1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 42 std::string toString(const elf::InputFile *f) { 43 if (!f) 44 return "<internal>"; 45 46 if (f->toStringCache.empty()) { 47 if (f->archiveName.empty()) 48 f->toStringCache = std::string(f->getName()); 49 else 50 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 51 } 52 return f->toStringCache; 53 } 54 55 namespace elf { 56 bool InputFile::isInGroup; 57 uint32_t InputFile::nextGroupId; 58 std::vector<BinaryFile *> binaryFiles; 59 std::vector<BitcodeFile *> bitcodeFiles; 60 std::vector<LazyObjFile *> lazyObjFiles; 61 std::vector<InputFile *> objectFiles; 62 std::vector<SharedFile *> sharedFiles; 63 64 std::unique_ptr<TarWriter> tar; 65 66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 67 unsigned char size; 68 unsigned char endian; 69 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 70 71 auto report = [&](StringRef msg) { 72 StringRef filename = mb.getBufferIdentifier(); 73 if (archiveName.empty()) 74 fatal(filename + ": " + msg); 75 else 76 fatal(archiveName + "(" + filename + "): " + msg); 77 }; 78 79 if (!mb.getBuffer().startswith(ElfMagic)) 80 report("not an ELF file"); 81 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 82 report("corrupted ELF file: invalid data encoding"); 83 if (size != ELFCLASS32 && size != ELFCLASS64) 84 report("corrupted ELF file: invalid file class"); 85 86 size_t bufSize = mb.getBuffer().size(); 87 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 88 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 89 report("corrupted ELF file: file is too short"); 90 91 if (size == ELFCLASS32) 92 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 93 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 94 } 95 96 InputFile::InputFile(Kind k, MemoryBufferRef m) 97 : mb(m), groupId(nextGroupId), fileKind(k) { 98 // All files within the same --{start,end}-group get the same group ID. 99 // Otherwise, a new file will get a new group ID. 100 if (!isInGroup) 101 ++nextGroupId; 102 } 103 104 Optional<MemoryBufferRef> readFile(StringRef path) { 105 // The --chroot option changes our virtual root directory. 106 // This is useful when you are dealing with files created by --reproduce. 107 if (!config->chroot.empty() && path.startswith("/")) 108 path = saver.save(config->chroot + path); 109 110 log(path); 111 112 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 113 if (auto ec = mbOrErr.getError()) { 114 error("cannot open " + path + ": " + ec.message()); 115 return None; 116 } 117 118 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 119 MemoryBufferRef mbref = mb->getMemBufferRef(); 120 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 121 122 if (tar) 123 tar->append(relativeToRoot(path), mbref.getBuffer()); 124 return mbref; 125 } 126 127 // All input object files must be for the same architecture 128 // (e.g. it does not make sense to link x86 object files with 129 // MIPS object files.) This function checks for that error. 130 static bool isCompatible(InputFile *file) { 131 if (!file->isElf() && !isa<BitcodeFile>(file)) 132 return true; 133 134 if (file->ekind == config->ekind && file->emachine == config->emachine) { 135 if (config->emachine != EM_MIPS) 136 return true; 137 if (isMipsN32Abi(file) == config->mipsN32Abi) 138 return true; 139 } 140 141 if (!config->emulation.empty()) { 142 error(toString(file) + " is incompatible with " + config->emulation); 143 return false; 144 } 145 146 InputFile *existing; 147 if (!objectFiles.empty()) 148 existing = objectFiles[0]; 149 else if (!sharedFiles.empty()) 150 existing = sharedFiles[0]; 151 else 152 existing = bitcodeFiles[0]; 153 154 error(toString(file) + " is incompatible with " + toString(existing)); 155 return false; 156 } 157 158 template <class ELFT> static void doParseFile(InputFile *file) { 159 if (!isCompatible(file)) 160 return; 161 162 // Binary file 163 if (auto *f = dyn_cast<BinaryFile>(file)) { 164 binaryFiles.push_back(f); 165 f->parse(); 166 return; 167 } 168 169 // .a file 170 if (auto *f = dyn_cast<ArchiveFile>(file)) { 171 f->parse(); 172 return; 173 } 174 175 // Lazy object file 176 if (auto *f = dyn_cast<LazyObjFile>(file)) { 177 lazyObjFiles.push_back(f); 178 f->parse<ELFT>(); 179 return; 180 } 181 182 if (config->trace) 183 message(toString(file)); 184 185 // .so file 186 if (auto *f = dyn_cast<SharedFile>(file)) { 187 f->parse<ELFT>(); 188 return; 189 } 190 191 // LLVM bitcode file 192 if (auto *f = dyn_cast<BitcodeFile>(file)) { 193 bitcodeFiles.push_back(f); 194 f->parse<ELFT>(); 195 return; 196 } 197 198 // Regular object file 199 objectFiles.push_back(file); 200 cast<ObjFile<ELFT>>(file)->parse(); 201 } 202 203 // Add symbols in File to the symbol table. 204 void parseFile(InputFile *file) { 205 switch (config->ekind) { 206 case ELF32LEKind: 207 doParseFile<ELF32LE>(file); 208 return; 209 case ELF32BEKind: 210 doParseFile<ELF32BE>(file); 211 return; 212 case ELF64LEKind: 213 doParseFile<ELF64LE>(file); 214 return; 215 case ELF64BEKind: 216 doParseFile<ELF64BE>(file); 217 return; 218 default: 219 llvm_unreachable("unknown ELFT"); 220 } 221 } 222 223 // Concatenates arguments to construct a string representing an error location. 224 static std::string createFileLineMsg(StringRef path, unsigned line) { 225 std::string filename = std::string(path::filename(path)); 226 std::string lineno = ":" + std::to_string(line); 227 if (filename == path) 228 return filename + lineno; 229 return filename + lineno + " (" + path.str() + lineno + ")"; 230 } 231 232 template <class ELFT> 233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 234 InputSectionBase &sec, uint64_t offset) { 235 // In DWARF, functions and variables are stored to different places. 236 // First, lookup a function for a given offset. 237 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 238 return createFileLineMsg(info->FileName, info->Line); 239 240 // If it failed, lookup again as a variable. 241 if (Optional<std::pair<std::string, unsigned>> fileLine = 242 file.getVariableLoc(sym.getName())) 243 return createFileLineMsg(fileLine->first, fileLine->second); 244 245 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 246 return std::string(file.sourceFile); 247 } 248 249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 250 uint64_t offset) { 251 if (kind() != ObjKind) 252 return ""; 253 switch (config->ekind) { 254 default: 255 llvm_unreachable("Invalid kind"); 256 case ELF32LEKind: 257 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 258 case ELF32BEKind: 259 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 260 case ELF64LEKind: 261 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 262 case ELF64BEKind: 263 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 264 } 265 } 266 267 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 268 dwarf = make<DWARFCache>(std::make_unique<DWARFContext>( 269 std::make_unique<LLDDwarfObj<ELFT>>(this))); 270 } 271 272 // Returns the pair of file name and line number describing location of data 273 // object (variable, array, etc) definition. 274 template <class ELFT> 275 Optional<std::pair<std::string, unsigned>> 276 ObjFile<ELFT>::getVariableLoc(StringRef name) { 277 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 278 279 return dwarf->getVariableLoc(name); 280 } 281 282 // Returns source line information for a given offset 283 // using DWARF debug info. 284 template <class ELFT> 285 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 286 uint64_t offset) { 287 llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); }); 288 289 // Detect SectionIndex for specified section. 290 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 291 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 292 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 293 if (s == sections[curIndex]) { 294 sectionIndex = curIndex; 295 break; 296 } 297 } 298 299 return dwarf->getDILineInfo(offset, sectionIndex); 300 } 301 302 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 303 ekind = getELFKind(mb, ""); 304 305 switch (ekind) { 306 case ELF32LEKind: 307 init<ELF32LE>(); 308 break; 309 case ELF32BEKind: 310 init<ELF32BE>(); 311 break; 312 case ELF64LEKind: 313 init<ELF64LE>(); 314 break; 315 case ELF64BEKind: 316 init<ELF64BE>(); 317 break; 318 default: 319 llvm_unreachable("getELFKind"); 320 } 321 } 322 323 template <typename Elf_Shdr> 324 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 325 for (const Elf_Shdr &sec : sections) 326 if (sec.sh_type == type) 327 return &sec; 328 return nullptr; 329 } 330 331 template <class ELFT> void ELFFileBase::init() { 332 using Elf_Shdr = typename ELFT::Shdr; 333 using Elf_Sym = typename ELFT::Sym; 334 335 // Initialize trivial attributes. 336 const ELFFile<ELFT> &obj = getObj<ELFT>(); 337 emachine = obj.getHeader()->e_machine; 338 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 339 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 340 341 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 342 343 // Find a symbol table. 344 bool isDSO = 345 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 346 const Elf_Shdr *symtabSec = 347 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 348 349 if (!symtabSec) 350 return; 351 352 // Initialize members corresponding to a symbol table. 353 firstGlobal = symtabSec->sh_info; 354 355 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 356 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 357 fatal(toString(this) + ": invalid sh_info in symbol table"); 358 359 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 360 numELFSyms = eSyms.size(); 361 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 362 } 363 364 template <class ELFT> 365 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 366 return CHECK( 367 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 368 this); 369 } 370 371 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 372 if (this->symbols.empty()) 373 return {}; 374 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 375 } 376 377 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 378 return makeArrayRef(this->symbols).slice(this->firstGlobal); 379 } 380 381 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 382 // Read a section table. justSymbols is usually false. 383 if (this->justSymbols) 384 initializeJustSymbols(); 385 else 386 initializeSections(ignoreComdats); 387 388 // Read a symbol table. 389 initializeSymbols(); 390 } 391 392 // Sections with SHT_GROUP and comdat bits define comdat section groups. 393 // They are identified and deduplicated by group name. This function 394 // returns a group name. 395 template <class ELFT> 396 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 397 const Elf_Shdr &sec) { 398 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 399 if (sec.sh_info >= symbols.size()) 400 fatal(toString(this) + ": invalid symbol index"); 401 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 402 StringRef signature = CHECK(sym.getName(this->stringTable), this); 403 404 // As a special case, if a symbol is a section symbol and has no name, 405 // we use a section name as a signature. 406 // 407 // Such SHT_GROUP sections are invalid from the perspective of the ELF 408 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 409 // older produce such sections as outputs for the -r option, so we need 410 // a bug-compatibility. 411 if (signature.empty() && sym.getType() == STT_SECTION) 412 return getSectionName(sec); 413 return signature; 414 } 415 416 template <class ELFT> 417 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 418 // On a regular link we don't merge sections if -O0 (default is -O1). This 419 // sometimes makes the linker significantly faster, although the output will 420 // be bigger. 421 // 422 // Doing the same for -r would create a problem as it would combine sections 423 // with different sh_entsize. One option would be to just copy every SHF_MERGE 424 // section as is to the output. While this would produce a valid ELF file with 425 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 426 // they see two .debug_str. We could have separate logic for combining 427 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 428 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 429 // logic for -r. 430 if (config->optimize == 0 && !config->relocatable) 431 return false; 432 433 // A mergeable section with size 0 is useless because they don't have 434 // any data to merge. A mergeable string section with size 0 can be 435 // argued as invalid because it doesn't end with a null character. 436 // We'll avoid a mess by handling them as if they were non-mergeable. 437 if (sec.sh_size == 0) 438 return false; 439 440 // Check for sh_entsize. The ELF spec is not clear about the zero 441 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 442 // the section does not hold a table of fixed-size entries". We know 443 // that Rust 1.13 produces a string mergeable section with a zero 444 // sh_entsize. Here we just accept it rather than being picky about it. 445 uint64_t entSize = sec.sh_entsize; 446 if (entSize == 0) 447 return false; 448 if (sec.sh_size % entSize) 449 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 450 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 451 Twine(entSize) + ")"); 452 453 uint64_t flags = sec.sh_flags; 454 if (!(flags & SHF_MERGE)) 455 return false; 456 if (flags & SHF_WRITE) 457 fatal(toString(this) + ":(" + name + 458 "): writable SHF_MERGE section is not supported"); 459 460 return true; 461 } 462 463 // This is for --just-symbols. 464 // 465 // --just-symbols is a very minor feature that allows you to link your 466 // output against other existing program, so that if you load both your 467 // program and the other program into memory, your output can refer the 468 // other program's symbols. 469 // 470 // When the option is given, we link "just symbols". The section table is 471 // initialized with null pointers. 472 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 473 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 474 this->sections.resize(sections.size()); 475 } 476 477 // An ELF object file may contain a `.deplibs` section. If it exists, the 478 // section contains a list of library specifiers such as `m` for libm. This 479 // function resolves a given name by finding the first matching library checking 480 // the various ways that a library can be specified to LLD. This ELF extension 481 // is a form of autolinking and is called `dependent libraries`. It is currently 482 // unique to LLVM and lld. 483 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 484 if (!config->dependentLibraries) 485 return; 486 if (fs::exists(specifier)) 487 driver->addFile(specifier, /*withLOption=*/false); 488 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 489 driver->addFile(*s, /*withLOption=*/true); 490 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 491 driver->addFile(*s, /*withLOption=*/true); 492 else 493 error(toString(f) + 494 ": unable to find library from dependent library specifier: " + 495 specifier); 496 } 497 498 // Record the membership of a section group so that in the garbage collection 499 // pass, section group members are kept or discarded as a unit. 500 template <class ELFT> 501 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 502 ArrayRef<typename ELFT::Word> entries) { 503 bool hasAlloc = false; 504 for (uint32_t index : entries.slice(1)) { 505 if (index >= sections.size()) 506 return; 507 if (InputSectionBase *s = sections[index]) 508 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 509 hasAlloc = true; 510 } 511 512 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 513 // collection. See the comment in markLive(). This rule retains .debug_types 514 // and .rela.debug_types. 515 if (!hasAlloc) 516 return; 517 518 // Connect the members in a circular doubly-linked list via 519 // nextInSectionGroup. 520 InputSectionBase *head; 521 InputSectionBase *prev = nullptr; 522 for (uint32_t index : entries.slice(1)) { 523 InputSectionBase *s = sections[index]; 524 if (!s || s == &InputSection::discarded) 525 continue; 526 if (prev) 527 prev->nextInSectionGroup = s; 528 else 529 head = s; 530 prev = s; 531 } 532 if (prev) 533 prev->nextInSectionGroup = head; 534 } 535 536 template <class ELFT> 537 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 538 const ELFFile<ELFT> &obj = this->getObj(); 539 540 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 541 uint64_t size = objSections.size(); 542 this->sections.resize(size); 543 this->sectionStringTable = 544 CHECK(obj.getSectionStringTable(objSections), this); 545 546 std::vector<ArrayRef<Elf_Word>> selectedGroups; 547 548 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 549 if (this->sections[i] == &InputSection::discarded) 550 continue; 551 const Elf_Shdr &sec = objSections[i]; 552 553 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 554 cgProfile = 555 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 556 557 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 558 // if -r is given, we'll let the final link discard such sections. 559 // This is compatible with GNU. 560 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 561 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 562 // We ignore the address-significance table if we know that the object 563 // file was created by objcopy or ld -r. This is because these tools 564 // will reorder the symbols in the symbol table, invalidating the data 565 // in the address-significance table, which refers to symbols by index. 566 if (sec.sh_link != 0) 567 this->addrsigSec = &sec; 568 else if (config->icf == ICFLevel::Safe) 569 warn(toString(this) + ": --icf=safe is incompatible with object " 570 "files created using objcopy or ld -r"); 571 } 572 this->sections[i] = &InputSection::discarded; 573 continue; 574 } 575 576 switch (sec.sh_type) { 577 case SHT_GROUP: { 578 // De-duplicate section groups by their signatures. 579 StringRef signature = getShtGroupSignature(objSections, sec); 580 this->sections[i] = &InputSection::discarded; 581 582 583 ArrayRef<Elf_Word> entries = 584 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 585 if (entries.empty()) 586 fatal(toString(this) + ": empty SHT_GROUP"); 587 588 // The first word of a SHT_GROUP section contains flags. Currently, 589 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 590 // An group with the empty flag doesn't define anything; such sections 591 // are just skipped. 592 if (entries[0] == 0) 593 continue; 594 595 if (entries[0] != GRP_COMDAT) 596 fatal(toString(this) + ": unsupported SHT_GROUP format"); 597 598 bool isNew = 599 ignoreComdats || 600 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 601 .second; 602 if (isNew) { 603 if (config->relocatable) 604 this->sections[i] = createInputSection(sec); 605 selectedGroups.push_back(entries); 606 continue; 607 } 608 609 // Otherwise, discard group members. 610 for (uint32_t secIndex : entries.slice(1)) { 611 if (secIndex >= size) 612 fatal(toString(this) + 613 ": invalid section index in group: " + Twine(secIndex)); 614 this->sections[secIndex] = &InputSection::discarded; 615 } 616 break; 617 } 618 case SHT_SYMTAB_SHNDX: 619 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 620 break; 621 case SHT_SYMTAB: 622 case SHT_STRTAB: 623 case SHT_NULL: 624 break; 625 default: 626 this->sections[i] = createInputSection(sec); 627 } 628 } 629 630 // This block handles SHF_LINK_ORDER. 631 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 632 if (this->sections[i] == &InputSection::discarded) 633 continue; 634 const Elf_Shdr &sec = objSections[i]; 635 if (!(sec.sh_flags & SHF_LINK_ORDER)) 636 continue; 637 638 // .ARM.exidx sections have a reverse dependency on the InputSection they 639 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 640 InputSectionBase *linkSec = nullptr; 641 if (sec.sh_link < this->sections.size()) 642 linkSec = this->sections[sec.sh_link]; 643 if (!linkSec) 644 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 645 646 InputSection *isec = cast<InputSection>(this->sections[i]); 647 linkSec->dependentSections.push_back(isec); 648 if (!isa<InputSection>(linkSec)) 649 error("a section " + isec->name + 650 " with SHF_LINK_ORDER should not refer a non-regular section: " + 651 toString(linkSec)); 652 } 653 654 for (ArrayRef<Elf_Word> entries : selectedGroups) 655 handleSectionGroup<ELFT>(this->sections, entries); 656 } 657 658 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 659 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 660 // the input objects have been compiled. 661 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 662 const InputFile *f) { 663 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 664 // If an ABI tag isn't present then it is implicitly given the value of 0 665 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 666 // including some in glibc that don't use FP args (and should have value 3) 667 // don't have the attribute so we do not consider an implicit value of 0 668 // as a clash. 669 return; 670 671 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 672 ARMVFPArgKind arg; 673 switch (vfpArgs) { 674 case ARMBuildAttrs::BaseAAPCS: 675 arg = ARMVFPArgKind::Base; 676 break; 677 case ARMBuildAttrs::HardFPAAPCS: 678 arg = ARMVFPArgKind::VFP; 679 break; 680 case ARMBuildAttrs::ToolChainFPPCS: 681 // Tool chain specific convention that conforms to neither AAPCS variant. 682 arg = ARMVFPArgKind::ToolChain; 683 break; 684 case ARMBuildAttrs::CompatibleFPAAPCS: 685 // Object compatible with all conventions. 686 return; 687 default: 688 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 689 return; 690 } 691 // Follow ld.bfd and error if there is a mix of calling conventions. 692 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 693 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 694 else 695 config->armVFPArgs = arg; 696 } 697 698 // The ARM support in lld makes some use of instructions that are not available 699 // on all ARM architectures. Namely: 700 // - Use of BLX instruction for interworking between ARM and Thumb state. 701 // - Use of the extended Thumb branch encoding in relocation. 702 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 703 // The ARM Attributes section contains information about the architecture chosen 704 // at compile time. We follow the convention that if at least one input object 705 // is compiled with an architecture that supports these features then lld is 706 // permitted to use them. 707 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 708 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 709 return; 710 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 711 switch (arch) { 712 case ARMBuildAttrs::Pre_v4: 713 case ARMBuildAttrs::v4: 714 case ARMBuildAttrs::v4T: 715 // Architectures prior to v5 do not support BLX instruction 716 break; 717 case ARMBuildAttrs::v5T: 718 case ARMBuildAttrs::v5TE: 719 case ARMBuildAttrs::v5TEJ: 720 case ARMBuildAttrs::v6: 721 case ARMBuildAttrs::v6KZ: 722 case ARMBuildAttrs::v6K: 723 config->armHasBlx = true; 724 // Architectures used in pre-Cortex processors do not support 725 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 726 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 727 break; 728 default: 729 // All other Architectures have BLX and extended branch encoding 730 config->armHasBlx = true; 731 config->armJ1J2BranchEncoding = true; 732 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 733 // All Architectures used in Cortex processors with the exception 734 // of v6-M and v6S-M have the MOVT and MOVW instructions. 735 config->armHasMovtMovw = true; 736 break; 737 } 738 } 739 740 // If a source file is compiled with x86 hardware-assisted call flow control 741 // enabled, the generated object file contains feature flags indicating that 742 // fact. This function reads the feature flags and returns it. 743 // 744 // Essentially we want to read a single 32-bit value in this function, but this 745 // function is rather complicated because the value is buried deep inside a 746 // .note.gnu.property section. 747 // 748 // The section consists of one or more NOTE records. Each NOTE record consists 749 // of zero or more type-length-value fields. We want to find a field of a 750 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 751 // the ABI is unnecessarily complicated. 752 template <class ELFT> 753 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 754 using Elf_Nhdr = typename ELFT::Nhdr; 755 using Elf_Note = typename ELFT::Note; 756 757 uint32_t featuresSet = 0; 758 while (!data.empty()) { 759 // Read one NOTE record. 760 if (data.size() < sizeof(Elf_Nhdr)) 761 fatal(toString(obj) + ": .note.gnu.property: section too short"); 762 763 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 764 if (data.size() < nhdr->getSize()) 765 fatal(toString(obj) + ": .note.gnu.property: section too short"); 766 767 Elf_Note note(*nhdr); 768 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 769 data = data.slice(nhdr->getSize()); 770 continue; 771 } 772 773 uint32_t featureAndType = config->emachine == EM_AARCH64 774 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 775 : GNU_PROPERTY_X86_FEATURE_1_AND; 776 777 // Read a body of a NOTE record, which consists of type-length-value fields. 778 ArrayRef<uint8_t> desc = note.getDesc(); 779 while (!desc.empty()) { 780 if (desc.size() < 8) 781 fatal(toString(obj) + ": .note.gnu.property: section too short"); 782 783 uint32_t type = read32le(desc.data()); 784 uint32_t size = read32le(desc.data() + 4); 785 786 if (type == featureAndType) { 787 // We found a FEATURE_1_AND field. There may be more than one of these 788 // in a .note.gnu.property section, for a relocatable object we 789 // accumulate the bits set. 790 featuresSet |= read32le(desc.data() + 8); 791 } 792 793 // On 64-bit, a payload may be followed by a 4-byte padding to make its 794 // size a multiple of 8. 795 if (ELFT::Is64Bits) 796 size = alignTo(size, 8); 797 798 desc = desc.slice(size + 8); // +8 for Type and Size 799 } 800 801 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 802 data = data.slice(nhdr->getSize()); 803 } 804 805 return featuresSet; 806 } 807 808 template <class ELFT> 809 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 810 uint32_t idx = sec.sh_info; 811 if (idx >= this->sections.size()) 812 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 813 InputSectionBase *target = this->sections[idx]; 814 815 // Strictly speaking, a relocation section must be included in the 816 // group of the section it relocates. However, LLVM 3.3 and earlier 817 // would fail to do so, so we gracefully handle that case. 818 if (target == &InputSection::discarded) 819 return nullptr; 820 821 if (!target) 822 fatal(toString(this) + ": unsupported relocation reference"); 823 return target; 824 } 825 826 // Create a regular InputSection class that has the same contents 827 // as a given section. 828 static InputSection *toRegularSection(MergeInputSection *sec) { 829 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 830 sec->data(), sec->name); 831 } 832 833 template <class ELFT> 834 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 835 StringRef name = getSectionName(sec); 836 837 switch (sec.sh_type) { 838 case SHT_ARM_ATTRIBUTES: { 839 if (config->emachine != EM_ARM) 840 break; 841 ARMAttributeParser attributes; 842 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 843 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 844 ? support::little 845 : support::big)) { 846 auto *isec = make<InputSection>(*this, sec, name); 847 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 848 break; 849 } 850 updateSupportedARMFeatures(attributes); 851 updateARMVFPArgs(attributes, this); 852 853 // FIXME: Retain the first attribute section we see. The eglibc ARM 854 // dynamic loaders require the presence of an attribute section for dlopen 855 // to work. In a full implementation we would merge all attribute sections. 856 if (in.armAttributes == nullptr) { 857 in.armAttributes = make<InputSection>(*this, sec, name); 858 return in.armAttributes; 859 } 860 return &InputSection::discarded; 861 } 862 case SHT_LLVM_DEPENDENT_LIBRARIES: { 863 if (config->relocatable) 864 break; 865 ArrayRef<char> data = 866 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 867 if (!data.empty() && data.back() != '\0') { 868 error(toString(this) + 869 ": corrupted dependent libraries section (unterminated string): " + 870 name); 871 return &InputSection::discarded; 872 } 873 for (const char *d = data.begin(), *e = data.end(); d < e;) { 874 StringRef s(d); 875 addDependentLibrary(s, this); 876 d += s.size() + 1; 877 } 878 return &InputSection::discarded; 879 } 880 case SHT_RELA: 881 case SHT_REL: { 882 // Find a relocation target section and associate this section with that. 883 // Target may have been discarded if it is in a different section group 884 // and the group is discarded, even though it's a violation of the 885 // spec. We handle that situation gracefully by discarding dangling 886 // relocation sections. 887 InputSectionBase *target = getRelocTarget(sec); 888 if (!target) 889 return nullptr; 890 891 // ELF spec allows mergeable sections with relocations, but they are 892 // rare, and it is in practice hard to merge such sections by contents, 893 // because applying relocations at end of linking changes section 894 // contents. So, we simply handle such sections as non-mergeable ones. 895 // Degrading like this is acceptable because section merging is optional. 896 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 897 target = toRegularSection(ms); 898 this->sections[sec.sh_info] = target; 899 } 900 901 // This section contains relocation information. 902 // If -r is given, we do not interpret or apply relocation 903 // but just copy relocation sections to output. 904 if (config->relocatable) { 905 InputSection *relocSec = make<InputSection>(*this, sec, name); 906 // We want to add a dependency to target, similar like we do for 907 // -emit-relocs below. This is useful for the case when linker script 908 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 909 // -r, but we faced it in the Linux kernel and have to handle such case 910 // and not to crash. 911 target->dependentSections.push_back(relocSec); 912 return relocSec; 913 } 914 915 if (target->firstRelocation) 916 fatal(toString(this) + 917 ": multiple relocation sections to one section are not supported"); 918 919 if (sec.sh_type == SHT_RELA) { 920 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 921 target->firstRelocation = rels.begin(); 922 target->numRelocations = rels.size(); 923 target->areRelocsRela = true; 924 } else { 925 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 926 target->firstRelocation = rels.begin(); 927 target->numRelocations = rels.size(); 928 target->areRelocsRela = false; 929 } 930 assert(isUInt<31>(target->numRelocations)); 931 932 // Relocation sections processed by the linker are usually removed 933 // from the output, so returning `nullptr` for the normal case. 934 // However, if -emit-relocs is given, we need to leave them in the output. 935 // (Some post link analysis tools need this information.) 936 if (config->emitRelocs) { 937 InputSection *relocSec = make<InputSection>(*this, sec, name); 938 // We will not emit relocation section if target was discarded. 939 target->dependentSections.push_back(relocSec); 940 return relocSec; 941 } 942 return nullptr; 943 } 944 } 945 946 // The GNU linker uses .note.GNU-stack section as a marker indicating 947 // that the code in the object file does not expect that the stack is 948 // executable (in terms of NX bit). If all input files have the marker, 949 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 950 // make the stack non-executable. Most object files have this section as 951 // of 2017. 952 // 953 // But making the stack non-executable is a norm today for security 954 // reasons. Failure to do so may result in a serious security issue. 955 // Therefore, we make LLD always add PT_GNU_STACK unless it is 956 // explicitly told to do otherwise (by -z execstack). Because the stack 957 // executable-ness is controlled solely by command line options, 958 // .note.GNU-stack sections are simply ignored. 959 if (name == ".note.GNU-stack") 960 return &InputSection::discarded; 961 962 // Object files that use processor features such as Intel Control-Flow 963 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 964 // .note.gnu.property section containing a bitfield of feature bits like the 965 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 966 // 967 // Since we merge bitmaps from multiple object files to create a new 968 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 969 // file's .note.gnu.property section. 970 if (name == ".note.gnu.property") { 971 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 972 this->andFeatures = readAndFeatures(this, contents); 973 return &InputSection::discarded; 974 } 975 976 // Split stacks is a feature to support a discontiguous stack, 977 // commonly used in the programming language Go. For the details, 978 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 979 // for split stack will include a .note.GNU-split-stack section. 980 if (name == ".note.GNU-split-stack") { 981 if (config->relocatable) { 982 error("cannot mix split-stack and non-split-stack in a relocatable link"); 983 return &InputSection::discarded; 984 } 985 this->splitStack = true; 986 return &InputSection::discarded; 987 } 988 989 // An object file cmpiled for split stack, but where some of the 990 // functions were compiled with the no_split_stack_attribute will 991 // include a .note.GNU-no-split-stack section. 992 if (name == ".note.GNU-no-split-stack") { 993 this->someNoSplitStack = true; 994 return &InputSection::discarded; 995 } 996 997 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 998 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 999 // sections. Drop those sections to avoid duplicate symbol errors. 1000 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1001 // fixed for a while. 1002 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1003 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1004 return &InputSection::discarded; 1005 1006 // If we are creating a new .build-id section, strip existing .build-id 1007 // sections so that the output won't have more than one .build-id. 1008 // This is not usually a problem because input object files normally don't 1009 // have .build-id sections, but you can create such files by 1010 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1011 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1012 return &InputSection::discarded; 1013 1014 // The linker merges EH (exception handling) frames and creates a 1015 // .eh_frame_hdr section for runtime. So we handle them with a special 1016 // class. For relocatable outputs, they are just passed through. 1017 if (name == ".eh_frame" && !config->relocatable) 1018 return make<EhInputSection>(*this, sec, name); 1019 1020 if (shouldMerge(sec, name)) 1021 return make<MergeInputSection>(*this, sec, name); 1022 return make<InputSection>(*this, sec, name); 1023 } 1024 1025 template <class ELFT> 1026 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1027 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1028 } 1029 1030 // Initialize this->Symbols. this->Symbols is a parallel array as 1031 // its corresponding ELF symbol table. 1032 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1033 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1034 this->symbols.resize(eSyms.size()); 1035 1036 // Our symbol table may have already been partially initialized 1037 // because of LazyObjFile. 1038 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1039 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1040 this->symbols[i] = 1041 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1042 1043 // Fill this->Symbols. A symbol is either local or global. 1044 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1045 const Elf_Sym &eSym = eSyms[i]; 1046 1047 // Read symbol attributes. 1048 uint32_t secIdx = getSectionIndex(eSym); 1049 if (secIdx >= this->sections.size()) 1050 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1051 1052 InputSectionBase *sec = this->sections[secIdx]; 1053 uint8_t binding = eSym.getBinding(); 1054 uint8_t stOther = eSym.st_other; 1055 uint8_t type = eSym.getType(); 1056 uint64_t value = eSym.st_value; 1057 uint64_t size = eSym.st_size; 1058 StringRefZ name = this->stringTable.data() + eSym.st_name; 1059 1060 // Handle local symbols. Local symbols are not added to the symbol 1061 // table because they are not visible from other object files. We 1062 // allocate symbol instances and add their pointers to Symbols. 1063 if (binding == STB_LOCAL) { 1064 if (eSym.getType() == STT_FILE) 1065 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1066 1067 if (this->stringTable.size() <= eSym.st_name) 1068 fatal(toString(this) + ": invalid symbol name offset"); 1069 1070 if (eSym.st_shndx == SHN_UNDEF) 1071 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1072 else if (sec == &InputSection::discarded) 1073 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1074 /*DiscardedSecIdx=*/secIdx); 1075 else 1076 this->symbols[i] = 1077 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1078 continue; 1079 } 1080 1081 // Handle global undefined symbols. 1082 if (eSym.st_shndx == SHN_UNDEF) { 1083 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1084 this->symbols[i]->referenced = true; 1085 continue; 1086 } 1087 1088 // Handle global common symbols. 1089 if (eSym.st_shndx == SHN_COMMON) { 1090 if (value == 0 || value >= UINT32_MAX) 1091 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1092 "' has invalid alignment: " + Twine(value)); 1093 this->symbols[i]->resolve( 1094 CommonSymbol{this, name, binding, stOther, type, value, size}); 1095 continue; 1096 } 1097 1098 // If a defined symbol is in a discarded section, handle it as if it 1099 // were an undefined symbol. Such symbol doesn't comply with the 1100 // standard, but in practice, a .eh_frame often directly refer 1101 // COMDAT member sections, and if a comdat group is discarded, some 1102 // defined symbol in a .eh_frame becomes dangling symbols. 1103 if (sec == &InputSection::discarded) { 1104 this->symbols[i]->resolve( 1105 Undefined{this, name, binding, stOther, type, secIdx}); 1106 continue; 1107 } 1108 1109 // Handle global defined symbols. 1110 if (binding == STB_GLOBAL || binding == STB_WEAK || 1111 binding == STB_GNU_UNIQUE) { 1112 this->symbols[i]->resolve( 1113 Defined{this, name, binding, stOther, type, value, size, sec}); 1114 continue; 1115 } 1116 1117 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1118 } 1119 } 1120 1121 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1122 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1123 file(std::move(file)) {} 1124 1125 void ArchiveFile::parse() { 1126 for (const Archive::Symbol &sym : file->symbols()) 1127 symtab->addSymbol(LazyArchive{*this, sym}); 1128 } 1129 1130 // Returns a buffer pointing to a member file containing a given symbol. 1131 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1132 Archive::Child c = 1133 CHECK(sym.getMember(), toString(this) + 1134 ": could not get the member for symbol " + 1135 toELFString(sym)); 1136 1137 if (!seen.insert(c.getChildOffset()).second) 1138 return; 1139 1140 MemoryBufferRef mb = 1141 CHECK(c.getMemoryBufferRef(), 1142 toString(this) + 1143 ": could not get the buffer for the member defining symbol " + 1144 toELFString(sym)); 1145 1146 if (tar && c.getParent()->isThin()) 1147 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1148 1149 InputFile *file = createObjectFile( 1150 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1151 file->groupId = groupId; 1152 parseFile(file); 1153 } 1154 1155 unsigned SharedFile::vernauxNum; 1156 1157 // Parse the version definitions in the object file if present, and return a 1158 // vector whose nth element contains a pointer to the Elf_Verdef for version 1159 // identifier n. Version identifiers that are not definitions map to nullptr. 1160 template <typename ELFT> 1161 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1162 const typename ELFT::Shdr *sec) { 1163 if (!sec) 1164 return {}; 1165 1166 // We cannot determine the largest verdef identifier without inspecting 1167 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1168 // sequentially starting from 1, so we predict that the largest identifier 1169 // will be verdefCount. 1170 unsigned verdefCount = sec->sh_info; 1171 std::vector<const void *> verdefs(verdefCount + 1); 1172 1173 // Build the Verdefs array by following the chain of Elf_Verdef objects 1174 // from the start of the .gnu.version_d section. 1175 const uint8_t *verdef = base + sec->sh_offset; 1176 for (unsigned i = 0; i != verdefCount; ++i) { 1177 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1178 verdef += curVerdef->vd_next; 1179 unsigned verdefIndex = curVerdef->vd_ndx; 1180 verdefs.resize(verdefIndex + 1); 1181 verdefs[verdefIndex] = curVerdef; 1182 } 1183 return verdefs; 1184 } 1185 1186 // We do not usually care about alignments of data in shared object 1187 // files because the loader takes care of it. However, if we promote a 1188 // DSO symbol to point to .bss due to copy relocation, we need to keep 1189 // the original alignment requirements. We infer it in this function. 1190 template <typename ELFT> 1191 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1192 const typename ELFT::Sym &sym) { 1193 uint64_t ret = UINT64_MAX; 1194 if (sym.st_value) 1195 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1196 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1197 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1198 return (ret > UINT32_MAX) ? 0 : ret; 1199 } 1200 1201 // Fully parse the shared object file. 1202 // 1203 // This function parses symbol versions. If a DSO has version information, 1204 // the file has a ".gnu.version_d" section which contains symbol version 1205 // definitions. Each symbol is associated to one version through a table in 1206 // ".gnu.version" section. That table is a parallel array for the symbol 1207 // table, and each table entry contains an index in ".gnu.version_d". 1208 // 1209 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1210 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1211 // ".gnu.version_d". 1212 // 1213 // The file format for symbol versioning is perhaps a bit more complicated 1214 // than necessary, but you can easily understand the code if you wrap your 1215 // head around the data structure described above. 1216 template <class ELFT> void SharedFile::parse() { 1217 using Elf_Dyn = typename ELFT::Dyn; 1218 using Elf_Shdr = typename ELFT::Shdr; 1219 using Elf_Sym = typename ELFT::Sym; 1220 using Elf_Verdef = typename ELFT::Verdef; 1221 using Elf_Versym = typename ELFT::Versym; 1222 1223 ArrayRef<Elf_Dyn> dynamicTags; 1224 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1225 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1226 1227 const Elf_Shdr *versymSec = nullptr; 1228 const Elf_Shdr *verdefSec = nullptr; 1229 1230 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1231 for (const Elf_Shdr &sec : sections) { 1232 switch (sec.sh_type) { 1233 default: 1234 continue; 1235 case SHT_DYNAMIC: 1236 dynamicTags = 1237 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1238 break; 1239 case SHT_GNU_versym: 1240 versymSec = &sec; 1241 break; 1242 case SHT_GNU_verdef: 1243 verdefSec = &sec; 1244 break; 1245 } 1246 } 1247 1248 if (versymSec && numELFSyms == 0) { 1249 error("SHT_GNU_versym should be associated with symbol table"); 1250 return; 1251 } 1252 1253 // Search for a DT_SONAME tag to initialize this->soName. 1254 for (const Elf_Dyn &dyn : dynamicTags) { 1255 if (dyn.d_tag == DT_NEEDED) { 1256 uint64_t val = dyn.getVal(); 1257 if (val >= this->stringTable.size()) 1258 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1259 dtNeeded.push_back(this->stringTable.data() + val); 1260 } else if (dyn.d_tag == DT_SONAME) { 1261 uint64_t val = dyn.getVal(); 1262 if (val >= this->stringTable.size()) 1263 fatal(toString(this) + ": invalid DT_SONAME entry"); 1264 soName = this->stringTable.data() + val; 1265 } 1266 } 1267 1268 // DSOs are uniquified not by filename but by soname. 1269 DenseMap<StringRef, SharedFile *>::iterator it; 1270 bool wasInserted; 1271 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1272 1273 // If a DSO appears more than once on the command line with and without 1274 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1275 // user can add an extra DSO with --no-as-needed to force it to be added to 1276 // the dependency list. 1277 it->second->isNeeded |= isNeeded; 1278 if (!wasInserted) 1279 return; 1280 1281 sharedFiles.push_back(this); 1282 1283 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1284 1285 // Parse ".gnu.version" section which is a parallel array for the symbol 1286 // table. If a given file doesn't have a ".gnu.version" section, we use 1287 // VER_NDX_GLOBAL. 1288 size_t size = numELFSyms - firstGlobal; 1289 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1290 if (versymSec) { 1291 ArrayRef<Elf_Versym> versym = 1292 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1293 this) 1294 .slice(firstGlobal); 1295 for (size_t i = 0; i < size; ++i) 1296 versyms[i] = versym[i].vs_index; 1297 } 1298 1299 // System libraries can have a lot of symbols with versions. Using a 1300 // fixed buffer for computing the versions name (foo@ver) can save a 1301 // lot of allocations. 1302 SmallString<0> versionedNameBuffer; 1303 1304 // Add symbols to the symbol table. 1305 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1306 for (size_t i = 0; i < syms.size(); ++i) { 1307 const Elf_Sym &sym = syms[i]; 1308 1309 // ELF spec requires that all local symbols precede weak or global 1310 // symbols in each symbol table, and the index of first non-local symbol 1311 // is stored to sh_info. If a local symbol appears after some non-local 1312 // symbol, that's a violation of the spec. 1313 StringRef name = CHECK(sym.getName(this->stringTable), this); 1314 if (sym.getBinding() == STB_LOCAL) { 1315 warn("found local symbol '" + name + 1316 "' in global part of symbol table in file " + toString(this)); 1317 continue; 1318 } 1319 1320 if (sym.isUndefined()) { 1321 Symbol *s = symtab->addSymbol( 1322 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1323 s->exportDynamic = true; 1324 continue; 1325 } 1326 1327 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1328 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1329 // workaround for this bug. 1330 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1331 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1332 name == "_gp_disp") 1333 continue; 1334 1335 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1336 if (!(versyms[i] & VERSYM_HIDDEN)) { 1337 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1338 sym.st_other, sym.getType(), sym.st_value, 1339 sym.st_size, alignment, idx}); 1340 } 1341 1342 // Also add the symbol with the versioned name to handle undefined symbols 1343 // with explicit versions. 1344 if (idx == VER_NDX_GLOBAL) 1345 continue; 1346 1347 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1348 error("corrupt input file: version definition index " + Twine(idx) + 1349 " for symbol " + name + " is out of bounds\n>>> defined in " + 1350 toString(this)); 1351 continue; 1352 } 1353 1354 StringRef verName = 1355 this->stringTable.data() + 1356 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1357 versionedNameBuffer.clear(); 1358 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1359 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1360 sym.st_other, sym.getType(), sym.st_value, 1361 sym.st_size, alignment, idx}); 1362 } 1363 } 1364 1365 static ELFKind getBitcodeELFKind(const Triple &t) { 1366 if (t.isLittleEndian()) 1367 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1368 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1369 } 1370 1371 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1372 switch (t.getArch()) { 1373 case Triple::aarch64: 1374 return EM_AARCH64; 1375 case Triple::amdgcn: 1376 case Triple::r600: 1377 return EM_AMDGPU; 1378 case Triple::arm: 1379 case Triple::thumb: 1380 return EM_ARM; 1381 case Triple::avr: 1382 return EM_AVR; 1383 case Triple::mips: 1384 case Triple::mipsel: 1385 case Triple::mips64: 1386 case Triple::mips64el: 1387 return EM_MIPS; 1388 case Triple::msp430: 1389 return EM_MSP430; 1390 case Triple::ppc: 1391 return EM_PPC; 1392 case Triple::ppc64: 1393 case Triple::ppc64le: 1394 return EM_PPC64; 1395 case Triple::riscv32: 1396 case Triple::riscv64: 1397 return EM_RISCV; 1398 case Triple::x86: 1399 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1400 case Triple::x86_64: 1401 return EM_X86_64; 1402 default: 1403 error(path + ": could not infer e_machine from bitcode target triple " + 1404 t.str()); 1405 return EM_NONE; 1406 } 1407 } 1408 1409 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1410 uint64_t offsetInArchive) 1411 : InputFile(BitcodeKind, mb) { 1412 this->archiveName = std::string(archiveName); 1413 1414 std::string path = mb.getBufferIdentifier().str(); 1415 if (config->thinLTOIndexOnly) 1416 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1417 1418 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1419 // name. If two archives define two members with the same name, this 1420 // causes a collision which result in only one of the objects being taken 1421 // into consideration at LTO time (which very likely causes undefined 1422 // symbols later in the link stage). So we append file offset to make 1423 // filename unique. 1424 StringRef name = 1425 archiveName.empty() 1426 ? saver.save(path) 1427 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1428 utostr(offsetInArchive) + ")"); 1429 MemoryBufferRef mbref(mb.getBuffer(), name); 1430 1431 obj = CHECK(lto::InputFile::create(mbref), this); 1432 1433 Triple t(obj->getTargetTriple()); 1434 ekind = getBitcodeELFKind(t); 1435 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1436 } 1437 1438 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1439 switch (gvVisibility) { 1440 case GlobalValue::DefaultVisibility: 1441 return STV_DEFAULT; 1442 case GlobalValue::HiddenVisibility: 1443 return STV_HIDDEN; 1444 case GlobalValue::ProtectedVisibility: 1445 return STV_PROTECTED; 1446 } 1447 llvm_unreachable("unknown visibility"); 1448 } 1449 1450 template <class ELFT> 1451 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1452 const lto::InputFile::Symbol &objSym, 1453 BitcodeFile &f) { 1454 StringRef name = saver.save(objSym.getName()); 1455 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1456 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1457 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1458 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1459 1460 int c = objSym.getComdatIndex(); 1461 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1462 Undefined newSym(&f, name, binding, visibility, type); 1463 if (canOmitFromDynSym) 1464 newSym.exportDynamic = false; 1465 Symbol *ret = symtab->addSymbol(newSym); 1466 ret->referenced = true; 1467 return ret; 1468 } 1469 1470 if (objSym.isCommon()) 1471 return symtab->addSymbol( 1472 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1473 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1474 1475 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1476 if (canOmitFromDynSym) 1477 newSym.exportDynamic = false; 1478 return symtab->addSymbol(newSym); 1479 } 1480 1481 template <class ELFT> void BitcodeFile::parse() { 1482 std::vector<bool> keptComdats; 1483 for (StringRef s : obj->getComdatTable()) 1484 keptComdats.push_back( 1485 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1486 1487 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1488 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1489 1490 for (auto l : obj->getDependentLibraries()) 1491 addDependentLibrary(l, this); 1492 } 1493 1494 void BinaryFile::parse() { 1495 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1496 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1497 8, data, ".data"); 1498 sections.push_back(section); 1499 1500 // For each input file foo that is embedded to a result as a binary 1501 // blob, we define _binary_foo_{start,end,size} symbols, so that 1502 // user programs can access blobs by name. Non-alphanumeric 1503 // characters in a filename are replaced with underscore. 1504 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1505 for (size_t i = 0; i < s.size(); ++i) 1506 if (!isAlnum(s[i])) 1507 s[i] = '_'; 1508 1509 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1510 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1511 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1512 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1513 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1514 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1515 } 1516 1517 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1518 uint64_t offsetInArchive) { 1519 if (isBitcode(mb)) 1520 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1521 1522 switch (getELFKind(mb, archiveName)) { 1523 case ELF32LEKind: 1524 return make<ObjFile<ELF32LE>>(mb, archiveName); 1525 case ELF32BEKind: 1526 return make<ObjFile<ELF32BE>>(mb, archiveName); 1527 case ELF64LEKind: 1528 return make<ObjFile<ELF64LE>>(mb, archiveName); 1529 case ELF64BEKind: 1530 return make<ObjFile<ELF64BE>>(mb, archiveName); 1531 default: 1532 llvm_unreachable("getELFKind"); 1533 } 1534 } 1535 1536 void LazyObjFile::fetch() { 1537 if (mb.getBuffer().empty()) 1538 return; 1539 1540 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1541 file->groupId = groupId; 1542 1543 mb = {}; 1544 1545 // Copy symbol vector so that the new InputFile doesn't have to 1546 // insert the same defined symbols to the symbol table again. 1547 file->symbols = std::move(symbols); 1548 1549 parseFile(file); 1550 } 1551 1552 template <class ELFT> void LazyObjFile::parse() { 1553 using Elf_Sym = typename ELFT::Sym; 1554 1555 // A lazy object file wraps either a bitcode file or an ELF file. 1556 if (isBitcode(this->mb)) { 1557 std::unique_ptr<lto::InputFile> obj = 1558 CHECK(lto::InputFile::create(this->mb), this); 1559 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1560 if (sym.isUndefined()) 1561 continue; 1562 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1563 } 1564 return; 1565 } 1566 1567 if (getELFKind(this->mb, archiveName) != config->ekind) { 1568 error("incompatible file: " + this->mb.getBufferIdentifier()); 1569 return; 1570 } 1571 1572 // Find a symbol table. 1573 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1574 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1575 1576 for (const typename ELFT::Shdr &sec : sections) { 1577 if (sec.sh_type != SHT_SYMTAB) 1578 continue; 1579 1580 // A symbol table is found. 1581 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1582 uint32_t firstGlobal = sec.sh_info; 1583 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1584 this->symbols.resize(eSyms.size()); 1585 1586 // Get existing symbols or insert placeholder symbols. 1587 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1588 if (eSyms[i].st_shndx != SHN_UNDEF) 1589 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1590 1591 // Replace existing symbols with LazyObject symbols. 1592 // 1593 // resolve() may trigger this->fetch() if an existing symbol is an 1594 // undefined symbol. If that happens, this LazyObjFile has served 1595 // its purpose, and we can exit from the loop early. 1596 for (Symbol *sym : this->symbols) { 1597 if (!sym) 1598 continue; 1599 sym->resolve(LazyObject{*this, sym->getName()}); 1600 1601 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1602 if (mb.getBuffer().empty()) 1603 return; 1604 } 1605 return; 1606 } 1607 } 1608 1609 std::string replaceThinLTOSuffix(StringRef path) { 1610 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1611 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1612 1613 if (path.consume_back(suffix)) 1614 return (path + repl).str(); 1615 return std::string(path); 1616 } 1617 1618 template void BitcodeFile::parse<ELF32LE>(); 1619 template void BitcodeFile::parse<ELF32BE>(); 1620 template void BitcodeFile::parse<ELF64LE>(); 1621 template void BitcodeFile::parse<ELF64BE>(); 1622 1623 template void LazyObjFile::parse<ELF32LE>(); 1624 template void LazyObjFile::parse<ELF32BE>(); 1625 template void LazyObjFile::parse<ELF64LE>(); 1626 template void LazyObjFile::parse<ELF64BE>(); 1627 1628 template class ObjFile<ELF32LE>; 1629 template class ObjFile<ELF32BE>; 1630 template class ObjFile<ELF64LE>; 1631 template class ObjFile<ELF64BE>; 1632 1633 template void SharedFile::parse<ELF32LE>(); 1634 template void SharedFile::parse<ELF32BE>(); 1635 template void SharedFile::parse<ELF64LE>(); 1636 template void SharedFile::parse<ELF64BE>(); 1637 1638 } // namespace elf 1639 } // namespace lld 1640