1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/TarWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::sys;
37 using namespace llvm::sys::fs;
38 using namespace llvm::support::endian;
39 
40 namespace lld {
41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
42 std::string toString(const elf::InputFile *f) {
43   if (!f)
44     return "<internal>";
45 
46   if (f->toStringCache.empty()) {
47     if (f->archiveName.empty())
48       f->toStringCache = std::string(f->getName());
49     else
50       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
51   }
52   return f->toStringCache;
53 }
54 
55 namespace elf {
56 bool InputFile::isInGroup;
57 uint32_t InputFile::nextGroupId;
58 std::vector<BinaryFile *> binaryFiles;
59 std::vector<BitcodeFile *> bitcodeFiles;
60 std::vector<LazyObjFile *> lazyObjFiles;
61 std::vector<InputFile *> objectFiles;
62 std::vector<SharedFile *> sharedFiles;
63 
64 std::unique_ptr<TarWriter> tar;
65 
66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
67   unsigned char size;
68   unsigned char endian;
69   std::tie(size, endian) = getElfArchType(mb.getBuffer());
70 
71   auto report = [&](StringRef msg) {
72     StringRef filename = mb.getBufferIdentifier();
73     if (archiveName.empty())
74       fatal(filename + ": " + msg);
75     else
76       fatal(archiveName + "(" + filename + "): " + msg);
77   };
78 
79   if (!mb.getBuffer().startswith(ElfMagic))
80     report("not an ELF file");
81   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
82     report("corrupted ELF file: invalid data encoding");
83   if (size != ELFCLASS32 && size != ELFCLASS64)
84     report("corrupted ELF file: invalid file class");
85 
86   size_t bufSize = mb.getBuffer().size();
87   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
88       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
89     report("corrupted ELF file: file is too short");
90 
91   if (size == ELFCLASS32)
92     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
93   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
94 }
95 
96 InputFile::InputFile(Kind k, MemoryBufferRef m)
97     : mb(m), groupId(nextGroupId), fileKind(k) {
98   // All files within the same --{start,end}-group get the same group ID.
99   // Otherwise, a new file will get a new group ID.
100   if (!isInGroup)
101     ++nextGroupId;
102 }
103 
104 Optional<MemoryBufferRef> readFile(StringRef path) {
105   // The --chroot option changes our virtual root directory.
106   // This is useful when you are dealing with files created by --reproduce.
107   if (!config->chroot.empty() && path.startswith("/"))
108     path = saver.save(config->chroot + path);
109 
110   log(path);
111 
112   auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
113   if (auto ec = mbOrErr.getError()) {
114     error("cannot open " + path + ": " + ec.message());
115     return None;
116   }
117 
118   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
119   MemoryBufferRef mbref = mb->getMemBufferRef();
120   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
121 
122   if (tar)
123     tar->append(relativeToRoot(path), mbref.getBuffer());
124   return mbref;
125 }
126 
127 // All input object files must be for the same architecture
128 // (e.g. it does not make sense to link x86 object files with
129 // MIPS object files.) This function checks for that error.
130 static bool isCompatible(InputFile *file) {
131   if (!file->isElf() && !isa<BitcodeFile>(file))
132     return true;
133 
134   if (file->ekind == config->ekind && file->emachine == config->emachine) {
135     if (config->emachine != EM_MIPS)
136       return true;
137     if (isMipsN32Abi(file) == config->mipsN32Abi)
138       return true;
139   }
140 
141   if (!config->emulation.empty()) {
142     error(toString(file) + " is incompatible with " + config->emulation);
143     return false;
144   }
145 
146   InputFile *existing;
147   if (!objectFiles.empty())
148     existing = objectFiles[0];
149   else if (!sharedFiles.empty())
150     existing = sharedFiles[0];
151   else
152     existing = bitcodeFiles[0];
153 
154   error(toString(file) + " is incompatible with " + toString(existing));
155   return false;
156 }
157 
158 template <class ELFT> static void doParseFile(InputFile *file) {
159   if (!isCompatible(file))
160     return;
161 
162   // Binary file
163   if (auto *f = dyn_cast<BinaryFile>(file)) {
164     binaryFiles.push_back(f);
165     f->parse();
166     return;
167   }
168 
169   // .a file
170   if (auto *f = dyn_cast<ArchiveFile>(file)) {
171     f->parse();
172     return;
173   }
174 
175   // Lazy object file
176   if (auto *f = dyn_cast<LazyObjFile>(file)) {
177     lazyObjFiles.push_back(f);
178     f->parse<ELFT>();
179     return;
180   }
181 
182   if (config->trace)
183     message(toString(file));
184 
185   // .so file
186   if (auto *f = dyn_cast<SharedFile>(file)) {
187     f->parse<ELFT>();
188     return;
189   }
190 
191   // LLVM bitcode file
192   if (auto *f = dyn_cast<BitcodeFile>(file)) {
193     bitcodeFiles.push_back(f);
194     f->parse<ELFT>();
195     return;
196   }
197 
198   // Regular object file
199   objectFiles.push_back(file);
200   cast<ObjFile<ELFT>>(file)->parse();
201 }
202 
203 // Add symbols in File to the symbol table.
204 void parseFile(InputFile *file) {
205   switch (config->ekind) {
206   case ELF32LEKind:
207     doParseFile<ELF32LE>(file);
208     return;
209   case ELF32BEKind:
210     doParseFile<ELF32BE>(file);
211     return;
212   case ELF64LEKind:
213     doParseFile<ELF64LE>(file);
214     return;
215   case ELF64BEKind:
216     doParseFile<ELF64BE>(file);
217     return;
218   default:
219     llvm_unreachable("unknown ELFT");
220   }
221 }
222 
223 // Concatenates arguments to construct a string representing an error location.
224 static std::string createFileLineMsg(StringRef path, unsigned line) {
225   std::string filename = std::string(path::filename(path));
226   std::string lineno = ":" + std::to_string(line);
227   if (filename == path)
228     return filename + lineno;
229   return filename + lineno + " (" + path.str() + lineno + ")";
230 }
231 
232 template <class ELFT>
233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
234                                 InputSectionBase &sec, uint64_t offset) {
235   // In DWARF, functions and variables are stored to different places.
236   // First, lookup a function for a given offset.
237   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
238     return createFileLineMsg(info->FileName, info->Line);
239 
240   // If it failed, lookup again as a variable.
241   if (Optional<std::pair<std::string, unsigned>> fileLine =
242           file.getVariableLoc(sym.getName()))
243     return createFileLineMsg(fileLine->first, fileLine->second);
244 
245   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
246   return std::string(file.sourceFile);
247 }
248 
249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
250                                  uint64_t offset) {
251   if (kind() != ObjKind)
252     return "";
253   switch (config->ekind) {
254   default:
255     llvm_unreachable("Invalid kind");
256   case ELF32LEKind:
257     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
258   case ELF32BEKind:
259     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
260   case ELF64LEKind:
261     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
262   case ELF64BEKind:
263     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
264   }
265 }
266 
267 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
268   dwarf = make<DWARFCache>(std::make_unique<DWARFContext>(
269       std::make_unique<LLDDwarfObj<ELFT>>(this)));
270 }
271 
272 // Returns the pair of file name and line number describing location of data
273 // object (variable, array, etc) definition.
274 template <class ELFT>
275 Optional<std::pair<std::string, unsigned>>
276 ObjFile<ELFT>::getVariableLoc(StringRef name) {
277   llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
278 
279   return dwarf->getVariableLoc(name);
280 }
281 
282 // Returns source line information for a given offset
283 // using DWARF debug info.
284 template <class ELFT>
285 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
286                                                   uint64_t offset) {
287   llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
288 
289   // Detect SectionIndex for specified section.
290   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
291   ArrayRef<InputSectionBase *> sections = s->file->getSections();
292   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
293     if (s == sections[curIndex]) {
294       sectionIndex = curIndex;
295       break;
296     }
297   }
298 
299   return dwarf->getDILineInfo(offset, sectionIndex);
300 }
301 
302 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
303   ekind = getELFKind(mb, "");
304 
305   switch (ekind) {
306   case ELF32LEKind:
307     init<ELF32LE>();
308     break;
309   case ELF32BEKind:
310     init<ELF32BE>();
311     break;
312   case ELF64LEKind:
313     init<ELF64LE>();
314     break;
315   case ELF64BEKind:
316     init<ELF64BE>();
317     break;
318   default:
319     llvm_unreachable("getELFKind");
320   }
321 }
322 
323 template <typename Elf_Shdr>
324 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
325   for (const Elf_Shdr &sec : sections)
326     if (sec.sh_type == type)
327       return &sec;
328   return nullptr;
329 }
330 
331 template <class ELFT> void ELFFileBase::init() {
332   using Elf_Shdr = typename ELFT::Shdr;
333   using Elf_Sym = typename ELFT::Sym;
334 
335   // Initialize trivial attributes.
336   const ELFFile<ELFT> &obj = getObj<ELFT>();
337   emachine = obj.getHeader()->e_machine;
338   osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
339   abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
340 
341   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
342 
343   // Find a symbol table.
344   bool isDSO =
345       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
346   const Elf_Shdr *symtabSec =
347       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
348 
349   if (!symtabSec)
350     return;
351 
352   // Initialize members corresponding to a symbol table.
353   firstGlobal = symtabSec->sh_info;
354 
355   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
356   if (firstGlobal == 0 || firstGlobal > eSyms.size())
357     fatal(toString(this) + ": invalid sh_info in symbol table");
358 
359   elfSyms = reinterpret_cast<const void *>(eSyms.data());
360   numELFSyms = eSyms.size();
361   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
362 }
363 
364 template <class ELFT>
365 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
366   return CHECK(
367       this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable),
368       this);
369 }
370 
371 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
372   if (this->symbols.empty())
373     return {};
374   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
375 }
376 
377 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
378   return makeArrayRef(this->symbols).slice(this->firstGlobal);
379 }
380 
381 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
382   // Read a section table. justSymbols is usually false.
383   if (this->justSymbols)
384     initializeJustSymbols();
385   else
386     initializeSections(ignoreComdats);
387 
388   // Read a symbol table.
389   initializeSymbols();
390 }
391 
392 // Sections with SHT_GROUP and comdat bits define comdat section groups.
393 // They are identified and deduplicated by group name. This function
394 // returns a group name.
395 template <class ELFT>
396 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
397                                               const Elf_Shdr &sec) {
398   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
399   if (sec.sh_info >= symbols.size())
400     fatal(toString(this) + ": invalid symbol index");
401   const typename ELFT::Sym &sym = symbols[sec.sh_info];
402   StringRef signature = CHECK(sym.getName(this->stringTable), this);
403 
404   // As a special case, if a symbol is a section symbol and has no name,
405   // we use a section name as a signature.
406   //
407   // Such SHT_GROUP sections are invalid from the perspective of the ELF
408   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
409   // older produce such sections as outputs for the -r option, so we need
410   // a bug-compatibility.
411   if (signature.empty() && sym.getType() == STT_SECTION)
412     return getSectionName(sec);
413   return signature;
414 }
415 
416 template <class ELFT>
417 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
418   // On a regular link we don't merge sections if -O0 (default is -O1). This
419   // sometimes makes the linker significantly faster, although the output will
420   // be bigger.
421   //
422   // Doing the same for -r would create a problem as it would combine sections
423   // with different sh_entsize. One option would be to just copy every SHF_MERGE
424   // section as is to the output. While this would produce a valid ELF file with
425   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
426   // they see two .debug_str. We could have separate logic for combining
427   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
428   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
429   // logic for -r.
430   if (config->optimize == 0 && !config->relocatable)
431     return false;
432 
433   // A mergeable section with size 0 is useless because they don't have
434   // any data to merge. A mergeable string section with size 0 can be
435   // argued as invalid because it doesn't end with a null character.
436   // We'll avoid a mess by handling them as if they were non-mergeable.
437   if (sec.sh_size == 0)
438     return false;
439 
440   // Check for sh_entsize. The ELF spec is not clear about the zero
441   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
442   // the section does not hold a table of fixed-size entries". We know
443   // that Rust 1.13 produces a string mergeable section with a zero
444   // sh_entsize. Here we just accept it rather than being picky about it.
445   uint64_t entSize = sec.sh_entsize;
446   if (entSize == 0)
447     return false;
448   if (sec.sh_size % entSize)
449     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
450           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
451           Twine(entSize) + ")");
452 
453   uint64_t flags = sec.sh_flags;
454   if (!(flags & SHF_MERGE))
455     return false;
456   if (flags & SHF_WRITE)
457     fatal(toString(this) + ":(" + name +
458           "): writable SHF_MERGE section is not supported");
459 
460   return true;
461 }
462 
463 // This is for --just-symbols.
464 //
465 // --just-symbols is a very minor feature that allows you to link your
466 // output against other existing program, so that if you load both your
467 // program and the other program into memory, your output can refer the
468 // other program's symbols.
469 //
470 // When the option is given, we link "just symbols". The section table is
471 // initialized with null pointers.
472 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
473   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
474   this->sections.resize(sections.size());
475 }
476 
477 // An ELF object file may contain a `.deplibs` section. If it exists, the
478 // section contains a list of library specifiers such as `m` for libm. This
479 // function resolves a given name by finding the first matching library checking
480 // the various ways that a library can be specified to LLD. This ELF extension
481 // is a form of autolinking and is called `dependent libraries`. It is currently
482 // unique to LLVM and lld.
483 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
484   if (!config->dependentLibraries)
485     return;
486   if (fs::exists(specifier))
487     driver->addFile(specifier, /*withLOption=*/false);
488   else if (Optional<std::string> s = findFromSearchPaths(specifier))
489     driver->addFile(*s, /*withLOption=*/true);
490   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
491     driver->addFile(*s, /*withLOption=*/true);
492   else
493     error(toString(f) +
494           ": unable to find library from dependent library specifier: " +
495           specifier);
496 }
497 
498 // Record the membership of a section group so that in the garbage collection
499 // pass, section group members are kept or discarded as a unit.
500 template <class ELFT>
501 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
502                                ArrayRef<typename ELFT::Word> entries) {
503   bool hasAlloc = false;
504   for (uint32_t index : entries.slice(1)) {
505     if (index >= sections.size())
506       return;
507     if (InputSectionBase *s = sections[index])
508       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
509         hasAlloc = true;
510   }
511 
512   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
513   // collection. See the comment in markLive(). This rule retains .debug_types
514   // and .rela.debug_types.
515   if (!hasAlloc)
516     return;
517 
518   // Connect the members in a circular doubly-linked list via
519   // nextInSectionGroup.
520   InputSectionBase *head;
521   InputSectionBase *prev = nullptr;
522   for (uint32_t index : entries.slice(1)) {
523     InputSectionBase *s = sections[index];
524     if (!s || s == &InputSection::discarded)
525       continue;
526     if (prev)
527       prev->nextInSectionGroup = s;
528     else
529       head = s;
530     prev = s;
531   }
532   if (prev)
533     prev->nextInSectionGroup = head;
534 }
535 
536 template <class ELFT>
537 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
538   const ELFFile<ELFT> &obj = this->getObj();
539 
540   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
541   uint64_t size = objSections.size();
542   this->sections.resize(size);
543   this->sectionStringTable =
544       CHECK(obj.getSectionStringTable(objSections), this);
545 
546   std::vector<ArrayRef<Elf_Word>> selectedGroups;
547 
548   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
549     if (this->sections[i] == &InputSection::discarded)
550       continue;
551     const Elf_Shdr &sec = objSections[i];
552 
553     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
554       cgProfile =
555           check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec));
556 
557     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
558     // if -r is given, we'll let the final link discard such sections.
559     // This is compatible with GNU.
560     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
561       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
562         // We ignore the address-significance table if we know that the object
563         // file was created by objcopy or ld -r. This is because these tools
564         // will reorder the symbols in the symbol table, invalidating the data
565         // in the address-significance table, which refers to symbols by index.
566         if (sec.sh_link != 0)
567           this->addrsigSec = &sec;
568         else if (config->icf == ICFLevel::Safe)
569           warn(toString(this) + ": --icf=safe is incompatible with object "
570                                 "files created using objcopy or ld -r");
571       }
572       this->sections[i] = &InputSection::discarded;
573       continue;
574     }
575 
576     switch (sec.sh_type) {
577     case SHT_GROUP: {
578       // De-duplicate section groups by their signatures.
579       StringRef signature = getShtGroupSignature(objSections, sec);
580       this->sections[i] = &InputSection::discarded;
581 
582 
583       ArrayRef<Elf_Word> entries =
584           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this);
585       if (entries.empty())
586         fatal(toString(this) + ": empty SHT_GROUP");
587 
588       // The first word of a SHT_GROUP section contains flags. Currently,
589       // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
590       // An group with the empty flag doesn't define anything; such sections
591       // are just skipped.
592       if (entries[0] == 0)
593         continue;
594 
595       if (entries[0] != GRP_COMDAT)
596         fatal(toString(this) + ": unsupported SHT_GROUP format");
597 
598       bool isNew =
599           ignoreComdats ||
600           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
601               .second;
602       if (isNew) {
603         if (config->relocatable)
604           this->sections[i] = createInputSection(sec);
605         selectedGroups.push_back(entries);
606         continue;
607       }
608 
609       // Otherwise, discard group members.
610       for (uint32_t secIndex : entries.slice(1)) {
611         if (secIndex >= size)
612           fatal(toString(this) +
613                 ": invalid section index in group: " + Twine(secIndex));
614         this->sections[secIndex] = &InputSection::discarded;
615       }
616       break;
617     }
618     case SHT_SYMTAB_SHNDX:
619       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
620       break;
621     case SHT_SYMTAB:
622     case SHT_STRTAB:
623     case SHT_NULL:
624       break;
625     default:
626       this->sections[i] = createInputSection(sec);
627     }
628   }
629 
630   // This block handles SHF_LINK_ORDER.
631   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
632     if (this->sections[i] == &InputSection::discarded)
633       continue;
634     const Elf_Shdr &sec = objSections[i];
635     if (!(sec.sh_flags & SHF_LINK_ORDER))
636       continue;
637 
638     // .ARM.exidx sections have a reverse dependency on the InputSection they
639     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
640     InputSectionBase *linkSec = nullptr;
641     if (sec.sh_link < this->sections.size())
642       linkSec = this->sections[sec.sh_link];
643     if (!linkSec)
644       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
645 
646     InputSection *isec = cast<InputSection>(this->sections[i]);
647     linkSec->dependentSections.push_back(isec);
648     if (!isa<InputSection>(linkSec))
649       error("a section " + isec->name +
650             " with SHF_LINK_ORDER should not refer a non-regular section: " +
651             toString(linkSec));
652   }
653 
654   for (ArrayRef<Elf_Word> entries : selectedGroups)
655     handleSectionGroup<ELFT>(this->sections, entries);
656 }
657 
658 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
659 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
660 // the input objects have been compiled.
661 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
662                              const InputFile *f) {
663   if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
664     // If an ABI tag isn't present then it is implicitly given the value of 0
665     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
666     // including some in glibc that don't use FP args (and should have value 3)
667     // don't have the attribute so we do not consider an implicit value of 0
668     // as a clash.
669     return;
670 
671   unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
672   ARMVFPArgKind arg;
673   switch (vfpArgs) {
674   case ARMBuildAttrs::BaseAAPCS:
675     arg = ARMVFPArgKind::Base;
676     break;
677   case ARMBuildAttrs::HardFPAAPCS:
678     arg = ARMVFPArgKind::VFP;
679     break;
680   case ARMBuildAttrs::ToolChainFPPCS:
681     // Tool chain specific convention that conforms to neither AAPCS variant.
682     arg = ARMVFPArgKind::ToolChain;
683     break;
684   case ARMBuildAttrs::CompatibleFPAAPCS:
685     // Object compatible with all conventions.
686     return;
687   default:
688     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
689     return;
690   }
691   // Follow ld.bfd and error if there is a mix of calling conventions.
692   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
693     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
694   else
695     config->armVFPArgs = arg;
696 }
697 
698 // The ARM support in lld makes some use of instructions that are not available
699 // on all ARM architectures. Namely:
700 // - Use of BLX instruction for interworking between ARM and Thumb state.
701 // - Use of the extended Thumb branch encoding in relocation.
702 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
703 // The ARM Attributes section contains information about the architecture chosen
704 // at compile time. We follow the convention that if at least one input object
705 // is compiled with an architecture that supports these features then lld is
706 // permitted to use them.
707 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
708   if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
709     return;
710   auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
711   switch (arch) {
712   case ARMBuildAttrs::Pre_v4:
713   case ARMBuildAttrs::v4:
714   case ARMBuildAttrs::v4T:
715     // Architectures prior to v5 do not support BLX instruction
716     break;
717   case ARMBuildAttrs::v5T:
718   case ARMBuildAttrs::v5TE:
719   case ARMBuildAttrs::v5TEJ:
720   case ARMBuildAttrs::v6:
721   case ARMBuildAttrs::v6KZ:
722   case ARMBuildAttrs::v6K:
723     config->armHasBlx = true;
724     // Architectures used in pre-Cortex processors do not support
725     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
726     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
727     break;
728   default:
729     // All other Architectures have BLX and extended branch encoding
730     config->armHasBlx = true;
731     config->armJ1J2BranchEncoding = true;
732     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
733       // All Architectures used in Cortex processors with the exception
734       // of v6-M and v6S-M have the MOVT and MOVW instructions.
735       config->armHasMovtMovw = true;
736     break;
737   }
738 }
739 
740 // If a source file is compiled with x86 hardware-assisted call flow control
741 // enabled, the generated object file contains feature flags indicating that
742 // fact. This function reads the feature flags and returns it.
743 //
744 // Essentially we want to read a single 32-bit value in this function, but this
745 // function is rather complicated because the value is buried deep inside a
746 // .note.gnu.property section.
747 //
748 // The section consists of one or more NOTE records. Each NOTE record consists
749 // of zero or more type-length-value fields. We want to find a field of a
750 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
751 // the ABI is unnecessarily complicated.
752 template <class ELFT>
753 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) {
754   using Elf_Nhdr = typename ELFT::Nhdr;
755   using Elf_Note = typename ELFT::Note;
756 
757   uint32_t featuresSet = 0;
758   while (!data.empty()) {
759     // Read one NOTE record.
760     if (data.size() < sizeof(Elf_Nhdr))
761       fatal(toString(obj) + ": .note.gnu.property: section too short");
762 
763     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
764     if (data.size() < nhdr->getSize())
765       fatal(toString(obj) + ": .note.gnu.property: section too short");
766 
767     Elf_Note note(*nhdr);
768     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
769       data = data.slice(nhdr->getSize());
770       continue;
771     }
772 
773     uint32_t featureAndType = config->emachine == EM_AARCH64
774                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
775                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
776 
777     // Read a body of a NOTE record, which consists of type-length-value fields.
778     ArrayRef<uint8_t> desc = note.getDesc();
779     while (!desc.empty()) {
780       if (desc.size() < 8)
781         fatal(toString(obj) + ": .note.gnu.property: section too short");
782 
783       uint32_t type = read32le(desc.data());
784       uint32_t size = read32le(desc.data() + 4);
785 
786       if (type == featureAndType) {
787         // We found a FEATURE_1_AND field. There may be more than one of these
788         // in a .note.gnu.property section, for a relocatable object we
789         // accumulate the bits set.
790         featuresSet |= read32le(desc.data() + 8);
791       }
792 
793       // On 64-bit, a payload may be followed by a 4-byte padding to make its
794       // size a multiple of 8.
795       if (ELFT::Is64Bits)
796         size = alignTo(size, 8);
797 
798       desc = desc.slice(size + 8); // +8 for Type and Size
799     }
800 
801     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
802     data = data.slice(nhdr->getSize());
803   }
804 
805   return featuresSet;
806 }
807 
808 template <class ELFT>
809 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
810   uint32_t idx = sec.sh_info;
811   if (idx >= this->sections.size())
812     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
813   InputSectionBase *target = this->sections[idx];
814 
815   // Strictly speaking, a relocation section must be included in the
816   // group of the section it relocates. However, LLVM 3.3 and earlier
817   // would fail to do so, so we gracefully handle that case.
818   if (target == &InputSection::discarded)
819     return nullptr;
820 
821   if (!target)
822     fatal(toString(this) + ": unsupported relocation reference");
823   return target;
824 }
825 
826 // Create a regular InputSection class that has the same contents
827 // as a given section.
828 static InputSection *toRegularSection(MergeInputSection *sec) {
829   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
830                             sec->data(), sec->name);
831 }
832 
833 template <class ELFT>
834 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
835   StringRef name = getSectionName(sec);
836 
837   switch (sec.sh_type) {
838   case SHT_ARM_ATTRIBUTES: {
839     if (config->emachine != EM_ARM)
840       break;
841     ARMAttributeParser attributes;
842     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
843     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
844                                                  ? support::little
845                                                  : support::big)) {
846       auto *isec = make<InputSection>(*this, sec, name);
847       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
848       break;
849     }
850     updateSupportedARMFeatures(attributes);
851     updateARMVFPArgs(attributes, this);
852 
853     // FIXME: Retain the first attribute section we see. The eglibc ARM
854     // dynamic loaders require the presence of an attribute section for dlopen
855     // to work. In a full implementation we would merge all attribute sections.
856     if (in.armAttributes == nullptr) {
857       in.armAttributes = make<InputSection>(*this, sec, name);
858       return in.armAttributes;
859     }
860     return &InputSection::discarded;
861   }
862   case SHT_LLVM_DEPENDENT_LIBRARIES: {
863     if (config->relocatable)
864       break;
865     ArrayRef<char> data =
866         CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this);
867     if (!data.empty() && data.back() != '\0') {
868       error(toString(this) +
869             ": corrupted dependent libraries section (unterminated string): " +
870             name);
871       return &InputSection::discarded;
872     }
873     for (const char *d = data.begin(), *e = data.end(); d < e;) {
874       StringRef s(d);
875       addDependentLibrary(s, this);
876       d += s.size() + 1;
877     }
878     return &InputSection::discarded;
879   }
880   case SHT_RELA:
881   case SHT_REL: {
882     // Find a relocation target section and associate this section with that.
883     // Target may have been discarded if it is in a different section group
884     // and the group is discarded, even though it's a violation of the
885     // spec. We handle that situation gracefully by discarding dangling
886     // relocation sections.
887     InputSectionBase *target = getRelocTarget(sec);
888     if (!target)
889       return nullptr;
890 
891     // ELF spec allows mergeable sections with relocations, but they are
892     // rare, and it is in practice hard to merge such sections by contents,
893     // because applying relocations at end of linking changes section
894     // contents. So, we simply handle such sections as non-mergeable ones.
895     // Degrading like this is acceptable because section merging is optional.
896     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
897       target = toRegularSection(ms);
898       this->sections[sec.sh_info] = target;
899     }
900 
901     // This section contains relocation information.
902     // If -r is given, we do not interpret or apply relocation
903     // but just copy relocation sections to output.
904     if (config->relocatable) {
905       InputSection *relocSec = make<InputSection>(*this, sec, name);
906       // We want to add a dependency to target, similar like we do for
907       // -emit-relocs below. This is useful for the case when linker script
908       // contains the "/DISCARD/". It is perhaps uncommon to use a script with
909       // -r, but we faced it in the Linux kernel and have to handle such case
910       // and not to crash.
911       target->dependentSections.push_back(relocSec);
912       return relocSec;
913     }
914 
915     if (target->firstRelocation)
916       fatal(toString(this) +
917             ": multiple relocation sections to one section are not supported");
918 
919     if (sec.sh_type == SHT_RELA) {
920       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this);
921       target->firstRelocation = rels.begin();
922       target->numRelocations = rels.size();
923       target->areRelocsRela = true;
924     } else {
925       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this);
926       target->firstRelocation = rels.begin();
927       target->numRelocations = rels.size();
928       target->areRelocsRela = false;
929     }
930     assert(isUInt<31>(target->numRelocations));
931 
932     // Relocation sections processed by the linker are usually removed
933     // from the output, so returning `nullptr` for the normal case.
934     // However, if -emit-relocs is given, we need to leave them in the output.
935     // (Some post link analysis tools need this information.)
936     if (config->emitRelocs) {
937       InputSection *relocSec = make<InputSection>(*this, sec, name);
938       // We will not emit relocation section if target was discarded.
939       target->dependentSections.push_back(relocSec);
940       return relocSec;
941     }
942     return nullptr;
943   }
944   }
945 
946   // The GNU linker uses .note.GNU-stack section as a marker indicating
947   // that the code in the object file does not expect that the stack is
948   // executable (in terms of NX bit). If all input files have the marker,
949   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
950   // make the stack non-executable. Most object files have this section as
951   // of 2017.
952   //
953   // But making the stack non-executable is a norm today for security
954   // reasons. Failure to do so may result in a serious security issue.
955   // Therefore, we make LLD always add PT_GNU_STACK unless it is
956   // explicitly told to do otherwise (by -z execstack). Because the stack
957   // executable-ness is controlled solely by command line options,
958   // .note.GNU-stack sections are simply ignored.
959   if (name == ".note.GNU-stack")
960     return &InputSection::discarded;
961 
962   // Object files that use processor features such as Intel Control-Flow
963   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
964   // .note.gnu.property section containing a bitfield of feature bits like the
965   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
966   //
967   // Since we merge bitmaps from multiple object files to create a new
968   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
969   // file's .note.gnu.property section.
970   if (name == ".note.gnu.property") {
971     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
972     this->andFeatures = readAndFeatures(this, contents);
973     return &InputSection::discarded;
974   }
975 
976   // Split stacks is a feature to support a discontiguous stack,
977   // commonly used in the programming language Go. For the details,
978   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
979   // for split stack will include a .note.GNU-split-stack section.
980   if (name == ".note.GNU-split-stack") {
981     if (config->relocatable) {
982       error("cannot mix split-stack and non-split-stack in a relocatable link");
983       return &InputSection::discarded;
984     }
985     this->splitStack = true;
986     return &InputSection::discarded;
987   }
988 
989   // An object file cmpiled for split stack, but where some of the
990   // functions were compiled with the no_split_stack_attribute will
991   // include a .note.GNU-no-split-stack section.
992   if (name == ".note.GNU-no-split-stack") {
993     this->someNoSplitStack = true;
994     return &InputSection::discarded;
995   }
996 
997   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
998   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
999   // sections. Drop those sections to avoid duplicate symbol errors.
1000   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1001   // fixed for a while.
1002   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1003       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1004     return &InputSection::discarded;
1005 
1006   // If we are creating a new .build-id section, strip existing .build-id
1007   // sections so that the output won't have more than one .build-id.
1008   // This is not usually a problem because input object files normally don't
1009   // have .build-id sections, but you can create such files by
1010   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1011   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1012     return &InputSection::discarded;
1013 
1014   // The linker merges EH (exception handling) frames and creates a
1015   // .eh_frame_hdr section for runtime. So we handle them with a special
1016   // class. For relocatable outputs, they are just passed through.
1017   if (name == ".eh_frame" && !config->relocatable)
1018     return make<EhInputSection>(*this, sec, name);
1019 
1020   if (shouldMerge(sec, name))
1021     return make<MergeInputSection>(*this, sec, name);
1022   return make<InputSection>(*this, sec, name);
1023 }
1024 
1025 template <class ELFT>
1026 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1027   return CHECK(getObj().getSectionName(&sec, sectionStringTable), this);
1028 }
1029 
1030 // Initialize this->Symbols. this->Symbols is a parallel array as
1031 // its corresponding ELF symbol table.
1032 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1033   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1034   this->symbols.resize(eSyms.size());
1035 
1036   // Our symbol table may have already been partially initialized
1037   // because of LazyObjFile.
1038   for (size_t i = 0, end = eSyms.size(); i != end; ++i)
1039     if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL)
1040       this->symbols[i] =
1041           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1042 
1043   // Fill this->Symbols. A symbol is either local or global.
1044   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1045     const Elf_Sym &eSym = eSyms[i];
1046 
1047     // Read symbol attributes.
1048     uint32_t secIdx = getSectionIndex(eSym);
1049     if (secIdx >= this->sections.size())
1050       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1051 
1052     InputSectionBase *sec = this->sections[secIdx];
1053     uint8_t binding = eSym.getBinding();
1054     uint8_t stOther = eSym.st_other;
1055     uint8_t type = eSym.getType();
1056     uint64_t value = eSym.st_value;
1057     uint64_t size = eSym.st_size;
1058     StringRefZ name = this->stringTable.data() + eSym.st_name;
1059 
1060     // Handle local symbols. Local symbols are not added to the symbol
1061     // table because they are not visible from other object files. We
1062     // allocate symbol instances and add their pointers to Symbols.
1063     if (binding == STB_LOCAL) {
1064       if (eSym.getType() == STT_FILE)
1065         sourceFile = CHECK(eSym.getName(this->stringTable), this);
1066 
1067       if (this->stringTable.size() <= eSym.st_name)
1068         fatal(toString(this) + ": invalid symbol name offset");
1069 
1070       if (eSym.st_shndx == SHN_UNDEF)
1071         this->symbols[i] = make<Undefined>(this, name, binding, stOther, type);
1072       else if (sec == &InputSection::discarded)
1073         this->symbols[i] = make<Undefined>(this, name, binding, stOther, type,
1074                                            /*DiscardedSecIdx=*/secIdx);
1075       else
1076         this->symbols[i] =
1077             make<Defined>(this, name, binding, stOther, type, value, size, sec);
1078       continue;
1079     }
1080 
1081     // Handle global undefined symbols.
1082     if (eSym.st_shndx == SHN_UNDEF) {
1083       this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
1084       this->symbols[i]->referenced = true;
1085       continue;
1086     }
1087 
1088     // Handle global common symbols.
1089     if (eSym.st_shndx == SHN_COMMON) {
1090       if (value == 0 || value >= UINT32_MAX)
1091         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1092               "' has invalid alignment: " + Twine(value));
1093       this->symbols[i]->resolve(
1094           CommonSymbol{this, name, binding, stOther, type, value, size});
1095       continue;
1096     }
1097 
1098     // If a defined symbol is in a discarded section, handle it as if it
1099     // were an undefined symbol. Such symbol doesn't comply with the
1100     // standard, but in practice, a .eh_frame often directly refer
1101     // COMDAT member sections, and if a comdat group is discarded, some
1102     // defined symbol in a .eh_frame becomes dangling symbols.
1103     if (sec == &InputSection::discarded) {
1104       this->symbols[i]->resolve(
1105           Undefined{this, name, binding, stOther, type, secIdx});
1106       continue;
1107     }
1108 
1109     // Handle global defined symbols.
1110     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1111         binding == STB_GNU_UNIQUE) {
1112       this->symbols[i]->resolve(
1113           Defined{this, name, binding, stOther, type, value, size, sec});
1114       continue;
1115     }
1116 
1117     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1118   }
1119 }
1120 
1121 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1122     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1123       file(std::move(file)) {}
1124 
1125 void ArchiveFile::parse() {
1126   for (const Archive::Symbol &sym : file->symbols())
1127     symtab->addSymbol(LazyArchive{*this, sym});
1128 }
1129 
1130 // Returns a buffer pointing to a member file containing a given symbol.
1131 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1132   Archive::Child c =
1133       CHECK(sym.getMember(), toString(this) +
1134                                  ": could not get the member for symbol " +
1135                                  toELFString(sym));
1136 
1137   if (!seen.insert(c.getChildOffset()).second)
1138     return;
1139 
1140   MemoryBufferRef mb =
1141       CHECK(c.getMemoryBufferRef(),
1142             toString(this) +
1143                 ": could not get the buffer for the member defining symbol " +
1144                 toELFString(sym));
1145 
1146   if (tar && c.getParent()->isThin())
1147     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1148 
1149   InputFile *file = createObjectFile(
1150       mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset());
1151   file->groupId = groupId;
1152   parseFile(file);
1153 }
1154 
1155 unsigned SharedFile::vernauxNum;
1156 
1157 // Parse the version definitions in the object file if present, and return a
1158 // vector whose nth element contains a pointer to the Elf_Verdef for version
1159 // identifier n. Version identifiers that are not definitions map to nullptr.
1160 template <typename ELFT>
1161 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1162                                               const typename ELFT::Shdr *sec) {
1163   if (!sec)
1164     return {};
1165 
1166   // We cannot determine the largest verdef identifier without inspecting
1167   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1168   // sequentially starting from 1, so we predict that the largest identifier
1169   // will be verdefCount.
1170   unsigned verdefCount = sec->sh_info;
1171   std::vector<const void *> verdefs(verdefCount + 1);
1172 
1173   // Build the Verdefs array by following the chain of Elf_Verdef objects
1174   // from the start of the .gnu.version_d section.
1175   const uint8_t *verdef = base + sec->sh_offset;
1176   for (unsigned i = 0; i != verdefCount; ++i) {
1177     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1178     verdef += curVerdef->vd_next;
1179     unsigned verdefIndex = curVerdef->vd_ndx;
1180     verdefs.resize(verdefIndex + 1);
1181     verdefs[verdefIndex] = curVerdef;
1182   }
1183   return verdefs;
1184 }
1185 
1186 // We do not usually care about alignments of data in shared object
1187 // files because the loader takes care of it. However, if we promote a
1188 // DSO symbol to point to .bss due to copy relocation, we need to keep
1189 // the original alignment requirements. We infer it in this function.
1190 template <typename ELFT>
1191 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1192                              const typename ELFT::Sym &sym) {
1193   uint64_t ret = UINT64_MAX;
1194   if (sym.st_value)
1195     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1196   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1197     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1198   return (ret > UINT32_MAX) ? 0 : ret;
1199 }
1200 
1201 // Fully parse the shared object file.
1202 //
1203 // This function parses symbol versions. If a DSO has version information,
1204 // the file has a ".gnu.version_d" section which contains symbol version
1205 // definitions. Each symbol is associated to one version through a table in
1206 // ".gnu.version" section. That table is a parallel array for the symbol
1207 // table, and each table entry contains an index in ".gnu.version_d".
1208 //
1209 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1210 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1211 // ".gnu.version_d".
1212 //
1213 // The file format for symbol versioning is perhaps a bit more complicated
1214 // than necessary, but you can easily understand the code if you wrap your
1215 // head around the data structure described above.
1216 template <class ELFT> void SharedFile::parse() {
1217   using Elf_Dyn = typename ELFT::Dyn;
1218   using Elf_Shdr = typename ELFT::Shdr;
1219   using Elf_Sym = typename ELFT::Sym;
1220   using Elf_Verdef = typename ELFT::Verdef;
1221   using Elf_Versym = typename ELFT::Versym;
1222 
1223   ArrayRef<Elf_Dyn> dynamicTags;
1224   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1225   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1226 
1227   const Elf_Shdr *versymSec = nullptr;
1228   const Elf_Shdr *verdefSec = nullptr;
1229 
1230   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1231   for (const Elf_Shdr &sec : sections) {
1232     switch (sec.sh_type) {
1233     default:
1234       continue;
1235     case SHT_DYNAMIC:
1236       dynamicTags =
1237           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this);
1238       break;
1239     case SHT_GNU_versym:
1240       versymSec = &sec;
1241       break;
1242     case SHT_GNU_verdef:
1243       verdefSec = &sec;
1244       break;
1245     }
1246   }
1247 
1248   if (versymSec && numELFSyms == 0) {
1249     error("SHT_GNU_versym should be associated with symbol table");
1250     return;
1251   }
1252 
1253   // Search for a DT_SONAME tag to initialize this->soName.
1254   for (const Elf_Dyn &dyn : dynamicTags) {
1255     if (dyn.d_tag == DT_NEEDED) {
1256       uint64_t val = dyn.getVal();
1257       if (val >= this->stringTable.size())
1258         fatal(toString(this) + ": invalid DT_NEEDED entry");
1259       dtNeeded.push_back(this->stringTable.data() + val);
1260     } else if (dyn.d_tag == DT_SONAME) {
1261       uint64_t val = dyn.getVal();
1262       if (val >= this->stringTable.size())
1263         fatal(toString(this) + ": invalid DT_SONAME entry");
1264       soName = this->stringTable.data() + val;
1265     }
1266   }
1267 
1268   // DSOs are uniquified not by filename but by soname.
1269   DenseMap<StringRef, SharedFile *>::iterator it;
1270   bool wasInserted;
1271   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1272 
1273   // If a DSO appears more than once on the command line with and without
1274   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1275   // user can add an extra DSO with --no-as-needed to force it to be added to
1276   // the dependency list.
1277   it->second->isNeeded |= isNeeded;
1278   if (!wasInserted)
1279     return;
1280 
1281   sharedFiles.push_back(this);
1282 
1283   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1284 
1285   // Parse ".gnu.version" section which is a parallel array for the symbol
1286   // table. If a given file doesn't have a ".gnu.version" section, we use
1287   // VER_NDX_GLOBAL.
1288   size_t size = numELFSyms - firstGlobal;
1289   std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL);
1290   if (versymSec) {
1291     ArrayRef<Elf_Versym> versym =
1292         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec),
1293               this)
1294             .slice(firstGlobal);
1295     for (size_t i = 0; i < size; ++i)
1296       versyms[i] = versym[i].vs_index;
1297   }
1298 
1299   // System libraries can have a lot of symbols with versions. Using a
1300   // fixed buffer for computing the versions name (foo@ver) can save a
1301   // lot of allocations.
1302   SmallString<0> versionedNameBuffer;
1303 
1304   // Add symbols to the symbol table.
1305   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1306   for (size_t i = 0; i < syms.size(); ++i) {
1307     const Elf_Sym &sym = syms[i];
1308 
1309     // ELF spec requires that all local symbols precede weak or global
1310     // symbols in each symbol table, and the index of first non-local symbol
1311     // is stored to sh_info. If a local symbol appears after some non-local
1312     // symbol, that's a violation of the spec.
1313     StringRef name = CHECK(sym.getName(this->stringTable), this);
1314     if (sym.getBinding() == STB_LOCAL) {
1315       warn("found local symbol '" + name +
1316            "' in global part of symbol table in file " + toString(this));
1317       continue;
1318     }
1319 
1320     if (sym.isUndefined()) {
1321       Symbol *s = symtab->addSymbol(
1322           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1323       s->exportDynamic = true;
1324       continue;
1325     }
1326 
1327     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1328     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1329     // workaround for this bug.
1330     uint32_t idx = versyms[i] & ~VERSYM_HIDDEN;
1331     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1332         name == "_gp_disp")
1333       continue;
1334 
1335     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1336     if (!(versyms[i] & VERSYM_HIDDEN)) {
1337       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1338                                      sym.st_other, sym.getType(), sym.st_value,
1339                                      sym.st_size, alignment, idx});
1340     }
1341 
1342     // Also add the symbol with the versioned name to handle undefined symbols
1343     // with explicit versions.
1344     if (idx == VER_NDX_GLOBAL)
1345       continue;
1346 
1347     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1348       error("corrupt input file: version definition index " + Twine(idx) +
1349             " for symbol " + name + " is out of bounds\n>>> defined in " +
1350             toString(this));
1351       continue;
1352     }
1353 
1354     StringRef verName =
1355         this->stringTable.data() +
1356         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1357     versionedNameBuffer.clear();
1358     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1359     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1360                                    sym.st_other, sym.getType(), sym.st_value,
1361                                    sym.st_size, alignment, idx});
1362   }
1363 }
1364 
1365 static ELFKind getBitcodeELFKind(const Triple &t) {
1366   if (t.isLittleEndian())
1367     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1368   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1369 }
1370 
1371 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1372   switch (t.getArch()) {
1373   case Triple::aarch64:
1374     return EM_AARCH64;
1375   case Triple::amdgcn:
1376   case Triple::r600:
1377     return EM_AMDGPU;
1378   case Triple::arm:
1379   case Triple::thumb:
1380     return EM_ARM;
1381   case Triple::avr:
1382     return EM_AVR;
1383   case Triple::mips:
1384   case Triple::mipsel:
1385   case Triple::mips64:
1386   case Triple::mips64el:
1387     return EM_MIPS;
1388   case Triple::msp430:
1389     return EM_MSP430;
1390   case Triple::ppc:
1391     return EM_PPC;
1392   case Triple::ppc64:
1393   case Triple::ppc64le:
1394     return EM_PPC64;
1395   case Triple::riscv32:
1396   case Triple::riscv64:
1397     return EM_RISCV;
1398   case Triple::x86:
1399     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1400   case Triple::x86_64:
1401     return EM_X86_64;
1402   default:
1403     error(path + ": could not infer e_machine from bitcode target triple " +
1404           t.str());
1405     return EM_NONE;
1406   }
1407 }
1408 
1409 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1410                          uint64_t offsetInArchive)
1411     : InputFile(BitcodeKind, mb) {
1412   this->archiveName = std::string(archiveName);
1413 
1414   std::string path = mb.getBufferIdentifier().str();
1415   if (config->thinLTOIndexOnly)
1416     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1417 
1418   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1419   // name. If two archives define two members with the same name, this
1420   // causes a collision which result in only one of the objects being taken
1421   // into consideration at LTO time (which very likely causes undefined
1422   // symbols later in the link stage). So we append file offset to make
1423   // filename unique.
1424   StringRef name =
1425       archiveName.empty()
1426           ? saver.save(path)
1427           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1428                        utostr(offsetInArchive) + ")");
1429   MemoryBufferRef mbref(mb.getBuffer(), name);
1430 
1431   obj = CHECK(lto::InputFile::create(mbref), this);
1432 
1433   Triple t(obj->getTargetTriple());
1434   ekind = getBitcodeELFKind(t);
1435   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1436 }
1437 
1438 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1439   switch (gvVisibility) {
1440   case GlobalValue::DefaultVisibility:
1441     return STV_DEFAULT;
1442   case GlobalValue::HiddenVisibility:
1443     return STV_HIDDEN;
1444   case GlobalValue::ProtectedVisibility:
1445     return STV_PROTECTED;
1446   }
1447   llvm_unreachable("unknown visibility");
1448 }
1449 
1450 template <class ELFT>
1451 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1452                                    const lto::InputFile::Symbol &objSym,
1453                                    BitcodeFile &f) {
1454   StringRef name = saver.save(objSym.getName());
1455   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1456   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1457   uint8_t visibility = mapVisibility(objSym.getVisibility());
1458   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1459 
1460   int c = objSym.getComdatIndex();
1461   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1462     Undefined newSym(&f, name, binding, visibility, type);
1463     if (canOmitFromDynSym)
1464       newSym.exportDynamic = false;
1465     Symbol *ret = symtab->addSymbol(newSym);
1466     ret->referenced = true;
1467     return ret;
1468   }
1469 
1470   if (objSym.isCommon())
1471     return symtab->addSymbol(
1472         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1473                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1474 
1475   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1476   if (canOmitFromDynSym)
1477     newSym.exportDynamic = false;
1478   return symtab->addSymbol(newSym);
1479 }
1480 
1481 template <class ELFT> void BitcodeFile::parse() {
1482   std::vector<bool> keptComdats;
1483   for (StringRef s : obj->getComdatTable())
1484     keptComdats.push_back(
1485         symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1486 
1487   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1488     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1489 
1490   for (auto l : obj->getDependentLibraries())
1491     addDependentLibrary(l, this);
1492 }
1493 
1494 void BinaryFile::parse() {
1495   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1496   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1497                                      8, data, ".data");
1498   sections.push_back(section);
1499 
1500   // For each input file foo that is embedded to a result as a binary
1501   // blob, we define _binary_foo_{start,end,size} symbols, so that
1502   // user programs can access blobs by name. Non-alphanumeric
1503   // characters in a filename are replaced with underscore.
1504   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1505   for (size_t i = 0; i < s.size(); ++i)
1506     if (!isAlnum(s[i]))
1507       s[i] = '_';
1508 
1509   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1510                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1511   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1512                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1513   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1514                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1515 }
1516 
1517 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1518                             uint64_t offsetInArchive) {
1519   if (isBitcode(mb))
1520     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1521 
1522   switch (getELFKind(mb, archiveName)) {
1523   case ELF32LEKind:
1524     return make<ObjFile<ELF32LE>>(mb, archiveName);
1525   case ELF32BEKind:
1526     return make<ObjFile<ELF32BE>>(mb, archiveName);
1527   case ELF64LEKind:
1528     return make<ObjFile<ELF64LE>>(mb, archiveName);
1529   case ELF64BEKind:
1530     return make<ObjFile<ELF64BE>>(mb, archiveName);
1531   default:
1532     llvm_unreachable("getELFKind");
1533   }
1534 }
1535 
1536 void LazyObjFile::fetch() {
1537   if (mb.getBuffer().empty())
1538     return;
1539 
1540   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1541   file->groupId = groupId;
1542 
1543   mb = {};
1544 
1545   // Copy symbol vector so that the new InputFile doesn't have to
1546   // insert the same defined symbols to the symbol table again.
1547   file->symbols = std::move(symbols);
1548 
1549   parseFile(file);
1550 }
1551 
1552 template <class ELFT> void LazyObjFile::parse() {
1553   using Elf_Sym = typename ELFT::Sym;
1554 
1555   // A lazy object file wraps either a bitcode file or an ELF file.
1556   if (isBitcode(this->mb)) {
1557     std::unique_ptr<lto::InputFile> obj =
1558         CHECK(lto::InputFile::create(this->mb), this);
1559     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1560       if (sym.isUndefined())
1561         continue;
1562       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1563     }
1564     return;
1565   }
1566 
1567   if (getELFKind(this->mb, archiveName) != config->ekind) {
1568     error("incompatible file: " + this->mb.getBufferIdentifier());
1569     return;
1570   }
1571 
1572   // Find a symbol table.
1573   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1574   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1575 
1576   for (const typename ELFT::Shdr &sec : sections) {
1577     if (sec.sh_type != SHT_SYMTAB)
1578       continue;
1579 
1580     // A symbol table is found.
1581     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1582     uint32_t firstGlobal = sec.sh_info;
1583     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1584     this->symbols.resize(eSyms.size());
1585 
1586     // Get existing symbols or insert placeholder symbols.
1587     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1588       if (eSyms[i].st_shndx != SHN_UNDEF)
1589         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1590 
1591     // Replace existing symbols with LazyObject symbols.
1592     //
1593     // resolve() may trigger this->fetch() if an existing symbol is an
1594     // undefined symbol. If that happens, this LazyObjFile has served
1595     // its purpose, and we can exit from the loop early.
1596     for (Symbol *sym : this->symbols) {
1597       if (!sym)
1598         continue;
1599       sym->resolve(LazyObject{*this, sym->getName()});
1600 
1601       // MemoryBuffer is emptied if this file is instantiated as ObjFile.
1602       if (mb.getBuffer().empty())
1603         return;
1604     }
1605     return;
1606   }
1607 }
1608 
1609 std::string replaceThinLTOSuffix(StringRef path) {
1610   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1611   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1612 
1613   if (path.consume_back(suffix))
1614     return (path + repl).str();
1615   return std::string(path);
1616 }
1617 
1618 template void BitcodeFile::parse<ELF32LE>();
1619 template void BitcodeFile::parse<ELF32BE>();
1620 template void BitcodeFile::parse<ELF64LE>();
1621 template void BitcodeFile::parse<ELF64BE>();
1622 
1623 template void LazyObjFile::parse<ELF32LE>();
1624 template void LazyObjFile::parse<ELF32BE>();
1625 template void LazyObjFile::parse<ELF64LE>();
1626 template void LazyObjFile::parse<ELF64BE>();
1627 
1628 template class ObjFile<ELF32LE>;
1629 template class ObjFile<ELF32BE>;
1630 template class ObjFile<ELF64LE>;
1631 template class ObjFile<ELF64BE>;
1632 
1633 template void SharedFile::parse<ELF32LE>();
1634 template void SharedFile::parse<ELF32BE>();
1635 template void SharedFile::parse<ELF64LE>();
1636 template void SharedFile::parse<ELF64BE>();
1637 
1638 } // namespace elf
1639 } // namespace lld
1640