1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys; 36 using namespace llvm::sys::fs; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 bool InputFile::IsInGroup; 42 uint32_t InputFile::NextGroupId; 43 std::vector<BinaryFile *> elf::BinaryFiles; 44 std::vector<BitcodeFile *> elf::BitcodeFiles; 45 std::vector<LazyObjFile *> elf::LazyObjFiles; 46 std::vector<InputFile *> elf::ObjectFiles; 47 std::vector<SharedFile *> elf::SharedFiles; 48 49 std::unique_ptr<TarWriter> elf::Tar; 50 51 InputFile::InputFile(Kind K, MemoryBufferRef M) 52 : MB(M), GroupId(NextGroupId), FileKind(K) { 53 // All files within the same --{start,end}-group get the same group ID. 54 // Otherwise, a new file will get a new group ID. 55 if (!IsInGroup) 56 ++NextGroupId; 57 } 58 59 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 60 // The --chroot option changes our virtual root directory. 61 // This is useful when you are dealing with files created by --reproduce. 62 if (!Config->Chroot.empty() && Path.startswith("/")) 63 Path = Saver.save(Config->Chroot + Path); 64 65 log(Path); 66 67 auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); 68 if (auto EC = MBOrErr.getError()) { 69 error("cannot open " + Path + ": " + EC.message()); 70 return None; 71 } 72 73 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 74 MemoryBufferRef MBRef = MB->getMemBufferRef(); 75 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 76 77 if (Tar) 78 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 79 return MBRef; 80 } 81 82 // All input object files must be for the same architecture 83 // (e.g. it does not make sense to link x86 object files with 84 // MIPS object files.) This function checks for that error. 85 static bool isCompatible(InputFile *File) { 86 if (!File->isElf() && !isa<BitcodeFile>(File)) 87 return true; 88 89 if (File->EKind == Config->EKind && File->EMachine == Config->EMachine) { 90 if (Config->EMachine != EM_MIPS) 91 return true; 92 if (isMipsN32Abi(File) == Config->MipsN32Abi) 93 return true; 94 } 95 96 if (!Config->Emulation.empty()) { 97 error(toString(File) + " is incompatible with " + Config->Emulation); 98 } else { 99 InputFile *Existing; 100 if (!ObjectFiles.empty()) 101 Existing = ObjectFiles[0]; 102 else if (!SharedFiles.empty()) 103 Existing = SharedFiles[0]; 104 else 105 Existing = BitcodeFiles[0]; 106 107 error(toString(File) + " is incompatible with " + toString(Existing)); 108 } 109 110 return false; 111 } 112 113 template <class ELFT> static void doParseFile(InputFile *File) { 114 // Comdat groups define "link once" sections. If two comdat groups have the 115 // same name, only one of them is linked, and the other is ignored. This set 116 // is used to uniquify them. 117 static llvm::DenseSet<llvm::CachedHashStringRef> ComdatGroups; 118 119 if (!isCompatible(File)) 120 return; 121 122 // Binary file 123 if (auto *F = dyn_cast<BinaryFile>(File)) { 124 BinaryFiles.push_back(F); 125 F->parse(); 126 return; 127 } 128 129 // .a file 130 if (auto *F = dyn_cast<ArchiveFile>(File)) { 131 F->parse(); 132 return; 133 } 134 135 // Lazy object file 136 if (auto *F = dyn_cast<LazyObjFile>(File)) { 137 LazyObjFiles.push_back(F); 138 F->parse<ELFT>(); 139 return; 140 } 141 142 if (Config->Trace) 143 message(toString(File)); 144 145 // .so file 146 if (auto *F = dyn_cast<SharedFile>(File)) { 147 F->parse<ELFT>(); 148 return; 149 } 150 151 // LLVM bitcode file 152 if (auto *F = dyn_cast<BitcodeFile>(File)) { 153 BitcodeFiles.push_back(F); 154 F->parse<ELFT>(ComdatGroups); 155 return; 156 } 157 158 // Regular object file 159 ObjectFiles.push_back(File); 160 cast<ObjFile<ELFT>>(File)->parse(ComdatGroups); 161 } 162 163 // Add symbols in File to the symbol table. 164 void elf::parseFile(InputFile *File) { 165 switch (Config->EKind) { 166 case ELF32LEKind: 167 doParseFile<ELF32LE>(File); 168 return; 169 case ELF32BEKind: 170 doParseFile<ELF32BE>(File); 171 return; 172 case ELF64LEKind: 173 doParseFile<ELF64LE>(File); 174 return; 175 case ELF64BEKind: 176 doParseFile<ELF64BE>(File); 177 return; 178 default: 179 llvm_unreachable("unknown ELFT"); 180 } 181 } 182 183 // Concatenates arguments to construct a string representing an error location. 184 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 185 std::string Filename = path::filename(Path); 186 std::string Lineno = ":" + std::to_string(Line); 187 if (Filename == Path) 188 return Filename + Lineno; 189 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 190 } 191 192 template <class ELFT> 193 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 194 InputSectionBase &Sec, uint64_t Offset) { 195 // In DWARF, functions and variables are stored to different places. 196 // First, lookup a function for a given offset. 197 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 198 return createFileLineMsg(Info->FileName, Info->Line); 199 200 // If it failed, lookup again as a variable. 201 if (Optional<std::pair<std::string, unsigned>> FileLine = 202 File.getVariableLoc(Sym.getName())) 203 return createFileLineMsg(FileLine->first, FileLine->second); 204 205 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 206 return File.SourceFile; 207 } 208 209 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 210 uint64_t Offset) { 211 if (kind() != ObjKind) 212 return ""; 213 switch (Config->EKind) { 214 default: 215 llvm_unreachable("Invalid kind"); 216 case ELF32LEKind: 217 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 218 case ELF32BEKind: 219 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 220 case ELF64LEKind: 221 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 222 case ELF64BEKind: 223 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 224 } 225 } 226 227 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 228 Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 229 for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) { 230 auto Report = [](Error Err) { 231 handleAllErrors(std::move(Err), 232 [](ErrorInfoBase &Info) { warn(Info.message()); }); 233 }; 234 Expected<const DWARFDebugLine::LineTable *> ExpectedLT = 235 Dwarf->getLineTableForUnit(CU.get(), Report); 236 const DWARFDebugLine::LineTable *LT = nullptr; 237 if (ExpectedLT) 238 LT = *ExpectedLT; 239 else 240 Report(ExpectedLT.takeError()); 241 if (!LT) 242 continue; 243 LineTables.push_back(LT); 244 245 // Loop over variable records and insert them to VariableLoc. 246 for (const auto &Entry : CU->dies()) { 247 DWARFDie Die(CU.get(), &Entry); 248 // Skip all tags that are not variables. 249 if (Die.getTag() != dwarf::DW_TAG_variable) 250 continue; 251 252 // Skip if a local variable because we don't need them for generating 253 // error messages. In general, only non-local symbols can fail to be 254 // linked. 255 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 256 continue; 257 258 // Get the source filename index for the variable. 259 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 260 if (!LT->hasFileAtIndex(File)) 261 continue; 262 263 // Get the line number on which the variable is declared. 264 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 265 266 // Here we want to take the variable name to add it into VariableLoc. 267 // Variable can have regular and linkage name associated. At first, we try 268 // to get linkage name as it can be different, for example when we have 269 // two variables in different namespaces of the same object. Use common 270 // name otherwise, but handle the case when it also absent in case if the 271 // input object file lacks some debug info. 272 StringRef Name = 273 dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), 274 dwarf::toString(Die.find(dwarf::DW_AT_name), "")); 275 if (!Name.empty()) 276 VariableLoc.insert({Name, {LT, File, Line}}); 277 } 278 } 279 } 280 281 // Returns the pair of file name and line number describing location of data 282 // object (variable, array, etc) definition. 283 template <class ELFT> 284 Optional<std::pair<std::string, unsigned>> 285 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 286 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 287 288 // Return if we have no debug information about data object. 289 auto It = VariableLoc.find(Name); 290 if (It == VariableLoc.end()) 291 return None; 292 293 // Take file name string from line table. 294 std::string FileName; 295 if (!It->second.LT->getFileNameByIndex( 296 It->second.File, nullptr, 297 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 298 return None; 299 300 return std::make_pair(FileName, It->second.Line); 301 } 302 303 // Returns source line information for a given offset 304 // using DWARF debug info. 305 template <class ELFT> 306 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 307 uint64_t Offset) { 308 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 309 310 // Detect SectionIndex for specified section. 311 uint64_t SectionIndex = object::SectionedAddress::UndefSection; 312 ArrayRef<InputSectionBase *> Sections = S->File->getSections(); 313 for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) { 314 if (S == Sections[CurIndex]) { 315 SectionIndex = CurIndex; 316 break; 317 } 318 } 319 320 // Use fake address calcuated by adding section file offset and offset in 321 // section. See comments for ObjectInfo class. 322 DILineInfo Info; 323 for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) { 324 if (LT->getFileLineInfoForAddress( 325 {S->getOffsetInFile() + Offset, SectionIndex}, nullptr, 326 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) 327 return Info; 328 } 329 return None; 330 } 331 332 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 333 std::string lld::toString(const InputFile *F) { 334 if (!F) 335 return "<internal>"; 336 337 if (F->ToStringCache.empty()) { 338 if (F->ArchiveName.empty()) 339 F->ToStringCache = F->getName(); 340 else 341 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 342 } 343 return F->ToStringCache; 344 } 345 346 ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {} 347 348 template <class ELFT> void ELFFileBase::parseHeader() { 349 if (ELFT::TargetEndianness == support::little) 350 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 351 else 352 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 353 354 EMachine = getObj<ELFT>().getHeader()->e_machine; 355 OSABI = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 356 ABIVersion = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 357 } 358 359 template <class ELFT> 360 void ELFFileBase::initSymtab(ArrayRef<typename ELFT::Shdr> Sections, 361 const typename ELFT::Shdr *Symtab) { 362 FirstGlobal = Symtab->sh_info; 363 ArrayRef<typename ELFT::Sym> ELFSyms = 364 CHECK(getObj<ELFT>().symbols(Symtab), this); 365 if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size()) 366 fatal(toString(this) + ": invalid sh_info in symbol table"); 367 this->ELFSyms = reinterpret_cast<const void *>(ELFSyms.data()); 368 this->NumELFSyms = ELFSyms.size(); 369 370 StringTable = 371 CHECK(getObj<ELFT>().getStringTableForSymtab(*Symtab, Sections), this); 372 } 373 374 template <class ELFT> 375 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 376 : ELFFileBase(ObjKind, M) { 377 parseHeader<ELFT>(); 378 this->ArchiveName = ArchiveName; 379 } 380 381 template <class ELFT> 382 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 383 return CHECK( 384 this->getObj().getSectionIndex(&Sym, getELFSyms<ELFT>(), ShndxTable), 385 this); 386 } 387 388 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 389 if (this->Symbols.empty()) 390 return {}; 391 return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); 392 } 393 394 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 395 return makeArrayRef(this->Symbols).slice(this->FirstGlobal); 396 } 397 398 template <class ELFT> 399 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 400 // Read a section table. JustSymbols is usually false. 401 if (this->JustSymbols) 402 initializeJustSymbols(); 403 else 404 initializeSections(ComdatGroups); 405 406 // Read a symbol table. 407 initializeSymbols(); 408 } 409 410 // Sections with SHT_GROUP and comdat bits define comdat section groups. 411 // They are identified and deduplicated by group name. This function 412 // returns a group name. 413 template <class ELFT> 414 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 415 const Elf_Shdr &Sec) { 416 // Group signatures are stored as symbol names in object files. 417 // sh_info contains a symbol index, so we fetch a symbol and read its name. 418 if (this->getELFSyms<ELFT>().empty()) 419 this->initSymtab<ELFT>( 420 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 421 422 const Elf_Sym *Sym = 423 CHECK(object::getSymbol<ELFT>(this->getELFSyms<ELFT>(), Sec.sh_info), this); 424 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 425 426 // As a special case, if a symbol is a section symbol and has no name, 427 // we use a section name as a signature. 428 // 429 // Such SHT_GROUP sections are invalid from the perspective of the ELF 430 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 431 // older produce such sections as outputs for the -r option, so we need 432 // a bug-compatibility. 433 if (Signature.empty() && Sym->getType() == STT_SECTION) 434 return getSectionName(Sec); 435 return Signature; 436 } 437 438 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 439 // On a regular link we don't merge sections if -O0 (default is -O1). This 440 // sometimes makes the linker significantly faster, although the output will 441 // be bigger. 442 // 443 // Doing the same for -r would create a problem as it would combine sections 444 // with different sh_entsize. One option would be to just copy every SHF_MERGE 445 // section as is to the output. While this would produce a valid ELF file with 446 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 447 // they see two .debug_str. We could have separate logic for combining 448 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 449 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 450 // logic for -r. 451 if (Config->Optimize == 0 && !Config->Relocatable) 452 return false; 453 454 // A mergeable section with size 0 is useless because they don't have 455 // any data to merge. A mergeable string section with size 0 can be 456 // argued as invalid because it doesn't end with a null character. 457 // We'll avoid a mess by handling them as if they were non-mergeable. 458 if (Sec.sh_size == 0) 459 return false; 460 461 // Check for sh_entsize. The ELF spec is not clear about the zero 462 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 463 // the section does not hold a table of fixed-size entries". We know 464 // that Rust 1.13 produces a string mergeable section with a zero 465 // sh_entsize. Here we just accept it rather than being picky about it. 466 uint64_t EntSize = Sec.sh_entsize; 467 if (EntSize == 0) 468 return false; 469 if (Sec.sh_size % EntSize) 470 fatal(toString(this) + 471 ": SHF_MERGE section size must be a multiple of sh_entsize"); 472 473 uint64_t Flags = Sec.sh_flags; 474 if (!(Flags & SHF_MERGE)) 475 return false; 476 if (Flags & SHF_WRITE) 477 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 478 479 return true; 480 } 481 482 // This is for --just-symbols. 483 // 484 // --just-symbols is a very minor feature that allows you to link your 485 // output against other existing program, so that if you load both your 486 // program and the other program into memory, your output can refer the 487 // other program's symbols. 488 // 489 // When the option is given, we link "just symbols". The section table is 490 // initialized with null pointers. 491 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 492 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 493 this->Sections.resize(ObjSections.size()); 494 495 for (const Elf_Shdr &Sec : ObjSections) { 496 if (Sec.sh_type != SHT_SYMTAB) 497 continue; 498 this->initSymtab<ELFT>(ObjSections, &Sec); 499 return; 500 } 501 } 502 503 // An ELF object file may contain a `.deplibs` section. If it exists, the 504 // section contains a list of library specifiers such as `m` for libm. This 505 // function resolves a given name by finding the first matching library checking 506 // the various ways that a library can be specified to LLD. This ELF extension 507 // is a form of autolinking and is called `dependent libraries`. It is currently 508 // unique to LLVM and lld. 509 static void addDependentLibrary(StringRef Specifier, const InputFile *F) { 510 if (!Config->DependentLibraries) 511 return; 512 if (fs::exists(Specifier)) 513 Driver->addFile(Specifier, /*WithLOption=*/false); 514 else if (Optional<std::string> S = findFromSearchPaths(Specifier)) 515 Driver->addFile(*S, /*WithLOption=*/true); 516 else if (Optional<std::string> S = searchLibraryBaseName(Specifier)) 517 Driver->addFile(*S, /*WithLOption=*/true); 518 else 519 error(toString(F) + 520 ": unable to find library from dependent library specifier: " + 521 Specifier); 522 } 523 524 template <class ELFT> 525 void ObjFile<ELFT>::initializeSections( 526 DenseSet<CachedHashStringRef> &ComdatGroups) { 527 const ELFFile<ELFT> &Obj = this->getObj(); 528 529 ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); 530 uint64_t Size = ObjSections.size(); 531 this->Sections.resize(Size); 532 this->SectionStringTable = 533 CHECK(Obj.getSectionStringTable(ObjSections), this); 534 535 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 536 if (this->Sections[I] == &InputSection::Discarded) 537 continue; 538 const Elf_Shdr &Sec = ObjSections[I]; 539 540 if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 541 CGProfile = 542 check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec)); 543 544 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 545 // if -r is given, we'll let the final link discard such sections. 546 // This is compatible with GNU. 547 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 548 if (Sec.sh_type == SHT_LLVM_ADDRSIG) { 549 // We ignore the address-significance table if we know that the object 550 // file was created by objcopy or ld -r. This is because these tools 551 // will reorder the symbols in the symbol table, invalidating the data 552 // in the address-significance table, which refers to symbols by index. 553 if (Sec.sh_link != 0) 554 this->AddrsigSec = &Sec; 555 else if (Config->ICF == ICFLevel::Safe) 556 warn(toString(this) + ": --icf=safe is incompatible with object " 557 "files created using objcopy or ld -r"); 558 } 559 this->Sections[I] = &InputSection::Discarded; 560 continue; 561 } 562 563 switch (Sec.sh_type) { 564 case SHT_GROUP: { 565 // De-duplicate section groups by their signatures. 566 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 567 this->Sections[I] = &InputSection::Discarded; 568 569 570 ArrayRef<Elf_Word> Entries = 571 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 572 if (Entries.empty()) 573 fatal(toString(this) + ": empty SHT_GROUP"); 574 575 // The first word of a SHT_GROUP section contains flags. Currently, 576 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 577 // An group with the empty flag doesn't define anything; such sections 578 // are just skipped. 579 if (Entries[0] == 0) 580 continue; 581 582 if (Entries[0] != GRP_COMDAT) 583 fatal(toString(this) + ": unsupported SHT_GROUP format"); 584 585 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 586 if (IsNew) { 587 if (Config->Relocatable) 588 this->Sections[I] = createInputSection(Sec); 589 continue; 590 } 591 592 // Otherwise, discard group members. 593 for (uint32_t SecIndex : Entries.slice(1)) { 594 if (SecIndex >= Size) 595 fatal(toString(this) + 596 ": invalid section index in group: " + Twine(SecIndex)); 597 this->Sections[SecIndex] = &InputSection::Discarded; 598 } 599 break; 600 } 601 case SHT_SYMTAB: 602 this->initSymtab<ELFT>(ObjSections, &Sec); 603 break; 604 case SHT_SYMTAB_SHNDX: 605 ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 606 break; 607 case SHT_STRTAB: 608 case SHT_NULL: 609 break; 610 default: 611 this->Sections[I] = createInputSection(Sec); 612 } 613 614 // .ARM.exidx sections have a reverse dependency on the InputSection they 615 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 616 if (Sec.sh_flags & SHF_LINK_ORDER) { 617 InputSectionBase *LinkSec = nullptr; 618 if (Sec.sh_link < this->Sections.size()) 619 LinkSec = this->Sections[Sec.sh_link]; 620 if (!LinkSec) 621 fatal(toString(this) + 622 ": invalid sh_link index: " + Twine(Sec.sh_link)); 623 624 InputSection *IS = cast<InputSection>(this->Sections[I]); 625 LinkSec->DependentSections.push_back(IS); 626 if (!isa<InputSection>(LinkSec)) 627 error("a section " + IS->Name + 628 " with SHF_LINK_ORDER should not refer a non-regular " 629 "section: " + 630 toString(LinkSec)); 631 } 632 } 633 } 634 635 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 636 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 637 // the input objects have been compiled. 638 static void updateARMVFPArgs(const ARMAttributeParser &Attributes, 639 const InputFile *F) { 640 if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 641 // If an ABI tag isn't present then it is implicitly given the value of 0 642 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 643 // including some in glibc that don't use FP args (and should have value 3) 644 // don't have the attribute so we do not consider an implicit value of 0 645 // as a clash. 646 return; 647 648 unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 649 ARMVFPArgKind Arg; 650 switch (VFPArgs) { 651 case ARMBuildAttrs::BaseAAPCS: 652 Arg = ARMVFPArgKind::Base; 653 break; 654 case ARMBuildAttrs::HardFPAAPCS: 655 Arg = ARMVFPArgKind::VFP; 656 break; 657 case ARMBuildAttrs::ToolChainFPPCS: 658 // Tool chain specific convention that conforms to neither AAPCS variant. 659 Arg = ARMVFPArgKind::ToolChain; 660 break; 661 case ARMBuildAttrs::CompatibleFPAAPCS: 662 // Object compatible with all conventions. 663 return; 664 default: 665 error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); 666 return; 667 } 668 // Follow ld.bfd and error if there is a mix of calling conventions. 669 if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) 670 error(toString(F) + ": incompatible Tag_ABI_VFP_args"); 671 else 672 Config->ARMVFPArgs = Arg; 673 } 674 675 // The ARM support in lld makes some use of instructions that are not available 676 // on all ARM architectures. Namely: 677 // - Use of BLX instruction for interworking between ARM and Thumb state. 678 // - Use of the extended Thumb branch encoding in relocation. 679 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 680 // The ARM Attributes section contains information about the architecture chosen 681 // at compile time. We follow the convention that if at least one input object 682 // is compiled with an architecture that supports these features then lld is 683 // permitted to use them. 684 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 685 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 686 return; 687 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 688 switch (Arch) { 689 case ARMBuildAttrs::Pre_v4: 690 case ARMBuildAttrs::v4: 691 case ARMBuildAttrs::v4T: 692 // Architectures prior to v5 do not support BLX instruction 693 break; 694 case ARMBuildAttrs::v5T: 695 case ARMBuildAttrs::v5TE: 696 case ARMBuildAttrs::v5TEJ: 697 case ARMBuildAttrs::v6: 698 case ARMBuildAttrs::v6KZ: 699 case ARMBuildAttrs::v6K: 700 Config->ARMHasBlx = true; 701 // Architectures used in pre-Cortex processors do not support 702 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 703 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 704 break; 705 default: 706 // All other Architectures have BLX and extended branch encoding 707 Config->ARMHasBlx = true; 708 Config->ARMJ1J2BranchEncoding = true; 709 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 710 // All Architectures used in Cortex processors with the exception 711 // of v6-M and v6S-M have the MOVT and MOVW instructions. 712 Config->ARMHasMovtMovw = true; 713 break; 714 } 715 } 716 717 template <class ELFT> 718 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 719 uint32_t Idx = Sec.sh_info; 720 if (Idx >= this->Sections.size()) 721 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 722 InputSectionBase *Target = this->Sections[Idx]; 723 724 // Strictly speaking, a relocation section must be included in the 725 // group of the section it relocates. However, LLVM 3.3 and earlier 726 // would fail to do so, so we gracefully handle that case. 727 if (Target == &InputSection::Discarded) 728 return nullptr; 729 730 if (!Target) 731 fatal(toString(this) + ": unsupported relocation reference"); 732 return Target; 733 } 734 735 // Create a regular InputSection class that has the same contents 736 // as a given section. 737 static InputSection *toRegularSection(MergeInputSection *Sec) { 738 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 739 Sec->data(), Sec->Name); 740 } 741 742 template <class ELFT> 743 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 744 StringRef Name = getSectionName(Sec); 745 746 switch (Sec.sh_type) { 747 case SHT_ARM_ATTRIBUTES: { 748 if (Config->EMachine != EM_ARM) 749 break; 750 ARMAttributeParser Attributes; 751 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 752 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 753 updateSupportedARMFeatures(Attributes); 754 updateARMVFPArgs(Attributes, this); 755 756 // FIXME: Retain the first attribute section we see. The eglibc ARM 757 // dynamic loaders require the presence of an attribute section for dlopen 758 // to work. In a full implementation we would merge all attribute sections. 759 if (In.ARMAttributes == nullptr) { 760 In.ARMAttributes = make<InputSection>(*this, Sec, Name); 761 return In.ARMAttributes; 762 } 763 return &InputSection::Discarded; 764 } 765 case SHT_LLVM_DEPENDENT_LIBRARIES: { 766 if (Config->Relocatable) 767 break; 768 ArrayRef<char> Data = 769 CHECK(this->getObj().template getSectionContentsAsArray<char>(&Sec), this); 770 if (!Data.empty() && Data.back() != '\0') { 771 error(toString(this) + 772 ": corrupted dependent libraries section (unterminated string): " + 773 Name); 774 return &InputSection::Discarded; 775 } 776 for (const char *D = Data.begin(), *E = Data.end(); D < E;) { 777 StringRef S(D); 778 addDependentLibrary(S, this); 779 D += S.size() + 1; 780 } 781 return &InputSection::Discarded; 782 } 783 case SHT_RELA: 784 case SHT_REL: { 785 // Find a relocation target section and associate this section with that. 786 // Target may have been discarded if it is in a different section group 787 // and the group is discarded, even though it's a violation of the 788 // spec. We handle that situation gracefully by discarding dangling 789 // relocation sections. 790 InputSectionBase *Target = getRelocTarget(Sec); 791 if (!Target) 792 return nullptr; 793 794 // This section contains relocation information. 795 // If -r is given, we do not interpret or apply relocation 796 // but just copy relocation sections to output. 797 if (Config->Relocatable) { 798 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 799 // We want to add a dependency to target, similar like we do for 800 // -emit-relocs below. This is useful for the case when linker script 801 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 802 // -r, but we faced it in the Linux kernel and have to handle such case 803 // and not to crash. 804 Target->DependentSections.push_back(RelocSec); 805 return RelocSec; 806 } 807 808 if (Target->FirstRelocation) 809 fatal(toString(this) + 810 ": multiple relocation sections to one section are not supported"); 811 812 // ELF spec allows mergeable sections with relocations, but they are 813 // rare, and it is in practice hard to merge such sections by contents, 814 // because applying relocations at end of linking changes section 815 // contents. So, we simply handle such sections as non-mergeable ones. 816 // Degrading like this is acceptable because section merging is optional. 817 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 818 Target = toRegularSection(MS); 819 this->Sections[Sec.sh_info] = Target; 820 } 821 822 if (Sec.sh_type == SHT_RELA) { 823 ArrayRef<Elf_Rela> Rels = CHECK(getObj().relas(&Sec), this); 824 Target->FirstRelocation = Rels.begin(); 825 Target->NumRelocations = Rels.size(); 826 Target->AreRelocsRela = true; 827 } else { 828 ArrayRef<Elf_Rel> Rels = CHECK(getObj().rels(&Sec), this); 829 Target->FirstRelocation = Rels.begin(); 830 Target->NumRelocations = Rels.size(); 831 Target->AreRelocsRela = false; 832 } 833 assert(isUInt<31>(Target->NumRelocations)); 834 835 // Relocation sections processed by the linker are usually removed 836 // from the output, so returning `nullptr` for the normal case. 837 // However, if -emit-relocs is given, we need to leave them in the output. 838 // (Some post link analysis tools need this information.) 839 if (Config->EmitRelocs) { 840 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 841 // We will not emit relocation section if target was discarded. 842 Target->DependentSections.push_back(RelocSec); 843 return RelocSec; 844 } 845 return nullptr; 846 } 847 } 848 849 // The GNU linker uses .note.GNU-stack section as a marker indicating 850 // that the code in the object file does not expect that the stack is 851 // executable (in terms of NX bit). If all input files have the marker, 852 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 853 // make the stack non-executable. Most object files have this section as 854 // of 2017. 855 // 856 // But making the stack non-executable is a norm today for security 857 // reasons. Failure to do so may result in a serious security issue. 858 // Therefore, we make LLD always add PT_GNU_STACK unless it is 859 // explicitly told to do otherwise (by -z execstack). Because the stack 860 // executable-ness is controlled solely by command line options, 861 // .note.GNU-stack sections are simply ignored. 862 if (Name == ".note.GNU-stack") 863 return &InputSection::Discarded; 864 865 // Split stacks is a feature to support a discontiguous stack, 866 // commonly used in the programming language Go. For the details, 867 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 868 // for split stack will include a .note.GNU-split-stack section. 869 if (Name == ".note.GNU-split-stack") { 870 if (Config->Relocatable) { 871 error("cannot mix split-stack and non-split-stack in a relocatable link"); 872 return &InputSection::Discarded; 873 } 874 this->SplitStack = true; 875 return &InputSection::Discarded; 876 } 877 878 // An object file cmpiled for split stack, but where some of the 879 // functions were compiled with the no_split_stack_attribute will 880 // include a .note.GNU-no-split-stack section. 881 if (Name == ".note.GNU-no-split-stack") { 882 this->SomeNoSplitStack = true; 883 return &InputSection::Discarded; 884 } 885 886 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 887 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 888 // sections. Drop those sections to avoid duplicate symbol errors. 889 // FIXME: This is glibc PR20543, we should remove this hack once that has been 890 // fixed for a while. 891 if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 892 Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 893 return &InputSection::Discarded; 894 895 // If we are creating a new .build-id section, strip existing .build-id 896 // sections so that the output won't have more than one .build-id. 897 // This is not usually a problem because input object files normally don't 898 // have .build-id sections, but you can create such files by 899 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 900 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 901 return &InputSection::Discarded; 902 903 // The linker merges EH (exception handling) frames and creates a 904 // .eh_frame_hdr section for runtime. So we handle them with a special 905 // class. For relocatable outputs, they are just passed through. 906 if (Name == ".eh_frame" && !Config->Relocatable) 907 return make<EhInputSection>(*this, Sec, Name); 908 909 if (shouldMerge(Sec)) 910 return make<MergeInputSection>(*this, Sec, Name); 911 return make<InputSection>(*this, Sec, Name); 912 } 913 914 template <class ELFT> 915 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 916 return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this); 917 } 918 919 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 920 this->Symbols.reserve(this->getELFSyms<ELFT>().size()); 921 for (const Elf_Sym &Sym : this->getELFSyms<ELFT>()) 922 this->Symbols.push_back(createSymbol(&Sym)); 923 } 924 925 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 926 uint32_t SecIdx = getSectionIndex(*Sym); 927 if (SecIdx >= this->Sections.size()) 928 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 929 930 InputSectionBase *Sec = this->Sections[SecIdx]; 931 uint8_t Binding = Sym->getBinding(); 932 uint8_t StOther = Sym->st_other; 933 uint8_t Type = Sym->getType(); 934 uint64_t Value = Sym->st_value; 935 uint64_t Size = Sym->st_size; 936 937 if (Binding == STB_LOCAL) { 938 if (Sym->getType() == STT_FILE) 939 SourceFile = CHECK(Sym->getName(this->StringTable), this); 940 941 if (this->StringTable.size() <= Sym->st_name) 942 fatal(toString(this) + ": invalid symbol name offset"); 943 944 StringRefZ Name = this->StringTable.data() + Sym->st_name; 945 if (Sym->st_shndx == SHN_UNDEF) 946 return make<Undefined>(this, Name, Binding, StOther, Type); 947 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 948 } 949 950 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 951 952 switch (Sym->st_shndx) { 953 case SHN_UNDEF: 954 return Symtab->addSymbol(Undefined{this, Name, Binding, StOther, Type}); 955 case SHN_COMMON: 956 if (Value == 0 || Value >= UINT32_MAX) 957 fatal(toString(this) + ": common symbol '" + Name + 958 "' has invalid alignment: " + Twine(Value)); 959 return Symtab->addSymbol( 960 CommonSymbol{this, Name, Binding, StOther, Type, Value, Size}); 961 } 962 963 switch (Binding) { 964 default: 965 fatal(toString(this) + ": unexpected binding: " + Twine((int)Binding)); 966 case STB_GLOBAL: 967 case STB_WEAK: 968 case STB_GNU_UNIQUE: 969 if (Sec == &InputSection::Discarded) 970 return Symtab->addSymbol(Undefined{this, Name, Binding, StOther, Type}); 971 return Symtab->addSymbol( 972 Defined{this, Name, Binding, StOther, Type, Value, Size, Sec}); 973 } 974 } 975 976 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 977 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 978 File(std::move(File)) {} 979 980 void ArchiveFile::parse() { 981 for (const Archive::Symbol &Sym : File->symbols()) 982 Symtab->addSymbol(LazyArchive{*this, Sym}); 983 } 984 985 // Returns a buffer pointing to a member file containing a given symbol. 986 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) { 987 Archive::Child C = 988 CHECK(Sym.getMember(), toString(this) + 989 ": could not get the member for symbol " + 990 Sym.getName()); 991 992 if (!Seen.insert(C.getChildOffset()).second) 993 return nullptr; 994 995 MemoryBufferRef MB = 996 CHECK(C.getMemoryBufferRef(), 997 toString(this) + 998 ": could not get the buffer for the member defining symbol " + 999 Sym.getName()); 1000 1001 if (Tar && C.getParent()->isThin()) 1002 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); 1003 1004 InputFile *File = createObjectFile( 1005 MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); 1006 File->GroupId = GroupId; 1007 return File; 1008 } 1009 1010 unsigned SharedFile::VernauxNum; 1011 1012 SharedFile::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 1013 : ELFFileBase(SharedKind, M), SoName(DefaultSoName), 1014 IsNeeded(!Config->AsNeeded) {} 1015 1016 // Parse the version definitions in the object file if present, and return a 1017 // vector whose nth element contains a pointer to the Elf_Verdef for version 1018 // identifier n. Version identifiers that are not definitions map to nullptr. 1019 template <typename ELFT> 1020 static std::vector<const void *> parseVerdefs(const uint8_t *Base, 1021 const typename ELFT::Shdr *Sec) { 1022 if (!Sec) 1023 return {}; 1024 1025 // We cannot determine the largest verdef identifier without inspecting 1026 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1027 // sequentially starting from 1, so we predict that the largest identifier 1028 // will be VerdefCount. 1029 unsigned VerdefCount = Sec->sh_info; 1030 std::vector<const void *> Verdefs(VerdefCount + 1); 1031 1032 // Build the Verdefs array by following the chain of Elf_Verdef objects 1033 // from the start of the .gnu.version_d section. 1034 const uint8_t *Verdef = Base + Sec->sh_offset; 1035 for (unsigned I = 0; I != VerdefCount; ++I) { 1036 auto *CurVerdef = reinterpret_cast<const typename ELFT::Verdef *>(Verdef); 1037 Verdef += CurVerdef->vd_next; 1038 unsigned VerdefIndex = CurVerdef->vd_ndx; 1039 Verdefs.resize(VerdefIndex + 1); 1040 Verdefs[VerdefIndex] = CurVerdef; 1041 } 1042 return Verdefs; 1043 } 1044 1045 // We do not usually care about alignments of data in shared object 1046 // files because the loader takes care of it. However, if we promote a 1047 // DSO symbol to point to .bss due to copy relocation, we need to keep 1048 // the original alignment requirements. We infer it in this function. 1049 template <typename ELFT> 1050 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> Sections, 1051 const typename ELFT::Sym &Sym) { 1052 uint64_t Ret = UINT64_MAX; 1053 if (Sym.st_value) 1054 Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 1055 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) 1056 Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); 1057 return (Ret > UINT32_MAX) ? 0 : Ret; 1058 } 1059 1060 // Fully parse the shared object file. 1061 // 1062 // This function parses symbol versions. If a DSO has version information, 1063 // the file has a ".gnu.version_d" section which contains symbol version 1064 // definitions. Each symbol is associated to one version through a table in 1065 // ".gnu.version" section. That table is a parallel array for the symbol 1066 // table, and each table entry contains an index in ".gnu.version_d". 1067 // 1068 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1069 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1070 // ".gnu.version_d". 1071 // 1072 // The file format for symbol versioning is perhaps a bit more complicated 1073 // than necessary, but you can easily understand the code if you wrap your 1074 // head around the data structure described above. 1075 template <class ELFT> void SharedFile::parse() { 1076 using Elf_Dyn = typename ELFT::Dyn; 1077 using Elf_Shdr = typename ELFT::Shdr; 1078 using Elf_Sym = typename ELFT::Sym; 1079 using Elf_Verdef = typename ELFT::Verdef; 1080 using Elf_Versym = typename ELFT::Versym; 1081 1082 ArrayRef<Elf_Dyn> DynamicTags; 1083 const ELFFile<ELFT> Obj = this->getObj<ELFT>(); 1084 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 1085 1086 const Elf_Shdr *VersymSec = nullptr; 1087 const Elf_Shdr *VerdefSec = nullptr; 1088 1089 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1090 for (const Elf_Shdr &Sec : Sections) { 1091 switch (Sec.sh_type) { 1092 default: 1093 continue; 1094 case SHT_DYNSYM: 1095 this->initSymtab<ELFT>(Sections, &Sec); 1096 break; 1097 case SHT_DYNAMIC: 1098 DynamicTags = 1099 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(&Sec), this); 1100 break; 1101 case SHT_GNU_versym: 1102 VersymSec = &Sec; 1103 break; 1104 case SHT_GNU_verdef: 1105 VerdefSec = &Sec; 1106 break; 1107 } 1108 } 1109 1110 if (VersymSec && this->getELFSyms<ELFT>().empty()) { 1111 error("SHT_GNU_versym should be associated with symbol table"); 1112 return; 1113 } 1114 1115 // Search for a DT_SONAME tag to initialize this->SoName. 1116 for (const Elf_Dyn &Dyn : DynamicTags) { 1117 if (Dyn.d_tag == DT_NEEDED) { 1118 uint64_t Val = Dyn.getVal(); 1119 if (Val >= this->StringTable.size()) 1120 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1121 DtNeeded.push_back(this->StringTable.data() + Val); 1122 } else if (Dyn.d_tag == DT_SONAME) { 1123 uint64_t Val = Dyn.getVal(); 1124 if (Val >= this->StringTable.size()) 1125 fatal(toString(this) + ": invalid DT_SONAME entry"); 1126 SoName = this->StringTable.data() + Val; 1127 } 1128 } 1129 1130 // DSOs are uniquified not by filename but by soname. 1131 DenseMap<StringRef, SharedFile *>::iterator It; 1132 bool WasInserted; 1133 std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this); 1134 1135 // If a DSO appears more than once on the command line with and without 1136 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1137 // user can add an extra DSO with --no-as-needed to force it to be added to 1138 // the dependency list. 1139 It->second->IsNeeded |= IsNeeded; 1140 if (!WasInserted) 1141 return; 1142 1143 SharedFiles.push_back(this); 1144 1145 Verdefs = parseVerdefs<ELFT>(Obj.base(), VerdefSec); 1146 1147 // Parse ".gnu.version" section which is a parallel array for the symbol 1148 // table. If a given file doesn't have a ".gnu.version" section, we use 1149 // VER_NDX_GLOBAL. 1150 size_t Size = this->getELFSyms<ELFT>().size() - this->FirstGlobal; 1151 std::vector<uint32_t> Versyms(Size, VER_NDX_GLOBAL); 1152 if (VersymSec) { 1153 ArrayRef<Elf_Versym> Versym = 1154 CHECK(Obj.template getSectionContentsAsArray<Elf_Versym>(VersymSec), 1155 this) 1156 .slice(FirstGlobal); 1157 for (size_t I = 0; I < Size; ++I) 1158 Versyms[I] = Versym[I].vs_index; 1159 } 1160 1161 // System libraries can have a lot of symbols with versions. Using a 1162 // fixed buffer for computing the versions name (foo@ver) can save a 1163 // lot of allocations. 1164 SmallString<0> VersionedNameBuffer; 1165 1166 // Add symbols to the symbol table. 1167 ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms<ELFT>(); 1168 for (size_t I = 0; I < Syms.size(); ++I) { 1169 const Elf_Sym &Sym = Syms[I]; 1170 1171 // ELF spec requires that all local symbols precede weak or global 1172 // symbols in each symbol table, and the index of first non-local symbol 1173 // is stored to sh_info. If a local symbol appears after some non-local 1174 // symbol, that's a violation of the spec. 1175 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 1176 if (Sym.getBinding() == STB_LOCAL) { 1177 warn("found local symbol '" + Name + 1178 "' in global part of symbol table in file " + toString(this)); 1179 continue; 1180 } 1181 1182 if (Sym.isUndefined()) { 1183 Symbol *S = Symtab->addSymbol( 1184 Undefined{this, Name, Sym.getBinding(), Sym.st_other, Sym.getType()}); 1185 S->ExportDynamic = true; 1186 continue; 1187 } 1188 1189 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1190 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1191 // workaround for this bug. 1192 uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; 1193 if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && 1194 Name == "_gp_disp") 1195 continue; 1196 1197 uint32_t Alignment = getAlignment<ELFT>(Sections, Sym); 1198 if (!(Versyms[I] & VERSYM_HIDDEN)) { 1199 Symtab->addSymbol(SharedSymbol{*this, Name, Sym.getBinding(), 1200 Sym.st_other, Sym.getType(), Sym.st_value, 1201 Sym.st_size, Alignment, Idx}); 1202 } 1203 1204 // Also add the symbol with the versioned name to handle undefined symbols 1205 // with explicit versions. 1206 if (Idx == VER_NDX_GLOBAL) 1207 continue; 1208 1209 if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { 1210 error("corrupt input file: version definition index " + Twine(Idx) + 1211 " for symbol " + Name + " is out of bounds\n>>> defined in " + 1212 toString(this)); 1213 continue; 1214 } 1215 1216 StringRef VerName = 1217 this->StringTable.data() + 1218 reinterpret_cast<const Elf_Verdef *>(Verdefs[Idx])->getAux()->vda_name; 1219 VersionedNameBuffer.clear(); 1220 Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); 1221 Symtab->addSymbol(SharedSymbol{*this, Saver.save(Name), Sym.getBinding(), 1222 Sym.st_other, Sym.getType(), Sym.st_value, 1223 Sym.st_size, Alignment, Idx}); 1224 } 1225 } 1226 1227 static ELFKind getBitcodeELFKind(const Triple &T) { 1228 if (T.isLittleEndian()) 1229 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1230 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1231 } 1232 1233 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 1234 switch (T.getArch()) { 1235 case Triple::aarch64: 1236 return EM_AARCH64; 1237 case Triple::amdgcn: 1238 case Triple::r600: 1239 return EM_AMDGPU; 1240 case Triple::arm: 1241 case Triple::thumb: 1242 return EM_ARM; 1243 case Triple::avr: 1244 return EM_AVR; 1245 case Triple::mips: 1246 case Triple::mipsel: 1247 case Triple::mips64: 1248 case Triple::mips64el: 1249 return EM_MIPS; 1250 case Triple::msp430: 1251 return EM_MSP430; 1252 case Triple::ppc: 1253 return EM_PPC; 1254 case Triple::ppc64: 1255 case Triple::ppc64le: 1256 return EM_PPC64; 1257 case Triple::x86: 1258 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 1259 case Triple::x86_64: 1260 return EM_X86_64; 1261 default: 1262 error(Path + ": could not infer e_machine from bitcode target triple " + 1263 T.str()); 1264 return EM_NONE; 1265 } 1266 } 1267 1268 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 1269 uint64_t OffsetInArchive) 1270 : InputFile(BitcodeKind, MB) { 1271 this->ArchiveName = ArchiveName; 1272 1273 std::string Path = MB.getBufferIdentifier().str(); 1274 if (Config->ThinLTOIndexOnly) 1275 Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); 1276 1277 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1278 // name. If two archives define two members with the same name, this 1279 // causes a collision which result in only one of the objects being taken 1280 // into consideration at LTO time (which very likely causes undefined 1281 // symbols later in the link stage). So we append file offset to make 1282 // filename unique. 1283 StringRef Name = ArchiveName.empty() 1284 ? Saver.save(Path) 1285 : Saver.save(ArchiveName + "(" + Path + " at " + 1286 utostr(OffsetInArchive) + ")"); 1287 MemoryBufferRef MBRef(MB.getBuffer(), Name); 1288 1289 Obj = CHECK(lto::InputFile::create(MBRef), this); 1290 1291 Triple T(Obj->getTargetTriple()); 1292 EKind = getBitcodeELFKind(T); 1293 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 1294 } 1295 1296 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 1297 switch (GvVisibility) { 1298 case GlobalValue::DefaultVisibility: 1299 return STV_DEFAULT; 1300 case GlobalValue::HiddenVisibility: 1301 return STV_HIDDEN; 1302 case GlobalValue::ProtectedVisibility: 1303 return STV_PROTECTED; 1304 } 1305 llvm_unreachable("unknown visibility"); 1306 } 1307 1308 template <class ELFT> 1309 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 1310 const lto::InputFile::Symbol &ObjSym, 1311 BitcodeFile &F) { 1312 StringRef Name = Saver.save(ObjSym.getName()); 1313 uint8_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1314 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 1315 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 1316 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 1317 1318 int C = ObjSym.getComdatIndex(); 1319 if (ObjSym.isUndefined() || (C != -1 && !KeptComdats[C])) { 1320 Undefined New(&F, Name, Binding, Visibility, Type); 1321 if (CanOmitFromDynSym) 1322 New.ExportDynamic = false; 1323 return Symtab->addSymbol(New); 1324 } 1325 1326 if (ObjSym.isCommon()) 1327 return Symtab->addSymbol( 1328 CommonSymbol{&F, Name, Binding, Visibility, STT_OBJECT, 1329 ObjSym.getCommonAlignment(), ObjSym.getCommonSize()}); 1330 1331 Defined New(&F, Name, Binding, Visibility, Type, 0, 0, nullptr); 1332 if (CanOmitFromDynSym) 1333 New.ExportDynamic = false; 1334 return Symtab->addSymbol(New); 1335 } 1336 1337 template <class ELFT> 1338 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 1339 std::vector<bool> KeptComdats; 1340 for (StringRef S : Obj->getComdatTable()) 1341 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 1342 1343 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1344 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1345 1346 for (auto L : Obj->getDependentLibraries()) 1347 addDependentLibrary(L, this); 1348 } 1349 1350 static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) { 1351 unsigned char Size; 1352 unsigned char Endian; 1353 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 1354 1355 auto Fatal = [&](StringRef Msg) { 1356 StringRef Filename = MB.getBufferIdentifier(); 1357 if (ArchiveName.empty()) 1358 fatal(Filename + ": " + Msg); 1359 else 1360 fatal(ArchiveName + "(" + Filename + "): " + Msg); 1361 }; 1362 1363 if (!MB.getBuffer().startswith(ElfMagic)) 1364 Fatal("not an ELF file"); 1365 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 1366 Fatal("corrupted ELF file: invalid data encoding"); 1367 if (Size != ELFCLASS32 && Size != ELFCLASS64) 1368 Fatal("corrupted ELF file: invalid file class"); 1369 1370 size_t BufSize = MB.getBuffer().size(); 1371 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 1372 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 1373 Fatal("corrupted ELF file: file is too short"); 1374 1375 if (Size == ELFCLASS32) 1376 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 1377 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 1378 } 1379 1380 void BinaryFile::parse() { 1381 ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer()); 1382 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1383 8, Data, ".data"); 1384 Sections.push_back(Section); 1385 1386 // For each input file foo that is embedded to a result as a binary 1387 // blob, we define _binary_foo_{start,end,size} symbols, so that 1388 // user programs can access blobs by name. Non-alphanumeric 1389 // characters in a filename are replaced with underscore. 1390 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1391 for (size_t I = 0; I < S.size(); ++I) 1392 if (!isAlnum(S[I])) 1393 S[I] = '_'; 1394 1395 Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_start"), STB_GLOBAL, 1396 STV_DEFAULT, STT_OBJECT, 0, 0, Section}); 1397 Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_end"), STB_GLOBAL, 1398 STV_DEFAULT, STT_OBJECT, Data.size(), 0, Section}); 1399 Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_size"), STB_GLOBAL, 1400 STV_DEFAULT, STT_OBJECT, Data.size(), 0, nullptr}); 1401 } 1402 1403 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1404 uint64_t OffsetInArchive) { 1405 if (isBitcode(MB)) 1406 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1407 1408 switch (getELFKind(MB, ArchiveName)) { 1409 case ELF32LEKind: 1410 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1411 case ELF32BEKind: 1412 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1413 case ELF64LEKind: 1414 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1415 case ELF64BEKind: 1416 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1417 default: 1418 llvm_unreachable("getELFKind"); 1419 } 1420 } 1421 1422 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1423 auto *F = make<SharedFile>(MB, DefaultSoName); 1424 switch (getELFKind(MB, "")) { 1425 case ELF32LEKind: 1426 F->parseHeader<ELF32LE>(); 1427 break; 1428 case ELF32BEKind: 1429 F->parseHeader<ELF32BE>(); 1430 break; 1431 case ELF64LEKind: 1432 F->parseHeader<ELF64LE>(); 1433 break; 1434 case ELF64BEKind: 1435 F->parseHeader<ELF64BE>(); 1436 break; 1437 default: 1438 llvm_unreachable("getELFKind"); 1439 } 1440 return F; 1441 } 1442 1443 MemoryBufferRef LazyObjFile::getBuffer() { 1444 if (AddedToLink) 1445 return MemoryBufferRef(); 1446 AddedToLink = true; 1447 return MB; 1448 } 1449 1450 InputFile *LazyObjFile::fetch() { 1451 MemoryBufferRef MBRef = getBuffer(); 1452 if (MBRef.getBuffer().empty()) 1453 return nullptr; 1454 1455 InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1456 File->GroupId = GroupId; 1457 return File; 1458 } 1459 1460 template <class ELFT> void LazyObjFile::parse() { 1461 // A lazy object file wraps either a bitcode file or an ELF file. 1462 if (isBitcode(this->MB)) { 1463 std::unique_ptr<lto::InputFile> Obj = 1464 CHECK(lto::InputFile::create(this->MB), this); 1465 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) { 1466 if (Sym.isUndefined()) 1467 continue; 1468 Symtab->addSymbol(LazyObject{*this, Saver.save(Sym.getName())}); 1469 } 1470 return; 1471 } 1472 1473 if (getELFKind(this->MB, ArchiveName) != Config->EKind) { 1474 error("incompatible file: " + this->MB.getBufferIdentifier()); 1475 return; 1476 } 1477 1478 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); 1479 ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); 1480 1481 for (const typename ELFT::Shdr &Sec : Sections) { 1482 if (Sec.sh_type != SHT_SYMTAB) 1483 continue; 1484 1485 typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this); 1486 uint32_t FirstGlobal = Sec.sh_info; 1487 StringRef StringTable = 1488 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1489 1490 for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal)) { 1491 if (Sym.st_shndx == SHN_UNDEF) 1492 continue; 1493 Symtab->addSymbol( 1494 LazyObject{*this, CHECK(Sym.getName(StringTable), this)}); 1495 } 1496 return; 1497 } 1498 } 1499 1500 std::string elf::replaceThinLTOSuffix(StringRef Path) { 1501 StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; 1502 StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; 1503 1504 if (Path.consume_back(Suffix)) 1505 return (Path + Repl).str(); 1506 return Path; 1507 } 1508 1509 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1510 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1511 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1512 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1513 1514 template void LazyObjFile::parse<ELF32LE>(); 1515 template void LazyObjFile::parse<ELF32BE>(); 1516 template void LazyObjFile::parse<ELF64LE>(); 1517 template void LazyObjFile::parse<ELF64BE>(); 1518 1519 template class elf::ObjFile<ELF32LE>; 1520 template class elf::ObjFile<ELF32BE>; 1521 template class elf::ObjFile<ELF64LE>; 1522 template class elf::ObjFile<ELF64BE>; 1523 1524 template void SharedFile::parse<ELF32LE>(); 1525 template void SharedFile::parse<ELF32BE>(); 1526 template void SharedFile::parse<ELF64LE>(); 1527 template void SharedFile::parse<ELF64BE>(); 1528