDefined(New); 1296 } 1297 1298 template <class ELFT> 1299 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 1300 std::vector<bool> KeptComdats; 1301 for (StringRef S : Obj->getComdatTable()) 1302 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 1303 1304 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1305 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1306 } 1307 1308 static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) { 1309 unsigned char Size; 1310 unsigned char Endian; 1311 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 1312 1313 auto Fatal = [&](StringRef Msg) { 1314 StringRef Filename = MB.getBufferIdentifier(); 1315 if (ArchiveName.empty()) 1316 fatal(Filename + ": " + Msg); 1317 else 1318 fatal(ArchiveName + "(" + Filename + "): " + Msg); 1319 }; 1320 1321 if (!MB.getBuffer().startswith(ElfMagic)) 1322 Fatal("not an ELF file"); 1323 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 1324 Fatal("corrupted ELF file: invalid data encoding"); 1325 if (Size != ELFCLASS32 && Size != ELFCLASS64) 1326 Fatal("corrupted ELF file: invalid file class"); 1327 1328 size_t BufSize = MB.getBuffer().size(); 1329 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 1330 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 1331 Fatal("corrupted ELF file: file is too short"); 1332 1333 if (Size == ELFCLASS32) 1334 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 1335 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 1336 } 1337 1338 void BinaryFile::parse() { 1339 ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer()); 1340 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1341 8, Data, ".data"); 1342 Sections.push_back(Section); 1343 1344 // For each input file foo that is embedded to a result as a binary 1345 // blob, we define _binary_foo_{start,end,size} symbols, so that 1346 // user programs can access blobs by name. Non-alphanumeric 1347 // characters in a filename are replaced with underscore. 1348 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1349 for (size_t I = 0; I < S.size(); ++I) 1350 if (!isAlnum(S[I])) 1351 S[I] = '_'; 1352 1353 Symtab->addDefined(Defined{nullptr, Saver.save(S + "_start"), STB_GLOBAL, 1354 STV_DEFAULT, STT_OBJECT, 0, 0, Section}); 1355 Symtab->addDefined(Defined{nullptr, Saver.save(S + "_end"), STB_GLOBAL, 1356 STV_DEFAULT, STT_OBJECT, Data.size(), 0, Section}); 1357 Symtab->addDefined(Defined{nullptr, Saver.save(S + "_size"), STB_GLOBAL, 1358 STV_DEFAULT, STT_OBJECT, Data.size(), 0, nullptr}); 1359 } 1360 1361 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1362 uint64_t OffsetInArchive) { 1363 if (isBitcode(MB)) 1364 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1365 1366 switch (getELFKind(MB, ArchiveName)) { 1367 case ELF32LEKind: 1368 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1369 case ELF32BEKind: 1370 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1371 case ELF64LEKind: 1372 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1373 case ELF64BEKind: 1374 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1375 default: 1376 llvm_unreachable("getELFKind"); 1377 } 1378 } 1379 1380 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1381 auto *F = make<SharedFile>(MB, DefaultSoName); 1382 switch (getELFKind(MB, "")) { 1383 case ELF32LEKind: 1384 F->parseHeader<ELF32LE>(); 1385 break; 1386 case ELF32BEKind: 1387 F->parseHeader<ELF32BE>(); 1388 break; 1389 case ELF64LEKind: 1390 F->parseHeader<ELF64LE>(); 1391 break; 1392 case ELF64BEKind: 1393 F->parseHeader<ELF64BE>(); 1394 break; 1395 default: 1396 llvm_unreachable("getELFKind"); 1397 } 1398 return F; 1399 } 1400 1401 MemoryBufferRef LazyObjFile::getBuffer() { 1402 if (AddedToLink) 1403 return MemoryBufferRef(); 1404 AddedToLink = true; 1405 return MB; 1406 } 1407 1408 InputFile *LazyObjFile::fetch() { 1409 MemoryBufferRef MBRef = getBuffer(); 1410 if (MBRef.getBuffer().empty()) 1411 return nullptr; 1412 1413 InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1414 File->GroupId = GroupId; 1415 return File; 1416 } 1417 1418 template <class ELFT> void LazyObjFile::parse() { 1419 // A lazy object file wraps either a bitcode file or an ELF file. 1420 if (isBitcode(this->MB)) { 1421 std::unique_ptr<lto::InputFile> Obj = 1422 CHECK(lto::InputFile::create(this->MB), this); 1423 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) { 1424 if (Sym.isUndefined()) 1425 continue; 1426 Symtab->addLazyObject(LazyObject{*this, Saver.save(Sym.getName())}); 1427 } 1428 return; 1429 } 1430 1431 if (getELFKind(this->MB, ArchiveName) != Config->EKind) { 1432 error("incompatible file: " + this->MB.getBufferIdentifier()); 1433 return; 1434 } 1435 1436 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); 1437 ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); 1438 1439 for (const typename ELFT::Shdr &Sec : Sections) { 1440 if (Sec.sh_type != SHT_SYMTAB) 1441 continue; 1442 1443 typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this); 1444 uint32_t FirstGlobal = Sec.sh_info; 1445 StringRef StringTable = 1446 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1447 1448 for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal)) { 1449 if (Sym.st_shndx == SHN_UNDEF) 1450 continue; 1451 Symtab->addLazyObject( 1452 LazyObject{*this, CHECK(Sym.getName(StringTable), this)}); 1453 } 1454 return; 1455 } 1456 } 1457 1458 std::string elf::replaceThinLTOSuffix(StringRef Path) { 1459 StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; 1460 StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; 1461 1462 if (Path.consume_back(Suffix)) 1463 return (Path + Repl).str(); 1464 return Path; 1465 } 1466 1467 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1468 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1469 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1470 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1471 1472 template void LazyObjFile::parse<ELF32LE>(); 1473 template void LazyObjFile::parse<ELF32BE>(); 1474 template void LazyObjFile::parse<ELF64LE>(); 1475 template void LazyObjFile::parse<ELF64BE>(); 1476 1477 template class elf::ObjFile<ELF32LE>; 1478 template class elf::ObjFile<ELF32BE>; 1479 template class elf::ObjFile<ELF64LE>; 1480 template class elf::ObjFile<ELF64BE>; 1481 1482 template void SharedFile::parse<ELF32LE>(); 1483 template void SharedFile::parse<ELF32BE>(); 1484 template void SharedFile::parse<ELF64LE>(); 1485 template void SharedFile::parse<ELF64BE>(); 1486