1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "Memory.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/TarWriter.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::sys::fs; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 std::vector<BinaryFile *> elf::BinaryFiles; 39 std::vector<BitcodeFile *> elf::BitcodeFiles; 40 std::vector<InputFile *> elf::ObjectFiles; 41 std::vector<InputFile *> elf::SharedFiles; 42 43 TarWriter *elf::Tar; 44 45 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 46 47 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 48 // The --chroot option changes our virtual root directory. 49 // This is useful when you are dealing with files created by --reproduce. 50 if (!Config->Chroot.empty() && Path.startswith("/")) 51 Path = Saver.save(Config->Chroot + Path); 52 53 log(Path); 54 55 auto MBOrErr = MemoryBuffer::getFile(Path); 56 if (auto EC = MBOrErr.getError()) { 57 error("cannot open " + Path + ": " + EC.message()); 58 return None; 59 } 60 61 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 62 MemoryBufferRef MBRef = MB->getMemBufferRef(); 63 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 64 65 if (Tar) 66 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 67 return MBRef; 68 } 69 70 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 71 DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this)); 72 const DWARFObject &Obj = Dwarf.getDWARFObj(); 73 DwarfLine.reset(new DWARFDebugLine); 74 DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, 75 Config->Wordsize); 76 77 // The second parameter is offset in .debug_line section 78 // for compilation unit (CU) of interest. We have only one 79 // CU (object file), so offset is always 0. 80 // FIXME: Provide the associated DWARFUnit if there is one. DWARF v5 81 // needs it in order to find indirect strings. 82 const DWARFDebugLine::LineTable *LT = 83 DwarfLine->getOrParseLineTable(LineData, 0, nullptr); 84 85 // Return if there is no debug information about CU available. 86 if (!Dwarf.getNumCompileUnits()) 87 return; 88 89 // Loop over variable records and insert them to VariableLoc. 90 DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0); 91 for (const auto &Entry : CU->dies()) { 92 DWARFDie Die(CU, &Entry); 93 // Skip all tags that are not variables. 94 if (Die.getTag() != dwarf::DW_TAG_variable) 95 continue; 96 97 // Skip if a local variable because we don't need them for generating error 98 // messages. In general, only non-local symbols can fail to be linked. 99 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 100 continue; 101 102 // Get the source filename index for the variable. 103 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 104 if (!LT->hasFileAtIndex(File)) 105 continue; 106 107 // Get the line number on which the variable is declared. 108 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 109 110 // Get the name of the variable and add the collected information to 111 // VariableLoc. Usually Name is non-empty, but it can be empty if the input 112 // object file lacks some debug info. 113 StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), ""); 114 if (!Name.empty()) 115 VariableLoc.insert({Name, {File, Line}}); 116 } 117 } 118 119 // Returns the pair of file name and line number describing location of data 120 // object (variable, array, etc) definition. 121 template <class ELFT> 122 Optional<std::pair<std::string, unsigned>> 123 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 124 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 125 126 // There is always only one CU so it's offset is 0. 127 const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0); 128 if (!LT) 129 return None; 130 131 // Return if we have no debug information about data object. 132 auto It = VariableLoc.find(Name); 133 if (It == VariableLoc.end()) 134 return None; 135 136 // Take file name string from line table. 137 std::string FileName; 138 if (!LT->getFileNameByIndex( 139 It->second.first /* File */, nullptr, 140 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 141 return None; 142 143 return std::make_pair(FileName, It->second.second /*Line*/); 144 } 145 146 // Returns source line information for a given offset 147 // using DWARF debug info. 148 template <class ELFT> 149 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 150 uint64_t Offset) { 151 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 152 153 // The offset to CU is 0. 154 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 155 if (!Tbl) 156 return None; 157 158 // Use fake address calcuated by adding section file offset and offset in 159 // section. See comments for ObjectInfo class. 160 DILineInfo Info; 161 Tbl->getFileLineInfoForAddress( 162 S->getOffsetInFile() + Offset, nullptr, 163 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 164 if (Info.Line == 0) 165 return None; 166 return Info; 167 } 168 169 // Returns source line information for a given offset 170 // using DWARF debug info. 171 template <class ELFT> 172 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) { 173 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 174 return Info->FileName + ":" + std::to_string(Info->Line); 175 return ""; 176 } 177 178 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 179 std::string lld::toString(const InputFile *F) { 180 if (!F) 181 return "<internal>"; 182 183 if (F->ToStringCache.empty()) { 184 if (F->ArchiveName.empty()) 185 F->ToStringCache = F->getName(); 186 else 187 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 188 } 189 return F->ToStringCache; 190 } 191 192 template <class ELFT> 193 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 194 if (ELFT::TargetEndianness == support::little) 195 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 196 else 197 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 198 199 EMachine = getObj().getHeader()->e_machine; 200 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 201 } 202 203 template <class ELFT> 204 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 205 return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end()); 206 } 207 208 template <class ELFT> 209 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 210 return check(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), 211 toString(this)); 212 } 213 214 template <class ELFT> 215 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 216 const Elf_Shdr *Symtab) { 217 FirstNonLocal = Symtab->sh_info; 218 ELFSyms = check(getObj().symbols(Symtab), toString(this)); 219 if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size()) 220 fatal(toString(this) + ": invalid sh_info in symbol table"); 221 222 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections), 223 toString(this)); 224 } 225 226 template <class ELFT> 227 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 228 : ELFFileBase<ELFT>(Base::ObjKind, M) { 229 this->ArchiveName = ArchiveName; 230 } 231 232 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 233 if (this->Symbols.empty()) 234 return {}; 235 return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1); 236 } 237 238 template <class ELFT> 239 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 240 // Read section and symbol tables. 241 initializeSections(ComdatGroups); 242 initializeSymbols(); 243 } 244 245 // Sections with SHT_GROUP and comdat bits define comdat section groups. 246 // They are identified and deduplicated by group name. This function 247 // returns a group name. 248 template <class ELFT> 249 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 250 const Elf_Shdr &Sec) { 251 // Group signatures are stored as symbol names in object files. 252 // sh_info contains a symbol index, so we fetch a symbol and read its name. 253 if (this->ELFSyms.empty()) 254 this->initSymtab( 255 Sections, 256 check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this))); 257 258 const Elf_Sym *Sym = check( 259 object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), toString(this)); 260 StringRef Signature = check(Sym->getName(this->StringTable), toString(this)); 261 262 // As a special case, if a symbol is a section symbol and has no name, 263 // we use a section name as a signature. 264 // 265 // Such SHT_GROUP sections are invalid from the perspective of the ELF 266 // standard, but GNU gold 1.14 (the neweset version as of July 2017) or 267 // older produce such sections as outputs for the -r option, so we need 268 // a bug-compatibility. 269 if (Signature.empty() && Sym->getType() == STT_SECTION) 270 return getSectionName(Sec); 271 return Signature; 272 } 273 274 template <class ELFT> 275 ArrayRef<typename ObjFile<ELFT>::Elf_Word> 276 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 277 const ELFFile<ELFT> &Obj = this->getObj(); 278 ArrayRef<Elf_Word> Entries = check( 279 Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this)); 280 if (Entries.empty() || Entries[0] != GRP_COMDAT) 281 fatal(toString(this) + ": unsupported SHT_GROUP format"); 282 return Entries.slice(1); 283 } 284 285 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 286 // We don't merge sections if -O0 (default is -O1). This makes sometimes 287 // the linker significantly faster, although the output will be bigger. 288 if (Config->Optimize == 0) 289 return false; 290 291 // A mergeable section with size 0 is useless because they don't have 292 // any data to merge. A mergeable string section with size 0 can be 293 // argued as invalid because it doesn't end with a null character. 294 // We'll avoid a mess by handling them as if they were non-mergeable. 295 if (Sec.sh_size == 0) 296 return false; 297 298 // Check for sh_entsize. The ELF spec is not clear about the zero 299 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 300 // the section does not hold a table of fixed-size entries". We know 301 // that Rust 1.13 produces a string mergeable section with a zero 302 // sh_entsize. Here we just accept it rather than being picky about it. 303 uint64_t EntSize = Sec.sh_entsize; 304 if (EntSize == 0) 305 return false; 306 if (Sec.sh_size % EntSize) 307 fatal(toString(this) + 308 ": SHF_MERGE section size must be a multiple of sh_entsize"); 309 310 uint64_t Flags = Sec.sh_flags; 311 if (!(Flags & SHF_MERGE)) 312 return false; 313 if (Flags & SHF_WRITE) 314 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 315 316 return true; 317 } 318 319 template <class ELFT> 320 void ObjFile<ELFT>::initializeSections( 321 DenseSet<CachedHashStringRef> &ComdatGroups) { 322 const ELFFile<ELFT> &Obj = this->getObj(); 323 324 ArrayRef<Elf_Shdr> ObjSections = 325 check(this->getObj().sections(), toString(this)); 326 uint64_t Size = ObjSections.size(); 327 this->Sections.resize(Size); 328 this->SectionStringTable = 329 check(Obj.getSectionStringTable(ObjSections), toString(this)); 330 331 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 332 if (this->Sections[I] == &InputSection::Discarded) 333 continue; 334 const Elf_Shdr &Sec = ObjSections[I]; 335 336 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 337 // if -r is given, we'll let the final link discard such sections. 338 // This is compatible with GNU. 339 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 340 this->Sections[I] = &InputSection::Discarded; 341 continue; 342 } 343 344 switch (Sec.sh_type) { 345 case SHT_GROUP: { 346 // De-duplicate section groups by their signatures. 347 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 348 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 349 this->Sections[I] = &InputSection::Discarded; 350 351 // If it is a new section group, we want to keep group members. 352 // Group leader sections, which contain indices of group members, are 353 // discarded because they are useless beyond this point. The only 354 // exception is the -r option because in order to produce re-linkable 355 // object files, we want to pass through basically everything. 356 if (IsNew) { 357 if (Config->Relocatable) 358 this->Sections[I] = createInputSection(Sec); 359 continue; 360 } 361 362 // Otherwise, discard group members. 363 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 364 if (SecIndex >= Size) 365 fatal(toString(this) + 366 ": invalid section index in group: " + Twine(SecIndex)); 367 this->Sections[SecIndex] = &InputSection::Discarded; 368 } 369 break; 370 } 371 case SHT_SYMTAB: 372 this->initSymtab(ObjSections, &Sec); 373 break; 374 case SHT_SYMTAB_SHNDX: 375 this->SymtabSHNDX = 376 check(Obj.getSHNDXTable(Sec, ObjSections), toString(this)); 377 break; 378 case SHT_STRTAB: 379 case SHT_NULL: 380 break; 381 default: 382 this->Sections[I] = createInputSection(Sec); 383 } 384 385 // .ARM.exidx sections have a reverse dependency on the InputSection they 386 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 387 if (Sec.sh_flags & SHF_LINK_ORDER) { 388 if (Sec.sh_link >= this->Sections.size()) 389 fatal(toString(this) + ": invalid sh_link index: " + 390 Twine(Sec.sh_link)); 391 this->Sections[Sec.sh_link]->DependentSections.push_back( 392 cast<InputSection>(this->Sections[I])); 393 } 394 } 395 } 396 397 template <class ELFT> 398 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 399 uint32_t Idx = Sec.sh_info; 400 if (Idx >= this->Sections.size()) 401 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 402 InputSectionBase *Target = this->Sections[Idx]; 403 404 // Strictly speaking, a relocation section must be included in the 405 // group of the section it relocates. However, LLVM 3.3 and earlier 406 // would fail to do so, so we gracefully handle that case. 407 if (Target == &InputSection::Discarded) 408 return nullptr; 409 410 if (!Target) 411 fatal(toString(this) + ": unsupported relocation reference"); 412 return Target; 413 } 414 415 // Create a regular InputSection class that has the same contents 416 // as a given section. 417 InputSectionBase *toRegularSection(MergeInputSection *Sec) { 418 auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, 419 Sec->Data, Sec->Name); 420 Ret->File = Sec->File; 421 return Ret; 422 } 423 424 template <class ELFT> 425 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 426 StringRef Name = getSectionName(Sec); 427 428 switch (Sec.sh_type) { 429 case SHT_ARM_ATTRIBUTES: 430 // FIXME: ARM meta-data section. Retain the first attribute section 431 // we see. The eglibc ARM dynamic loaders require the presence of an 432 // attribute section for dlopen to work. 433 // In a full implementation we would merge all attribute sections. 434 if (InX::ARMAttributes == nullptr) { 435 InX::ARMAttributes = make<InputSection>(this, &Sec, Name); 436 return InX::ARMAttributes; 437 } 438 return &InputSection::Discarded; 439 case SHT_RELA: 440 case SHT_REL: { 441 // Find the relocation target section and associate this 442 // section with it. Target can be discarded, for example 443 // if it is a duplicated member of SHT_GROUP section, we 444 // do not create or proccess relocatable sections then. 445 InputSectionBase *Target = getRelocTarget(Sec); 446 if (!Target) 447 return nullptr; 448 449 // This section contains relocation information. 450 // If -r is given, we do not interpret or apply relocation 451 // but just copy relocation sections to output. 452 if (Config->Relocatable) 453 return make<InputSection>(this, &Sec, Name); 454 455 if (Target->FirstRelocation) 456 fatal(toString(this) + 457 ": multiple relocation sections to one section are not supported"); 458 459 // Mergeable sections with relocations are tricky because relocations 460 // need to be taken into account when comparing section contents for 461 // merging. It's not worth supporting such mergeable sections because 462 // they are rare and it'd complicates the internal design (we usually 463 // have to determine if two sections are mergeable early in the link 464 // process much before applying relocations). We simply handle mergeable 465 // sections with relocations as non-mergeable. 466 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 467 Target = toRegularSection(MS); 468 this->Sections[Sec.sh_info] = Target; 469 } 470 471 size_t NumRelocations; 472 if (Sec.sh_type == SHT_RELA) { 473 ArrayRef<Elf_Rela> Rels = 474 check(this->getObj().relas(&Sec), toString(this)); 475 Target->FirstRelocation = Rels.begin(); 476 NumRelocations = Rels.size(); 477 Target->AreRelocsRela = true; 478 } else { 479 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this)); 480 Target->FirstRelocation = Rels.begin(); 481 NumRelocations = Rels.size(); 482 Target->AreRelocsRela = false; 483 } 484 assert(isUInt<31>(NumRelocations)); 485 Target->NumRelocations = NumRelocations; 486 487 // Relocation sections processed by the linker are usually removed 488 // from the output, so returning `nullptr` for the normal case. 489 // However, if -emit-relocs is given, we need to leave them in the output. 490 // (Some post link analysis tools need this information.) 491 if (Config->EmitRelocs) { 492 InputSection *RelocSec = make<InputSection>(this, &Sec, Name); 493 // We will not emit relocation section if target was discarded. 494 Target->DependentSections.push_back(RelocSec); 495 return RelocSec; 496 } 497 return nullptr; 498 } 499 } 500 501 // The GNU linker uses .note.GNU-stack section as a marker indicating 502 // that the code in the object file does not expect that the stack is 503 // executable (in terms of NX bit). If all input files have the marker, 504 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 505 // make the stack non-executable. Most object files have this section as 506 // of 2017. 507 // 508 // But making the stack non-executable is a norm today for security 509 // reasons. Failure to do so may result in a serious security issue. 510 // Therefore, we make LLD always add PT_GNU_STACK unless it is 511 // explicitly told to do otherwise (by -z execstack). Because the stack 512 // executable-ness is controlled solely by command line options, 513 // .note.GNU-stack sections are simply ignored. 514 if (Name == ".note.GNU-stack") 515 return &InputSection::Discarded; 516 517 // Split stacks is a feature to support a discontiguous stack. At least 518 // as of 2017, it seems that the feature is not being used widely. 519 // Only GNU gold supports that. We don't. For the details about that, 520 // see https://gcc.gnu.org/wiki/SplitStacks 521 if (Name == ".note.GNU-split-stack") { 522 error(toString(this) + 523 ": object file compiled with -fsplit-stack is not supported"); 524 return &InputSection::Discarded; 525 } 526 527 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 528 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 529 // sections. Drop those sections to avoid duplicate symbol errors. 530 // FIXME: This is glibc PR20543, we should remove this hack once that has been 531 // fixed for a while. 532 if (Name.startswith(".gnu.linkonce.")) 533 return &InputSection::Discarded; 534 535 // The linker merges EH (exception handling) frames and creates a 536 // .eh_frame_hdr section for runtime. So we handle them with a special 537 // class. For relocatable outputs, they are just passed through. 538 if (Name == ".eh_frame" && !Config->Relocatable) 539 return make<EhInputSection>(this, &Sec, Name); 540 541 if (shouldMerge(Sec)) 542 return make<MergeInputSection>(this, &Sec, Name); 543 return make<InputSection>(this, &Sec, Name); 544 } 545 546 template <class ELFT> 547 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 548 return check(this->getObj().getSectionName(&Sec, SectionStringTable), 549 toString(this)); 550 } 551 552 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 553 this->Symbols.reserve(this->ELFSyms.size()); 554 for (const Elf_Sym &Sym : this->ELFSyms) 555 this->Symbols.push_back(createSymbol(&Sym)); 556 } 557 558 template <class ELFT> 559 InputSectionBase *ObjFile<ELFT>::getSection(uint32_t Index) const { 560 if (Index == 0) 561 return nullptr; 562 if (Index >= this->Sections.size()) 563 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 564 565 if (InputSectionBase *Sec = this->Sections[Index]) 566 return Sec->Repl; 567 return nullptr; 568 } 569 570 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 571 int Binding = Sym->getBinding(); 572 InputSectionBase *Sec = getSection(this->getSectionIndex(*Sym)); 573 574 uint8_t StOther = Sym->st_other; 575 uint8_t Type = Sym->getType(); 576 uint64_t Value = Sym->st_value; 577 uint64_t Size = Sym->st_size; 578 579 if (Binding == STB_LOCAL) { 580 if (Sym->getType() == STT_FILE) 581 SourceFile = check(Sym->getName(this->StringTable), toString(this)); 582 583 if (this->StringTable.size() <= Sym->st_name) 584 fatal(toString(this) + ": invalid symbol name offset"); 585 586 StringRefZ Name = this->StringTable.data() + Sym->st_name; 587 if (Sym->st_shndx == SHN_UNDEF) 588 return make<Undefined>(Name, Binding, StOther, Type); 589 590 return make<Defined>(Name, Binding, StOther, Type, Value, Size, Sec); 591 } 592 593 StringRef Name = check(Sym->getName(this->StringTable), toString(this)); 594 595 switch (Sym->st_shndx) { 596 case SHN_UNDEF: 597 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 598 /*CanOmitFromDynSym=*/false, this); 599 case SHN_COMMON: 600 if (Value == 0 || Value >= UINT32_MAX) 601 fatal(toString(this) + ": common symbol '" + Name + 602 "' has invalid alignment: " + Twine(Value)); 603 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this); 604 } 605 606 switch (Binding) { 607 default: 608 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 609 case STB_GLOBAL: 610 case STB_WEAK: 611 case STB_GNU_UNIQUE: 612 if (Sec == &InputSection::Discarded) 613 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 614 /*CanOmitFromDynSym=*/false, this); 615 return Symtab->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding, 616 Sec, this); 617 } 618 } 619 620 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 621 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 622 File(std::move(File)) {} 623 624 template <class ELFT> void ArchiveFile::parse() { 625 Symbols.reserve(File->getNumberOfSymbols()); 626 for (const Archive::Symbol &Sym : File->symbols()) 627 Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym)); 628 } 629 630 // Returns a buffer pointing to a member file containing a given symbol. 631 std::pair<MemoryBufferRef, uint64_t> 632 ArchiveFile::getMember(const Archive::Symbol *Sym) { 633 Archive::Child C = 634 check(Sym->getMember(), toString(this) + 635 ": could not get the member for symbol " + 636 Sym->getName()); 637 638 if (!Seen.insert(C.getChildOffset()).second) 639 return {MemoryBufferRef(), 0}; 640 641 MemoryBufferRef Ret = 642 check(C.getMemoryBufferRef(), 643 toString(this) + 644 ": could not get the buffer for the member defining symbol " + 645 Sym->getName()); 646 647 if (C.getParent()->isThin() && Tar) 648 Tar->append(relativeToRoot(check(C.getFullName(), toString(this))), 649 Ret.getBuffer()); 650 if (C.getParent()->isThin()) 651 return {Ret, 0}; 652 return {Ret, C.getChildOffset()}; 653 } 654 655 template <class ELFT> 656 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 657 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 658 AsNeeded(Config->AsNeeded) {} 659 660 // Partially parse the shared object file so that we can call 661 // getSoName on this object. 662 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 663 const Elf_Shdr *DynamicSec = nullptr; 664 const ELFFile<ELFT> Obj = this->getObj(); 665 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 666 667 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 668 for (const Elf_Shdr &Sec : Sections) { 669 switch (Sec.sh_type) { 670 default: 671 continue; 672 case SHT_DYNSYM: 673 this->initSymtab(Sections, &Sec); 674 break; 675 case SHT_DYNAMIC: 676 DynamicSec = &Sec; 677 break; 678 case SHT_SYMTAB_SHNDX: 679 this->SymtabSHNDX = 680 check(Obj.getSHNDXTable(Sec, Sections), toString(this)); 681 break; 682 case SHT_GNU_versym: 683 this->VersymSec = &Sec; 684 break; 685 case SHT_GNU_verdef: 686 this->VerdefSec = &Sec; 687 break; 688 } 689 } 690 691 if (this->VersymSec && this->ELFSyms.empty()) 692 error("SHT_GNU_versym should be associated with symbol table"); 693 694 // Search for a DT_SONAME tag to initialize this->SoName. 695 if (!DynamicSec) 696 return; 697 ArrayRef<Elf_Dyn> Arr = 698 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 699 toString(this)); 700 for (const Elf_Dyn &Dyn : Arr) { 701 if (Dyn.d_tag == DT_SONAME) { 702 uint64_t Val = Dyn.getVal(); 703 if (Val >= this->StringTable.size()) 704 fatal(toString(this) + ": invalid DT_SONAME entry"); 705 SoName = this->StringTable.data() + Val; 706 return; 707 } 708 } 709 } 710 711 // Parse the version definitions in the object file if present. Returns a vector 712 // whose nth element contains a pointer to the Elf_Verdef for version identifier 713 // n. Version identifiers that are not definitions map to nullptr. The array 714 // always has at least length 1. 715 template <class ELFT> 716 std::vector<const typename ELFT::Verdef *> 717 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 718 std::vector<const Elf_Verdef *> Verdefs(1); 719 // We only need to process symbol versions for this DSO if it has both a 720 // versym and a verdef section, which indicates that the DSO contains symbol 721 // version definitions. 722 if (!VersymSec || !VerdefSec) 723 return Verdefs; 724 725 // The location of the first global versym entry. 726 const char *Base = this->MB.getBuffer().data(); 727 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 728 this->FirstNonLocal; 729 730 // We cannot determine the largest verdef identifier without inspecting 731 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 732 // sequentially starting from 1, so we predict that the largest identifier 733 // will be VerdefCount. 734 unsigned VerdefCount = VerdefSec->sh_info; 735 Verdefs.resize(VerdefCount + 1); 736 737 // Build the Verdefs array by following the chain of Elf_Verdef objects 738 // from the start of the .gnu.version_d section. 739 const char *Verdef = Base + VerdefSec->sh_offset; 740 for (unsigned I = 0; I != VerdefCount; ++I) { 741 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 742 Verdef += CurVerdef->vd_next; 743 unsigned VerdefIndex = CurVerdef->vd_ndx; 744 if (Verdefs.size() <= VerdefIndex) 745 Verdefs.resize(VerdefIndex + 1); 746 Verdefs[VerdefIndex] = CurVerdef; 747 } 748 749 return Verdefs; 750 } 751 752 // Fully parse the shared object file. This must be called after parseSoName(). 753 template <class ELFT> void SharedFile<ELFT>::parseRest() { 754 // Create mapping from version identifiers to Elf_Verdef entries. 755 const Elf_Versym *Versym = nullptr; 756 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 757 758 ArrayRef<Elf_Shdr> Sections = 759 check(this->getObj().sections(), toString(this)); 760 761 // Add symbols to the symbol table. 762 Elf_Sym_Range Syms = this->getGlobalELFSyms(); 763 for (const Elf_Sym &Sym : Syms) { 764 unsigned VersymIndex = 0; 765 if (Versym) { 766 VersymIndex = Versym->vs_index; 767 ++Versym; 768 } 769 bool Hidden = VersymIndex & VERSYM_HIDDEN; 770 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 771 772 StringRef Name = check(Sym.getName(this->StringTable), toString(this)); 773 if (Sym.isUndefined()) { 774 Undefs.push_back(Name); 775 continue; 776 } 777 778 // Ignore local symbols. 779 if (Versym && VersymIndex == VER_NDX_LOCAL) 780 continue; 781 const Elf_Verdef *Ver = nullptr; 782 if (VersymIndex != VER_NDX_GLOBAL) { 783 if (VersymIndex >= Verdefs.size()) { 784 error("corrupt input file: version definition index " + 785 Twine(VersymIndex) + " for symbol " + Name + 786 " is out of bounds\n>>> defined in " + toString(this)); 787 continue; 788 } 789 Ver = Verdefs[VersymIndex]; 790 } 791 792 // We do not usually care about alignments of data in shared object 793 // files because the loader takes care of it. However, if we promote a 794 // DSO symbol to point to .bss due to copy relocation, we need to keep 795 // the original alignment requirements. We infer it here. 796 uint64_t Alignment = 1; 797 if (Sym.st_value) 798 Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 799 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) { 800 uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign; 801 Alignment = std::min(Alignment, SecAlign); 802 } 803 if (Alignment > UINT32_MAX) 804 error(toString(this) + ": alignment too large: " + Name); 805 806 if (!Hidden) 807 Symtab->addShared(Name, this, Sym, Alignment, Ver); 808 809 // Also add the symbol with the versioned name to handle undefined symbols 810 // with explicit versions. 811 if (Ver) { 812 StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name; 813 Name = Saver.save(Name + "@" + VerName); 814 Symtab->addShared(Name, this, Sym, Alignment, Ver); 815 } 816 } 817 } 818 819 static ELFKind getBitcodeELFKind(const Triple &T) { 820 if (T.isLittleEndian()) 821 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 822 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 823 } 824 825 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 826 switch (T.getArch()) { 827 case Triple::aarch64: 828 return EM_AARCH64; 829 case Triple::arm: 830 case Triple::thumb: 831 return EM_ARM; 832 case Triple::avr: 833 return EM_AVR; 834 case Triple::mips: 835 case Triple::mipsel: 836 case Triple::mips64: 837 case Triple::mips64el: 838 return EM_MIPS; 839 case Triple::ppc: 840 return EM_PPC; 841 case Triple::ppc64: 842 return EM_PPC64; 843 case Triple::x86: 844 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 845 case Triple::x86_64: 846 return EM_X86_64; 847 default: 848 fatal(Path + ": could not infer e_machine from bitcode target triple " + 849 T.str()); 850 } 851 } 852 853 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 854 uint64_t OffsetInArchive) 855 : InputFile(BitcodeKind, MB) { 856 this->ArchiveName = ArchiveName; 857 858 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 859 // (the fully resolved path of the archive) + member name + offset of the 860 // member in the archive. 861 // ThinLTO uses the MemoryBufferRef identifier to access its internal 862 // data structures and if two archives define two members with the same name, 863 // this causes a collision which result in only one of the objects being 864 // taken into consideration at LTO time (which very likely causes undefined 865 // symbols later in the link stage). 866 MemoryBufferRef MBRef(MB.getBuffer(), 867 Saver.save(ArchiveName + MB.getBufferIdentifier() + 868 utostr(OffsetInArchive))); 869 Obj = check(lto::InputFile::create(MBRef), toString(this)); 870 871 Triple T(Obj->getTargetTriple()); 872 EKind = getBitcodeELFKind(T); 873 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 874 } 875 876 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 877 switch (GvVisibility) { 878 case GlobalValue::DefaultVisibility: 879 return STV_DEFAULT; 880 case GlobalValue::HiddenVisibility: 881 return STV_HIDDEN; 882 case GlobalValue::ProtectedVisibility: 883 return STV_PROTECTED; 884 } 885 llvm_unreachable("unknown visibility"); 886 } 887 888 template <class ELFT> 889 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 890 const lto::InputFile::Symbol &ObjSym, 891 BitcodeFile *F) { 892 StringRef NameRef = Saver.save(ObjSym.getName()); 893 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 894 895 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 896 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 897 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 898 899 int C = ObjSym.getComdatIndex(); 900 if (C != -1 && !KeptComdats[C]) 901 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 902 CanOmitFromDynSym, F); 903 904 if (ObjSym.isUndefined()) 905 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 906 CanOmitFromDynSym, F); 907 908 if (ObjSym.isCommon()) 909 return Symtab->addCommon(NameRef, ObjSym.getCommonSize(), 910 ObjSym.getCommonAlignment(), Binding, Visibility, 911 STT_OBJECT, F); 912 913 return Symtab->addBitcode(NameRef, Binding, Visibility, Type, 914 CanOmitFromDynSym, F); 915 } 916 917 template <class ELFT> 918 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 919 std::vector<bool> KeptComdats; 920 for (StringRef S : Obj->getComdatTable()) 921 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 922 923 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 924 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 925 } 926 927 static ELFKind getELFKind(MemoryBufferRef MB) { 928 unsigned char Size; 929 unsigned char Endian; 930 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 931 932 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 933 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 934 if (Size != ELFCLASS32 && Size != ELFCLASS64) 935 fatal(MB.getBufferIdentifier() + ": invalid file class"); 936 937 size_t BufSize = MB.getBuffer().size(); 938 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 939 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 940 fatal(MB.getBufferIdentifier() + ": file is too short"); 941 942 if (Size == ELFCLASS32) 943 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 944 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 945 } 946 947 template <class ELFT> void BinaryFile::parse() { 948 ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); 949 auto *Section = 950 make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); 951 Sections.push_back(Section); 952 953 // For each input file foo that is embedded to a result as a binary 954 // blob, we define _binary_foo_{start,end,size} symbols, so that 955 // user programs can access blobs by name. Non-alphanumeric 956 // characters in a filename are replaced with underscore. 957 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 958 for (size_t I = 0; I < S.size(); ++I) 959 if (!isAlnum(S[I])) 960 S[I] = '_'; 961 962 Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 963 0, 0, STB_GLOBAL, Section, nullptr); 964 Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 965 Data.size(), 0, STB_GLOBAL, Section, nullptr); 966 Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 967 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 968 } 969 970 static bool isBitcode(MemoryBufferRef MB) { 971 using namespace sys::fs; 972 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 973 } 974 975 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 976 uint64_t OffsetInArchive) { 977 if (isBitcode(MB)) 978 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 979 980 switch (getELFKind(MB)) { 981 case ELF32LEKind: 982 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 983 case ELF32BEKind: 984 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 985 case ELF64LEKind: 986 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 987 case ELF64BEKind: 988 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 989 default: 990 llvm_unreachable("getELFKind"); 991 } 992 } 993 994 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 995 switch (getELFKind(MB)) { 996 case ELF32LEKind: 997 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 998 case ELF32BEKind: 999 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1000 case ELF64LEKind: 1001 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1002 case ELF64BEKind: 1003 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1004 default: 1005 llvm_unreachable("getELFKind"); 1006 } 1007 } 1008 1009 MemoryBufferRef LazyObjFile::getBuffer() { 1010 if (Seen) 1011 return MemoryBufferRef(); 1012 Seen = true; 1013 return MB; 1014 } 1015 1016 InputFile *LazyObjFile::fetch() { 1017 MemoryBufferRef MBRef = getBuffer(); 1018 if (MBRef.getBuffer().empty()) 1019 return nullptr; 1020 return createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1021 } 1022 1023 template <class ELFT> void LazyObjFile::parse() { 1024 for (StringRef Sym : getSymbolNames()) 1025 Symtab->addLazyObject<ELFT>(Sym, *this); 1026 } 1027 1028 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() { 1029 typedef typename ELFT::Shdr Elf_Shdr; 1030 typedef typename ELFT::Sym Elf_Sym; 1031 typedef typename ELFT::SymRange Elf_Sym_Range; 1032 1033 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer())); 1034 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 1035 for (const Elf_Shdr &Sec : Sections) { 1036 if (Sec.sh_type != SHT_SYMTAB) 1037 continue; 1038 1039 Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this)); 1040 uint32_t FirstNonLocal = Sec.sh_info; 1041 StringRef StringTable = 1042 check(Obj.getStringTableForSymtab(Sec, Sections), toString(this)); 1043 std::vector<StringRef> V; 1044 1045 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 1046 if (Sym.st_shndx != SHN_UNDEF) 1047 V.push_back(check(Sym.getName(StringTable), toString(this))); 1048 return V; 1049 } 1050 return {}; 1051 } 1052 1053 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() { 1054 std::unique_ptr<lto::InputFile> Obj = 1055 check(lto::InputFile::create(this->MB), toString(this)); 1056 std::vector<StringRef> V; 1057 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1058 if (!Sym.isUndefined()) 1059 V.push_back(Saver.save(Sym.getName())); 1060 return V; 1061 } 1062 1063 // Returns a vector of globally-visible defined symbol names. 1064 std::vector<StringRef> LazyObjFile::getSymbolNames() { 1065 if (isBitcode(this->MB)) 1066 return getBitcodeSymbols(); 1067 1068 switch (getELFKind(this->MB)) { 1069 case ELF32LEKind: 1070 return getElfSymbols<ELF32LE>(); 1071 case ELF32BEKind: 1072 return getElfSymbols<ELF32BE>(); 1073 case ELF64LEKind: 1074 return getElfSymbols<ELF64LE>(); 1075 case ELF64BEKind: 1076 return getElfSymbols<ELF64BE>(); 1077 default: 1078 llvm_unreachable("getELFKind"); 1079 } 1080 } 1081 1082 template void ArchiveFile::parse<ELF32LE>(); 1083 template void ArchiveFile::parse<ELF32BE>(); 1084 template void ArchiveFile::parse<ELF64LE>(); 1085 template void ArchiveFile::parse<ELF64BE>(); 1086 1087 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1088 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1089 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1090 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1091 1092 template void LazyObjFile::parse<ELF32LE>(); 1093 template void LazyObjFile::parse<ELF32BE>(); 1094 template void LazyObjFile::parse<ELF64LE>(); 1095 template void LazyObjFile::parse<ELF64BE>(); 1096 1097 template class elf::ELFFileBase<ELF32LE>; 1098 template class elf::ELFFileBase<ELF32BE>; 1099 template class elf::ELFFileBase<ELF64LE>; 1100 template class elf::ELFFileBase<ELF64BE>; 1101 1102 template class elf::ObjFile<ELF32LE>; 1103 template class elf::ObjFile<ELF32BE>; 1104 template class elf::ObjFile<ELF64LE>; 1105 template class elf::ObjFile<ELF64BE>; 1106 1107 template class elf::SharedFile<ELF32LE>; 1108 template class elf::SharedFile<ELF32BE>; 1109 template class elf::SharedFile<ELF64LE>; 1110 template class elf::SharedFile<ELF64BE>; 1111 1112 template void BinaryFile::parse<ELF32LE>(); 1113 template void BinaryFile::parse<ELF32BE>(); 1114 template void BinaryFile::parse<ELF64LE>(); 1115 template void BinaryFile::parse<ELF64BE>(); 1116