1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "ELFCreator.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/MC/StringTableBuilder.h"
24 #include "llvm/Support/Path.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 using namespace llvm;
28 using namespace llvm::ELF;
29 using namespace llvm::object;
30 using namespace llvm::sys::fs;
31 
32 using namespace lld;
33 using namespace lld::elf;
34 
35 std::vector<InputFile *> InputFile::Pool;
36 
37 // Deletes all InputFile instances created so far.
38 void InputFile::freePool() {
39   // Files are freed in reverse order so that files created
40   // from other files (e.g. object files extracted from archives)
41   // are freed in the proper order.
42   for (int I = Pool.size() - 1; I >= 0; --I)
43     delete Pool[I];
44 }
45 
46 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
47 std::string elf::getFilename(const InputFile *F) {
48   if (!F)
49     return "(internal)";
50   if (!F->ArchiveName.empty())
51     return (F->ArchiveName + "(" + F->getName() + ")").str();
52   return F->getName();
53 }
54 
55 template <class ELFT>
56 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
57   std::error_code EC;
58   ELFFile<ELFT> F(MB.getBuffer(), EC);
59   if (EC)
60     error(EC, "failed to read " + MB.getBufferIdentifier());
61   return F;
62 }
63 
64 template <class ELFT> static ELFKind getELFKind() {
65   if (ELFT::TargetEndianness == support::little)
66     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
67   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
68 }
69 
70 template <class ELFT>
71 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
72     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {
73   EKind = getELFKind<ELFT>();
74   EMachine = ELFObj.getHeader()->e_machine;
75 }
76 
77 template <class ELFT>
78 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
79   if (!Symtab)
80     return Elf_Sym_Range(nullptr, nullptr);
81   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
82   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
83   uint32_t FirstNonLocal = Symtab->sh_info;
84   if (FirstNonLocal > NumSymbols)
85     fatal(getFilename(this) + ": invalid sh_info in symbol table");
86 
87   if (OnlyGlobals)
88     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
89   return makeArrayRef(Syms.begin(), Syms.end());
90 }
91 
92 template <class ELFT>
93 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
94   uint32_t I = Sym.st_shndx;
95   if (I == ELF::SHN_XINDEX)
96     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
97   if (I >= ELF::SHN_LORESERVE)
98     return 0;
99   return I;
100 }
101 
102 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
103   if (!Symtab)
104     return;
105   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
106 }
107 
108 template <class ELFT>
109 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
110     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
111 
112 template <class ELFT>
113 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
114   if (!this->Symtab)
115     return this->SymbolBodies;
116   uint32_t FirstNonLocal = this->Symtab->sh_info;
117   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
118 }
119 
120 template <class ELFT>
121 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
122   if (!this->Symtab)
123     return this->SymbolBodies;
124   uint32_t FirstNonLocal = this->Symtab->sh_info;
125   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
126 }
127 
128 template <class ELFT>
129 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
130   if (!this->Symtab)
131     return this->SymbolBodies;
132   return makeArrayRef(this->SymbolBodies).slice(1);
133 }
134 
135 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
136   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
137     return MipsOptions->Reginfo->ri_gp_value;
138   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
139     return MipsReginfo->Reginfo->ri_gp_value;
140   return 0;
141 }
142 
143 template <class ELFT>
144 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
145   // Read section and symbol tables.
146   initializeSections(ComdatGroups);
147   initializeSymbols();
148 }
149 
150 // Sections with SHT_GROUP and comdat bits define comdat section groups.
151 // They are identified and deduplicated by group name. This function
152 // returns a group name.
153 template <class ELFT>
154 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
155   const ELFFile<ELFT> &Obj = this->ELFObj;
156   const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link));
157   const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info);
158   StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab));
159   return check(Sym->getName(Strtab));
160 }
161 
162 template <class ELFT>
163 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
164 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
165   const ELFFile<ELFT> &Obj = this->ELFObj;
166   ArrayRef<Elf_Word> Entries =
167       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
168   if (Entries.empty() || Entries[0] != GRP_COMDAT)
169     fatal(getFilename(this) + ": unsupported SHT_GROUP format");
170   return Entries.slice(1);
171 }
172 
173 template <class ELFT>
174 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
175   // We don't merge sections if -O0 (default is -O1). This makes sometimes
176   // the linker significantly faster, although the output will be bigger.
177   if (Config->Optimize == 0)
178     return false;
179 
180   // A mergeable section with size 0 is useless because they don't have
181   // any data to merge. A mergeable string section with size 0 can be
182   // argued as invalid because it doesn't end with a null character.
183   // We'll avoid a mess by handling them as if they were non-mergeable.
184   if (Sec.sh_size == 0)
185     return false;
186 
187   // Check for sh_entsize. The ELF spec is not clear about the zero
188   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
189   // the section does not hold a table of fixed-size entries". We know
190   // that Rust 1.13 produces a string mergeable section with a zero
191   // sh_entsize. Here we just accept it rather than being picky about it.
192   uintX_t EntSize = Sec.sh_entsize;
193   if (EntSize == 0)
194     return false;
195   if (Sec.sh_size % EntSize)
196     fatal(getFilename(this) +
197           ": SHF_MERGE section size must be a multiple of sh_entsize");
198 
199   uintX_t Flags = Sec.sh_flags;
200   if (!(Flags & SHF_MERGE))
201     return false;
202   if (Flags & SHF_WRITE)
203     fatal(getFilename(this) + ": writable SHF_MERGE section is not supported");
204 
205   // Don't try to merge if the alignment is larger than the sh_entsize and this
206   // is not SHF_STRINGS.
207   //
208   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
209   // It would be equivalent for the producer of the .o to just set a larger
210   // sh_entsize.
211   if (Flags & SHF_STRINGS)
212     return true;
213 
214   return Sec.sh_addralign <= EntSize;
215 }
216 
217 template <class ELFT>
218 void elf::ObjectFile<ELFT>::initializeSections(
219     DenseSet<StringRef> &ComdatGroups) {
220   uint64_t Size = this->ELFObj.getNumSections();
221   Sections.resize(Size);
222   unsigned I = -1;
223   const ELFFile<ELFT> &Obj = this->ELFObj;
224   for (const Elf_Shdr &Sec : Obj.sections()) {
225     ++I;
226     if (Sections[I] == &InputSection<ELFT>::Discarded)
227       continue;
228 
229     switch (Sec.sh_type) {
230     case SHT_GROUP:
231       Sections[I] = &InputSection<ELFT>::Discarded;
232       if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
233         continue;
234       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
235         if (SecIndex >= Size)
236           fatal(getFilename(this) + ": invalid section index in group: " +
237                 Twine(SecIndex));
238         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
239       }
240       break;
241     case SHT_SYMTAB:
242       this->Symtab = &Sec;
243       break;
244     case SHT_SYMTAB_SHNDX:
245       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
246       break;
247     case SHT_STRTAB:
248     case SHT_NULL:
249       break;
250     default:
251       Sections[I] = createInputSection(Sec);
252     }
253   }
254 }
255 
256 template <class ELFT>
257 InputSectionBase<ELFT> *
258 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
259   uint32_t Idx = Sec.sh_info;
260   if (Idx >= Sections.size())
261     fatal(getFilename(this) + ": invalid relocated section index: " +
262           Twine(Idx));
263   InputSectionBase<ELFT> *Target = Sections[Idx];
264 
265   // Strictly speaking, a relocation section must be included in the
266   // group of the section it relocates. However, LLVM 3.3 and earlier
267   // would fail to do so, so we gracefully handle that case.
268   if (Target == &InputSection<ELFT>::Discarded)
269     return nullptr;
270 
271   if (!Target)
272     fatal(getFilename(this) + ": unsupported relocation reference");
273   return Target;
274 }
275 
276 template <class ELFT>
277 InputSectionBase<ELFT> *
278 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
279   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
280 
281   switch (Sec.sh_type) {
282   case SHT_ARM_ATTRIBUTES:
283     // FIXME: ARM meta-data section. At present attributes are ignored,
284     // they can be used to reason about object compatibility.
285     return &InputSection<ELFT>::Discarded;
286   case SHT_MIPS_REGINFO:
287     MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name));
288     return MipsReginfo.get();
289   case SHT_MIPS_OPTIONS:
290     MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name));
291     return MipsOptions.get();
292   case SHT_MIPS_ABIFLAGS:
293     MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name));
294     return MipsAbiFlags.get();
295   case SHT_RELA:
296   case SHT_REL: {
297     // This section contains relocation information.
298     // If -r is given, we do not interpret or apply relocation
299     // but just copy relocation sections to output.
300     if (Config->Relocatable)
301       return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name);
302 
303     // Find the relocation target section and associate this
304     // section with it.
305     InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
306     if (!Target)
307       return nullptr;
308     if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
309       S->RelocSections.push_back(&Sec);
310       return nullptr;
311     }
312     if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
313       if (S->RelocSection)
314         fatal(getFilename(this) +
315               ": multiple relocation sections to .eh_frame are not supported");
316       S->RelocSection = &Sec;
317       return nullptr;
318     }
319     fatal(getFilename(this) +
320           ": relocations pointing to SHF_MERGE are not supported");
321   }
322   }
323 
324   // .note.GNU-stack is a marker section to control the presence of
325   // PT_GNU_STACK segment in outputs. Since the presence of the segment
326   // is controlled only by the command line option (-z execstack) in LLD,
327   // .note.GNU-stack is ignored.
328   if (Name == ".note.GNU-stack")
329     return &InputSection<ELFT>::Discarded;
330 
331   if (Name == ".note.GNU-split-stack") {
332     error("objects using splitstacks are not supported");
333     return &InputSection<ELFT>::Discarded;
334   }
335 
336   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
337     return &InputSection<ELFT>::Discarded;
338 
339   // The linker merges EH (exception handling) frames and creates a
340   // .eh_frame_hdr section for runtime. So we handle them with a special
341   // class. For relocatable outputs, they are just passed through.
342   if (Name == ".eh_frame" && !Config->Relocatable)
343     return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name);
344 
345   if (shouldMerge(Sec))
346     return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name);
347   return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name);
348 }
349 
350 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
351   this->initStringTable();
352   Elf_Sym_Range Syms = this->getElfSymbols(false);
353   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
354   SymbolBodies.reserve(NumSymbols);
355   for (const Elf_Sym &Sym : Syms)
356     SymbolBodies.push_back(createSymbolBody(&Sym));
357 }
358 
359 template <class ELFT>
360 InputSectionBase<ELFT> *
361 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
362   uint32_t Index = this->getSectionIndex(Sym);
363   if (Index == 0)
364     return nullptr;
365   if (Index >= Sections.size())
366     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
367   InputSectionBase<ELFT> *S = Sections[Index];
368   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03
369   // could generate broken objects. STT_SECTION symbols can be
370   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
371   // In this case it is fine for section to be null here as we
372   // do not allocate sections of these types.
373   if (!S || S == &InputSectionBase<ELFT>::Discarded)
374     return S;
375   return S->Repl;
376 }
377 
378 template <class ELFT>
379 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
380   int Binding = Sym->getBinding();
381   InputSectionBase<ELFT> *Sec = getSection(*Sym);
382   if (Binding == STB_LOCAL) {
383     if (Sym->st_shndx == SHN_UNDEF)
384       return new (this->Alloc)
385           Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this);
386     return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec);
387   }
388 
389   StringRef Name = check(Sym->getName(this->StringTable));
390 
391   switch (Sym->st_shndx) {
392   case SHN_UNDEF:
393     return elf::Symtab<ELFT>::X
394         ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
395                        /*CanOmitFromDynSym*/ false, /*HasUnnamedAddr*/ false,
396                        this)
397         ->body();
398   case SHN_COMMON:
399     return elf::Symtab<ELFT>::X
400         ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other,
401                     Sym->getType(), /*HasUnnamedAddr*/ false, this)
402         ->body();
403   }
404 
405   switch (Binding) {
406   default:
407     fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding));
408   case STB_GLOBAL:
409   case STB_WEAK:
410   case STB_GNU_UNIQUE:
411     if (Sec == &InputSection<ELFT>::Discarded)
412       return elf::Symtab<ELFT>::X
413           ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(),
414                          /*CanOmitFromDynSym*/ false,
415                          /*HasUnnamedAddr*/ false, this)
416           ->body();
417     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
418   }
419 }
420 
421 template <class ELFT> void ArchiveFile::parse() {
422   File = check(Archive::create(MB), "failed to parse archive");
423 
424   // Read the symbol table to construct Lazy objects.
425   for (const Archive::Symbol &Sym : File->symbols())
426     Symtab<ELFT>::X->addLazyArchive(this, Sym);
427 }
428 
429 // Returns a buffer pointing to a member file containing a given symbol.
430 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
431   Archive::Child C =
432       check(Sym->getMember(),
433             "could not get the member for symbol " + Sym->getName());
434 
435   if (!Seen.insert(C.getChildOffset()).second)
436     return MemoryBufferRef();
437 
438   MemoryBufferRef Ret =
439       check(C.getMemoryBufferRef(),
440             "could not get the buffer for the member defining symbol " +
441                 Sym->getName());
442 
443   if (C.getParent()->isThin() && Driver->Cpio)
444     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
445                          Ret.getBuffer());
446 
447   return Ret;
448 }
449 
450 template <class ELFT>
451 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
452     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
453 
454 template <class ELFT>
455 const typename ELFT::Shdr *
456 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
457   uint32_t Index = this->getSectionIndex(Sym);
458   if (Index == 0)
459     return nullptr;
460   return check(this->ELFObj.getSection(Index));
461 }
462 
463 // Partially parse the shared object file so that we can call
464 // getSoName on this object.
465 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
466   typedef typename ELFT::Dyn Elf_Dyn;
467   typedef typename ELFT::uint uintX_t;
468   const Elf_Shdr *DynamicSec = nullptr;
469 
470   const ELFFile<ELFT> Obj = this->ELFObj;
471   for (const Elf_Shdr &Sec : Obj.sections()) {
472     switch (Sec.sh_type) {
473     default:
474       continue;
475     case SHT_DYNSYM:
476       this->Symtab = &Sec;
477       break;
478     case SHT_DYNAMIC:
479       DynamicSec = &Sec;
480       break;
481     case SHT_SYMTAB_SHNDX:
482       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
483       break;
484     case SHT_GNU_versym:
485       this->VersymSec = &Sec;
486       break;
487     case SHT_GNU_verdef:
488       this->VerdefSec = &Sec;
489       break;
490     }
491   }
492 
493   this->initStringTable();
494 
495   // DSOs are identified by soname, and they usually contain
496   // DT_SONAME tag in their header. But if they are missing,
497   // filenames are used as default sonames.
498   SoName = sys::path::filename(this->getName());
499 
500   if (!DynamicSec)
501     return;
502   auto *Begin =
503       reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset);
504   const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn);
505 
506   for (const Elf_Dyn &Dyn : make_range(Begin, End)) {
507     if (Dyn.d_tag == DT_SONAME) {
508       uintX_t Val = Dyn.getVal();
509       if (Val >= this->StringTable.size())
510         fatal(getFilename(this) + ": invalid DT_SONAME entry");
511       SoName = StringRef(this->StringTable.data() + Val);
512       return;
513     }
514   }
515 }
516 
517 // Parse the version definitions in the object file if present. Returns a vector
518 // whose nth element contains a pointer to the Elf_Verdef for version identifier
519 // n. Version identifiers that are not definitions map to nullptr. The array
520 // always has at least length 1.
521 template <class ELFT>
522 std::vector<const typename ELFT::Verdef *>
523 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
524   std::vector<const Elf_Verdef *> Verdefs(1);
525   // We only need to process symbol versions for this DSO if it has both a
526   // versym and a verdef section, which indicates that the DSO contains symbol
527   // version definitions.
528   if (!VersymSec || !VerdefSec)
529     return Verdefs;
530 
531   // The location of the first global versym entry.
532   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
533                                                 VersymSec->sh_offset) +
534            this->Symtab->sh_info;
535 
536   // We cannot determine the largest verdef identifier without inspecting
537   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
538   // sequentially starting from 1, so we predict that the largest identifier
539   // will be VerdefCount.
540   unsigned VerdefCount = VerdefSec->sh_info;
541   Verdefs.resize(VerdefCount + 1);
542 
543   // Build the Verdefs array by following the chain of Elf_Verdef objects
544   // from the start of the .gnu.version_d section.
545   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
546   for (unsigned I = 0; I != VerdefCount; ++I) {
547     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
548     Verdef += CurVerdef->vd_next;
549     unsigned VerdefIndex = CurVerdef->vd_ndx;
550     if (Verdefs.size() <= VerdefIndex)
551       Verdefs.resize(VerdefIndex + 1);
552     Verdefs[VerdefIndex] = CurVerdef;
553   }
554 
555   return Verdefs;
556 }
557 
558 // Fully parse the shared object file. This must be called after parseSoName().
559 template <class ELFT> void SharedFile<ELFT>::parseRest() {
560   // Create mapping from version identifiers to Elf_Verdef entries.
561   const Elf_Versym *Versym = nullptr;
562   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
563 
564   Elf_Sym_Range Syms = this->getElfSymbols(true);
565   for (const Elf_Sym &Sym : Syms) {
566     unsigned VersymIndex = 0;
567     if (Versym) {
568       VersymIndex = Versym->vs_index;
569       ++Versym;
570     }
571 
572     StringRef Name = check(Sym.getName(this->StringTable));
573     if (Sym.isUndefined()) {
574       Undefs.push_back(Name);
575       continue;
576     }
577 
578     if (Versym) {
579       // Ignore local symbols and non-default versions.
580       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
581         continue;
582     }
583 
584     const Elf_Verdef *V =
585         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
586     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
587   }
588 }
589 
590 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
591   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
592   if (T.isLittleEndian())
593     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
594   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
595 }
596 
597 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
598   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
599   switch (T.getArch()) {
600   case Triple::aarch64:
601     return EM_AARCH64;
602   case Triple::arm:
603     return EM_ARM;
604   case Triple::mips:
605   case Triple::mipsel:
606   case Triple::mips64:
607   case Triple::mips64el:
608     return EM_MIPS;
609   case Triple::ppc:
610     return EM_PPC;
611   case Triple::ppc64:
612     return EM_PPC64;
613   case Triple::x86:
614     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
615   case Triple::x86_64:
616     return EM_X86_64;
617   default:
618     fatal(MB.getBufferIdentifier() +
619           ": could not infer e_machine from bitcode target triple " + T.str());
620   }
621 }
622 
623 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) {
624   EKind = getBitcodeELFKind(MB);
625   EMachine = getBitcodeMachineKind(MB);
626 }
627 
628 static uint8_t getGvVisibility(const GlobalValue *GV) {
629   switch (GV->getVisibility()) {
630   case GlobalValue::DefaultVisibility:
631     return STV_DEFAULT;
632   case GlobalValue::HiddenVisibility:
633     return STV_HIDDEN;
634   case GlobalValue::ProtectedVisibility:
635     return STV_PROTECTED;
636   }
637   llvm_unreachable("unknown visibility");
638 }
639 
640 template <class ELFT>
641 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats,
642                                   const IRObjectFile &Obj,
643                                   const BasicSymbolRef &Sym) {
644   const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl());
645 
646   SmallString<64> Name;
647   raw_svector_ostream OS(Name);
648   Sym.printName(OS);
649   StringRef NameRef = Saver.save(StringRef(Name));
650 
651   uint32_t Flags = Sym.getFlags();
652   uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL;
653 
654   uint8_t Type = STT_NOTYPE;
655   uint8_t Visibility;
656   bool CanOmitFromDynSym = false;
657   bool HasUnnamedAddr = false;
658 
659   // FIXME: Expose a thread-local flag for module asm symbols.
660   if (GV) {
661     if (GV->isThreadLocal())
662       Type = STT_TLS;
663     CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV);
664     Visibility = getGvVisibility(GV);
665     HasUnnamedAddr =
666         GV->getUnnamedAddr() == llvm::GlobalValue::UnnamedAddr::Global;
667   } else {
668     // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose
669     // protected visibility.
670     Visibility = STV_DEFAULT;
671   }
672 
673   if (GV)
674     if (const Comdat *C = GV->getComdat())
675       if (!KeptComdats.count(C))
676         return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
677                                              CanOmitFromDynSym, HasUnnamedAddr,
678                                              this);
679 
680   const Module &M = Obj.getModule();
681   if (Flags & BasicSymbolRef::SF_Undefined)
682     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
683                                          CanOmitFromDynSym, HasUnnamedAddr,
684                                          this);
685   if (Flags & BasicSymbolRef::SF_Common) {
686     // FIXME: Set SF_Common flag correctly for module asm symbols, and expose
687     // size and alignment.
688     assert(GV);
689     const DataLayout &DL = M.getDataLayout();
690     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
691     return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(),
692                                       Binding, Visibility, STT_OBJECT,
693                                       HasUnnamedAddr, this);
694   }
695   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
696                                      CanOmitFromDynSym, HasUnnamedAddr, this);
697 }
698 
699 bool BitcodeFile::shouldSkip(uint32_t Flags) {
700   return !(Flags & BasicSymbolRef::SF_Global) ||
701          (Flags & BasicSymbolRef::SF_FormatSpecific);
702 }
703 
704 template <class ELFT>
705 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
706   Obj = check(IRObjectFile::create(MB, Driver->Context));
707   const Module &M = Obj->getModule();
708 
709   DenseSet<const Comdat *> KeptComdats;
710   for (const auto &P : M.getComdatSymbolTable()) {
711     StringRef N = Saver.save(P.first());
712     if (ComdatGroups.insert(N).second)
713       KeptComdats.insert(&P.second);
714   }
715 
716   for (const BasicSymbolRef &Sym : Obj->symbols())
717     if (!shouldSkip(Sym.getFlags()))
718       Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym));
719 }
720 
721 template <template <class> class T>
722 static InputFile *createELFFile(MemoryBufferRef MB) {
723   unsigned char Size;
724   unsigned char Endian;
725   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
726   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
727     fatal("invalid data encoding: " + MB.getBufferIdentifier());
728 
729   InputFile *Obj;
730   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
731     Obj = new T<ELF32LE>(MB);
732   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
733     Obj = new T<ELF32BE>(MB);
734   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
735     Obj = new T<ELF64LE>(MB);
736   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
737     Obj = new T<ELF64BE>(MB);
738   else
739     fatal("invalid file class: " + MB.getBufferIdentifier());
740 
741   if (!Config->FirstElf)
742     Config->FirstElf = Obj;
743   return Obj;
744 }
745 
746 template <class ELFT> InputFile *BinaryFile::createELF() {
747   // Wrap the binary blob with an ELF header and footer
748   // so that we can link it as a regular ELF file.
749   ELFCreator<ELFT> ELF(ET_REL, Config->EMachine);
750   auto DataSec = ELF.addSection(".data");
751   DataSec.Header->sh_flags = SHF_ALLOC;
752   DataSec.Header->sh_size = MB.getBufferSize();
753   DataSec.Header->sh_type = SHT_PROGBITS;
754   DataSec.Header->sh_addralign = 8;
755 
756   std::string Filepath = MB.getBufferIdentifier();
757   std::transform(Filepath.begin(), Filepath.end(), Filepath.begin(),
758                  [](char C) { return isalnum(C) ? C : '_'; });
759   std::string StartSym = "_binary_" + Filepath + "_start";
760   std::string EndSym = "_binary_" + Filepath + "_end";
761   std::string SizeSym = "_binary_" + Filepath + "_size";
762 
763   auto SSym = ELF.addSymbol(StartSym);
764   SSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT);
765   SSym.Sym->st_shndx = DataSec.Index;
766 
767   auto ESym = ELF.addSymbol(EndSym);
768   ESym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT);
769   ESym.Sym->st_shndx = DataSec.Index;
770   ESym.Sym->st_value = MB.getBufferSize();
771 
772   auto SZSym = ELF.addSymbol(SizeSym);
773   SZSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT);
774   SZSym.Sym->st_shndx = SHN_ABS;
775   SZSym.Sym->st_value = MB.getBufferSize();
776 
777   std::size_t Size = ELF.layout();
778   ELFData.resize(Size);
779 
780   ELF.write(ELFData.data());
781 
782   // .data
783   std::copy(MB.getBufferStart(), MB.getBufferEnd(),
784             ELFData.data() + DataSec.Header->sh_offset);
785 
786   return createELFFile<ObjectFile>(MemoryBufferRef(
787       StringRef((char *)ELFData.data(), Size), MB.getBufferIdentifier()));
788 }
789 
790 static bool isBitcode(MemoryBufferRef MB) {
791   using namespace sys::fs;
792   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
793 }
794 
795 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName) {
796   InputFile *F =
797       isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB);
798   F->ArchiveName = ArchiveName;
799   return F;
800 }
801 
802 InputFile *elf::createSharedFile(MemoryBufferRef MB) {
803   return createELFFile<SharedFile>(MB);
804 }
805 
806 MemoryBufferRef LazyObjectFile::getBuffer() {
807   if (Seen)
808     return MemoryBufferRef();
809   Seen = true;
810   return MB;
811 }
812 
813 template <class ELFT>
814 void LazyObjectFile::parse() {
815   for (StringRef Sym : getSymbols())
816     Symtab<ELFT>::X->addLazyObject(Sym, *this);
817 }
818 
819 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
820   typedef typename ELFT::Shdr Elf_Shdr;
821   typedef typename ELFT::Sym Elf_Sym;
822   typedef typename ELFT::SymRange Elf_Sym_Range;
823 
824   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
825   for (const Elf_Shdr &Sec : Obj.sections()) {
826     if (Sec.sh_type != SHT_SYMTAB)
827       continue;
828     Elf_Sym_Range Syms = Obj.symbols(&Sec);
829     uint32_t FirstNonLocal = Sec.sh_info;
830     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
831     std::vector<StringRef> V;
832     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
833       if (Sym.st_shndx != SHN_UNDEF)
834         V.push_back(check(Sym.getName(StringTable)));
835     return V;
836   }
837   return {};
838 }
839 
840 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
841   LLVMContext Context;
842   std::unique_ptr<IRObjectFile> Obj =
843       check(IRObjectFile::create(this->MB, Context));
844   std::vector<StringRef> V;
845   for (const BasicSymbolRef &Sym : Obj->symbols()) {
846     uint32_t Flags = Sym.getFlags();
847     if (BitcodeFile::shouldSkip(Flags))
848       continue;
849     if (Flags & BasicSymbolRef::SF_Undefined)
850       continue;
851     SmallString<64> Name;
852     raw_svector_ostream OS(Name);
853     Sym.printName(OS);
854     V.push_back(Saver.save(StringRef(Name)));
855   }
856   return V;
857 }
858 
859 // Returns a vector of globally-visible defined symbol names.
860 std::vector<StringRef> LazyObjectFile::getSymbols() {
861   if (isBitcode(this->MB))
862     return getBitcodeSymbols();
863 
864   unsigned char Size;
865   unsigned char Endian;
866   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
867   if (Size == ELFCLASS32) {
868     if (Endian == ELFDATA2LSB)
869       return getElfSymbols<ELF32LE>();
870     return getElfSymbols<ELF32BE>();
871   }
872   if (Endian == ELFDATA2LSB)
873     return getElfSymbols<ELF64LE>();
874   return getElfSymbols<ELF64BE>();
875 }
876 
877 template void ArchiveFile::parse<ELF32LE>();
878 template void ArchiveFile::parse<ELF32BE>();
879 template void ArchiveFile::parse<ELF64LE>();
880 template void ArchiveFile::parse<ELF64BE>();
881 
882 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &);
883 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &);
884 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &);
885 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &);
886 
887 template void LazyObjectFile::parse<ELF32LE>();
888 template void LazyObjectFile::parse<ELF32BE>();
889 template void LazyObjectFile::parse<ELF64LE>();
890 template void LazyObjectFile::parse<ELF64BE>();
891 
892 template class elf::ELFFileBase<ELF32LE>;
893 template class elf::ELFFileBase<ELF32BE>;
894 template class elf::ELFFileBase<ELF64LE>;
895 template class elf::ELFFileBase<ELF64BE>;
896 
897 template class elf::ObjectFile<ELF32LE>;
898 template class elf::ObjectFile<ELF32BE>;
899 template class elf::ObjectFile<ELF64LE>;
900 template class elf::ObjectFile<ELF64BE>;
901 
902 template class elf::SharedFile<ELF32LE>;
903 template class elf::SharedFile<ELF32BE>;
904 template class elf::SharedFile<ELF64LE>;
905 template class elf::SharedFile<ELF64BE>;
906 
907 template InputFile *BinaryFile::createELF<ELF32LE>();
908 template InputFile *BinaryFile::createELF<ELF32BE>();
909 template InputFile *BinaryFile::createELF<ELF64LE>();
910 template InputFile *BinaryFile::createELF<ELF64BE>();
911