1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 std::vector<ArchiveFile *> elf::archiveFiles; 47 std::vector<BinaryFile *> elf::binaryFiles; 48 std::vector<BitcodeFile *> elf::bitcodeFiles; 49 std::vector<LazyObjFile *> elf::lazyObjFiles; 50 std::vector<ELFFileBase *> elf::objectFiles; 51 std::vector<SharedFile *> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = f->getName(); 63 else 64 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 65 } 66 return std::string(f->toStringCache); 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver.save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 119 /*RequiresNullTerminator=*/false); 120 if (auto ec = mbOrErr.getError()) { 121 error("cannot open " + path + ": " + ec.message()); 122 return None; 123 } 124 125 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 126 MemoryBufferRef mbref = mb->getMemBufferRef(); 127 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 128 129 if (tar) 130 tar->append(relativeToRoot(path), mbref.getBuffer()); 131 return mbref; 132 } 133 134 // All input object files must be for the same architecture 135 // (e.g. it does not make sense to link x86 object files with 136 // MIPS object files.) This function checks for that error. 137 static bool isCompatible(InputFile *file) { 138 if (!file->isElf() && !isa<BitcodeFile>(file)) 139 return true; 140 141 if (file->ekind == config->ekind && file->emachine == config->emachine) { 142 if (config->emachine != EM_MIPS) 143 return true; 144 if (isMipsN32Abi(file) == config->mipsN32Abi) 145 return true; 146 } 147 148 StringRef target = 149 !config->bfdname.empty() ? config->bfdname : config->emulation; 150 if (!target.empty()) { 151 error(toString(file) + " is incompatible with " + target); 152 return false; 153 } 154 155 InputFile *existing; 156 if (!objectFiles.empty()) 157 existing = objectFiles[0]; 158 else if (!sharedFiles.empty()) 159 existing = sharedFiles[0]; 160 else if (!bitcodeFiles.empty()) 161 existing = bitcodeFiles[0]; 162 else 163 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 164 "determine target emulation"); 165 166 error(toString(file) + " is incompatible with " + toString(existing)); 167 return false; 168 } 169 170 template <class ELFT> static void doParseFile(InputFile *file) { 171 if (!isCompatible(file)) 172 return; 173 174 // Binary file 175 if (auto *f = dyn_cast<BinaryFile>(file)) { 176 binaryFiles.push_back(f); 177 f->parse(); 178 return; 179 } 180 181 // .a file 182 if (auto *f = dyn_cast<ArchiveFile>(file)) { 183 archiveFiles.push_back(f); 184 f->parse(); 185 return; 186 } 187 188 // Lazy object file 189 if (auto *f = dyn_cast<LazyObjFile>(file)) { 190 lazyObjFiles.push_back(f); 191 f->parse<ELFT>(); 192 return; 193 } 194 195 if (config->trace) 196 message(toString(file)); 197 198 // .so file 199 if (auto *f = dyn_cast<SharedFile>(file)) { 200 f->parse<ELFT>(); 201 return; 202 } 203 204 // LLVM bitcode file 205 if (auto *f = dyn_cast<BitcodeFile>(file)) { 206 bitcodeFiles.push_back(f); 207 f->parse<ELFT>(); 208 return; 209 } 210 211 // Regular object file 212 objectFiles.push_back(cast<ELFFileBase>(file)); 213 cast<ObjFile<ELFT>>(file)->parse(); 214 } 215 216 // Add symbols in File to the symbol table. 217 void elf::parseFile(InputFile *file) { 218 switch (config->ekind) { 219 case ELF32LEKind: 220 doParseFile<ELF32LE>(file); 221 return; 222 case ELF32BEKind: 223 doParseFile<ELF32BE>(file); 224 return; 225 case ELF64LEKind: 226 doParseFile<ELF64LE>(file); 227 return; 228 case ELF64BEKind: 229 doParseFile<ELF64BE>(file); 230 return; 231 default: 232 llvm_unreachable("unknown ELFT"); 233 } 234 } 235 236 // Concatenates arguments to construct a string representing an error location. 237 static std::string createFileLineMsg(StringRef path, unsigned line) { 238 std::string filename = std::string(path::filename(path)); 239 std::string lineno = ":" + std::to_string(line); 240 if (filename == path) 241 return filename + lineno; 242 return filename + lineno + " (" + path.str() + lineno + ")"; 243 } 244 245 template <class ELFT> 246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 247 InputSectionBase &sec, uint64_t offset) { 248 // In DWARF, functions and variables are stored to different places. 249 // First, lookup a function for a given offset. 250 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 251 return createFileLineMsg(info->FileName, info->Line); 252 253 // If it failed, lookup again as a variable. 254 if (Optional<std::pair<std::string, unsigned>> fileLine = 255 file.getVariableLoc(sym.getName())) 256 return createFileLineMsg(fileLine->first, fileLine->second); 257 258 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 259 return std::string(file.sourceFile); 260 } 261 262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 263 uint64_t offset) { 264 if (kind() != ObjKind) 265 return ""; 266 switch (config->ekind) { 267 default: 268 llvm_unreachable("Invalid kind"); 269 case ELF32LEKind: 270 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 271 case ELF32BEKind: 272 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 273 case ELF64LEKind: 274 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 275 case ELF64BEKind: 276 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 277 } 278 } 279 280 StringRef InputFile::getNameForScript() const { 281 if (archiveName.empty()) 282 return getName(); 283 284 if (nameForScriptCache.empty()) 285 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 286 287 return nameForScriptCache; 288 } 289 290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 291 llvm::call_once(initDwarf, [this]() { 292 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 293 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 294 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 295 [&](Error warning) { 296 warn(getName() + ": " + toString(std::move(warning))); 297 })); 298 }); 299 300 return dwarf.get(); 301 } 302 303 // Returns the pair of file name and line number describing location of data 304 // object (variable, array, etc) definition. 305 template <class ELFT> 306 Optional<std::pair<std::string, unsigned>> 307 ObjFile<ELFT>::getVariableLoc(StringRef name) { 308 return getDwarf()->getVariableLoc(name); 309 } 310 311 // Returns source line information for a given offset 312 // using DWARF debug info. 313 template <class ELFT> 314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 315 uint64_t offset) { 316 // Detect SectionIndex for specified section. 317 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 318 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 319 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 320 if (s == sections[curIndex]) { 321 sectionIndex = curIndex; 322 break; 323 } 324 } 325 326 return getDwarf()->getDILineInfo(offset, sectionIndex); 327 } 328 329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 330 ekind = getELFKind(mb, ""); 331 332 switch (ekind) { 333 case ELF32LEKind: 334 init<ELF32LE>(); 335 break; 336 case ELF32BEKind: 337 init<ELF32BE>(); 338 break; 339 case ELF64LEKind: 340 init<ELF64LE>(); 341 break; 342 case ELF64BEKind: 343 init<ELF64BE>(); 344 break; 345 default: 346 llvm_unreachable("getELFKind"); 347 } 348 } 349 350 template <typename Elf_Shdr> 351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 352 for (const Elf_Shdr &sec : sections) 353 if (sec.sh_type == type) 354 return &sec; 355 return nullptr; 356 } 357 358 template <class ELFT> void ELFFileBase::init() { 359 using Elf_Shdr = typename ELFT::Shdr; 360 using Elf_Sym = typename ELFT::Sym; 361 362 // Initialize trivial attributes. 363 const ELFFile<ELFT> &obj = getObj<ELFT>(); 364 emachine = obj.getHeader().e_machine; 365 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 366 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 367 368 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 369 370 // Find a symbol table. 371 bool isDSO = 372 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 373 const Elf_Shdr *symtabSec = 374 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 375 376 if (!symtabSec) 377 return; 378 379 // Initialize members corresponding to a symbol table. 380 firstGlobal = symtabSec->sh_info; 381 382 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 383 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 384 fatal(toString(this) + ": invalid sh_info in symbol table"); 385 386 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 387 numELFSyms = uint32_t(eSyms.size()); 388 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 389 } 390 391 template <class ELFT> 392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 393 return CHECK( 394 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 395 this); 396 } 397 398 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 399 // Read a section table. justSymbols is usually false. 400 if (this->justSymbols) 401 initializeJustSymbols(); 402 else 403 initializeSections(ignoreComdats); 404 405 // Read a symbol table. 406 initializeSymbols(); 407 } 408 409 // Sections with SHT_GROUP and comdat bits define comdat section groups. 410 // They are identified and deduplicated by group name. This function 411 // returns a group name. 412 template <class ELFT> 413 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 414 const Elf_Shdr &sec) { 415 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 416 if (sec.sh_info >= symbols.size()) 417 fatal(toString(this) + ": invalid symbol index"); 418 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 419 return CHECK(sym.getName(this->stringTable), this); 420 } 421 422 template <class ELFT> 423 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 424 // On a regular link we don't merge sections if -O0 (default is -O1). This 425 // sometimes makes the linker significantly faster, although the output will 426 // be bigger. 427 // 428 // Doing the same for -r would create a problem as it would combine sections 429 // with different sh_entsize. One option would be to just copy every SHF_MERGE 430 // section as is to the output. While this would produce a valid ELF file with 431 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 432 // they see two .debug_str. We could have separate logic for combining 433 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 434 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 435 // logic for -r. 436 if (config->optimize == 0 && !config->relocatable) 437 return false; 438 439 // A mergeable section with size 0 is useless because they don't have 440 // any data to merge. A mergeable string section with size 0 can be 441 // argued as invalid because it doesn't end with a null character. 442 // We'll avoid a mess by handling them as if they were non-mergeable. 443 if (sec.sh_size == 0) 444 return false; 445 446 // Check for sh_entsize. The ELF spec is not clear about the zero 447 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 448 // the section does not hold a table of fixed-size entries". We know 449 // that Rust 1.13 produces a string mergeable section with a zero 450 // sh_entsize. Here we just accept it rather than being picky about it. 451 uint64_t entSize = sec.sh_entsize; 452 if (entSize == 0) 453 return false; 454 if (sec.sh_size % entSize) 455 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 456 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 457 Twine(entSize) + ")"); 458 459 if (sec.sh_flags & SHF_WRITE) 460 fatal(toString(this) + ":(" + name + 461 "): writable SHF_MERGE section is not supported"); 462 463 return true; 464 } 465 466 // This is for --just-symbols. 467 // 468 // --just-symbols is a very minor feature that allows you to link your 469 // output against other existing program, so that if you load both your 470 // program and the other program into memory, your output can refer the 471 // other program's symbols. 472 // 473 // When the option is given, we link "just symbols". The section table is 474 // initialized with null pointers. 475 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 476 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 477 this->sections.resize(sections.size()); 478 } 479 480 // An ELF object file may contain a `.deplibs` section. If it exists, the 481 // section contains a list of library specifiers such as `m` for libm. This 482 // function resolves a given name by finding the first matching library checking 483 // the various ways that a library can be specified to LLD. This ELF extension 484 // is a form of autolinking and is called `dependent libraries`. It is currently 485 // unique to LLVM and lld. 486 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 487 if (!config->dependentLibraries) 488 return; 489 if (fs::exists(specifier)) 490 driver->addFile(specifier, /*withLOption=*/false); 491 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 492 driver->addFile(*s, /*withLOption=*/true); 493 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 494 driver->addFile(*s, /*withLOption=*/true); 495 else 496 error(toString(f) + 497 ": unable to find library from dependent library specifier: " + 498 specifier); 499 } 500 501 // Record the membership of a section group so that in the garbage collection 502 // pass, section group members are kept or discarded as a unit. 503 template <class ELFT> 504 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 505 ArrayRef<typename ELFT::Word> entries) { 506 bool hasAlloc = false; 507 for (uint32_t index : entries.slice(1)) { 508 if (index >= sections.size()) 509 return; 510 if (InputSectionBase *s = sections[index]) 511 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 512 hasAlloc = true; 513 } 514 515 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 516 // collection. See the comment in markLive(). This rule retains .debug_types 517 // and .rela.debug_types. 518 if (!hasAlloc) 519 return; 520 521 // Connect the members in a circular doubly-linked list via 522 // nextInSectionGroup. 523 InputSectionBase *head; 524 InputSectionBase *prev = nullptr; 525 for (uint32_t index : entries.slice(1)) { 526 InputSectionBase *s = sections[index]; 527 if (!s || s == &InputSection::discarded) 528 continue; 529 if (prev) 530 prev->nextInSectionGroup = s; 531 else 532 head = s; 533 prev = s; 534 } 535 if (prev) 536 prev->nextInSectionGroup = head; 537 } 538 539 template <class ELFT> 540 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 541 const ELFFile<ELFT> &obj = this->getObj(); 542 543 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 544 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 545 uint64_t size = objSections.size(); 546 this->sections.resize(size); 547 548 std::vector<ArrayRef<Elf_Word>> selectedGroups; 549 550 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 551 if (this->sections[i] == &InputSection::discarded) 552 continue; 553 const Elf_Shdr &sec = objSections[i]; 554 555 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 556 // if -r is given, we'll let the final link discard such sections. 557 // This is compatible with GNU. 558 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 559 if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE) 560 cgProfileSectionIndex = i; 561 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 562 // We ignore the address-significance table if we know that the object 563 // file was created by objcopy or ld -r. This is because these tools 564 // will reorder the symbols in the symbol table, invalidating the data 565 // in the address-significance table, which refers to symbols by index. 566 if (sec.sh_link != 0) 567 this->addrsigSec = &sec; 568 else if (config->icf == ICFLevel::Safe) 569 warn(toString(this) + 570 ": --icf=safe conservatively ignores " 571 "SHT_LLVM_ADDRSIG [index " + 572 Twine(i) + 573 "] with sh_link=0 " 574 "(likely created using objcopy or ld -r)"); 575 } 576 this->sections[i] = &InputSection::discarded; 577 continue; 578 } 579 580 switch (sec.sh_type) { 581 case SHT_GROUP: { 582 // De-duplicate section groups by their signatures. 583 StringRef signature = getShtGroupSignature(objSections, sec); 584 this->sections[i] = &InputSection::discarded; 585 586 ArrayRef<Elf_Word> entries = 587 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 588 if (entries.empty()) 589 fatal(toString(this) + ": empty SHT_GROUP"); 590 591 Elf_Word flag = entries[0]; 592 if (flag && flag != GRP_COMDAT) 593 fatal(toString(this) + ": unsupported SHT_GROUP format"); 594 595 bool keepGroup = 596 (flag & GRP_COMDAT) == 0 || ignoreComdats || 597 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 598 .second; 599 if (keepGroup) { 600 if (config->relocatable) 601 this->sections[i] = createInputSection(i, sec, shstrtab); 602 selectedGroups.push_back(entries); 603 continue; 604 } 605 606 // Otherwise, discard group members. 607 for (uint32_t secIndex : entries.slice(1)) { 608 if (secIndex >= size) 609 fatal(toString(this) + 610 ": invalid section index in group: " + Twine(secIndex)); 611 this->sections[secIndex] = &InputSection::discarded; 612 } 613 break; 614 } 615 case SHT_SYMTAB_SHNDX: 616 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 617 break; 618 case SHT_SYMTAB: 619 case SHT_STRTAB: 620 case SHT_REL: 621 case SHT_RELA: 622 case SHT_NULL: 623 break; 624 default: 625 this->sections[i] = createInputSection(i, sec, shstrtab); 626 } 627 } 628 629 // We have a second loop. It is used to: 630 // 1) handle SHF_LINK_ORDER sections. 631 // 2) create SHT_REL[A] sections. In some cases the section header index of a 632 // relocation section may be smaller than that of the relocated section. In 633 // such cases, the relocation section would attempt to reference a target 634 // section that has not yet been created. For simplicity, delay creation of 635 // relocation sections until now. 636 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 637 if (this->sections[i] == &InputSection::discarded) 638 continue; 639 const Elf_Shdr &sec = objSections[i]; 640 641 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 642 this->sections[i] = createInputSection(i, sec, shstrtab); 643 644 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 645 // the flag. 646 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 647 continue; 648 649 InputSectionBase *linkSec = nullptr; 650 if (sec.sh_link < this->sections.size()) 651 linkSec = this->sections[sec.sh_link]; 652 if (!linkSec) 653 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 654 655 // A SHF_LINK_ORDER section is discarded if its linked-to section is 656 // discarded. 657 InputSection *isec = cast<InputSection>(this->sections[i]); 658 linkSec->dependentSections.push_back(isec); 659 if (!isa<InputSection>(linkSec)) 660 error("a section " + isec->name + 661 " with SHF_LINK_ORDER should not refer a non-regular section: " + 662 toString(linkSec)); 663 } 664 665 for (ArrayRef<Elf_Word> entries : selectedGroups) 666 handleSectionGroup<ELFT>(this->sections, entries); 667 } 668 669 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 670 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 671 // the input objects have been compiled. 672 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 673 const InputFile *f) { 674 Optional<unsigned> attr = 675 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 676 if (!attr.hasValue()) 677 // If an ABI tag isn't present then it is implicitly given the value of 0 678 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 679 // including some in glibc that don't use FP args (and should have value 3) 680 // don't have the attribute so we do not consider an implicit value of 0 681 // as a clash. 682 return; 683 684 unsigned vfpArgs = attr.getValue(); 685 ARMVFPArgKind arg; 686 switch (vfpArgs) { 687 case ARMBuildAttrs::BaseAAPCS: 688 arg = ARMVFPArgKind::Base; 689 break; 690 case ARMBuildAttrs::HardFPAAPCS: 691 arg = ARMVFPArgKind::VFP; 692 break; 693 case ARMBuildAttrs::ToolChainFPPCS: 694 // Tool chain specific convention that conforms to neither AAPCS variant. 695 arg = ARMVFPArgKind::ToolChain; 696 break; 697 case ARMBuildAttrs::CompatibleFPAAPCS: 698 // Object compatible with all conventions. 699 return; 700 default: 701 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 702 return; 703 } 704 // Follow ld.bfd and error if there is a mix of calling conventions. 705 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 706 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 707 else 708 config->armVFPArgs = arg; 709 } 710 711 // The ARM support in lld makes some use of instructions that are not available 712 // on all ARM architectures. Namely: 713 // - Use of BLX instruction for interworking between ARM and Thumb state. 714 // - Use of the extended Thumb branch encoding in relocation. 715 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 716 // The ARM Attributes section contains information about the architecture chosen 717 // at compile time. We follow the convention that if at least one input object 718 // is compiled with an architecture that supports these features then lld is 719 // permitted to use them. 720 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 721 Optional<unsigned> attr = 722 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 723 if (!attr.hasValue()) 724 return; 725 auto arch = attr.getValue(); 726 switch (arch) { 727 case ARMBuildAttrs::Pre_v4: 728 case ARMBuildAttrs::v4: 729 case ARMBuildAttrs::v4T: 730 // Architectures prior to v5 do not support BLX instruction 731 break; 732 case ARMBuildAttrs::v5T: 733 case ARMBuildAttrs::v5TE: 734 case ARMBuildAttrs::v5TEJ: 735 case ARMBuildAttrs::v6: 736 case ARMBuildAttrs::v6KZ: 737 case ARMBuildAttrs::v6K: 738 config->armHasBlx = true; 739 // Architectures used in pre-Cortex processors do not support 740 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 741 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 742 break; 743 default: 744 // All other Architectures have BLX and extended branch encoding 745 config->armHasBlx = true; 746 config->armJ1J2BranchEncoding = true; 747 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 748 // All Architectures used in Cortex processors with the exception 749 // of v6-M and v6S-M have the MOVT and MOVW instructions. 750 config->armHasMovtMovw = true; 751 break; 752 } 753 } 754 755 // If a source file is compiled with x86 hardware-assisted call flow control 756 // enabled, the generated object file contains feature flags indicating that 757 // fact. This function reads the feature flags and returns it. 758 // 759 // Essentially we want to read a single 32-bit value in this function, but this 760 // function is rather complicated because the value is buried deep inside a 761 // .note.gnu.property section. 762 // 763 // The section consists of one or more NOTE records. Each NOTE record consists 764 // of zero or more type-length-value fields. We want to find a field of a 765 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 766 // the ABI is unnecessarily complicated. 767 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 768 using Elf_Nhdr = typename ELFT::Nhdr; 769 using Elf_Note = typename ELFT::Note; 770 771 uint32_t featuresSet = 0; 772 ArrayRef<uint8_t> data = sec.data(); 773 auto reportFatal = [&](const uint8_t *place, const char *msg) { 774 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 775 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 776 }; 777 while (!data.empty()) { 778 // Read one NOTE record. 779 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 780 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 781 reportFatal(data.data(), "data is too short"); 782 783 Elf_Note note(*nhdr); 784 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 785 data = data.slice(nhdr->getSize()); 786 continue; 787 } 788 789 uint32_t featureAndType = config->emachine == EM_AARCH64 790 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 791 : GNU_PROPERTY_X86_FEATURE_1_AND; 792 793 // Read a body of a NOTE record, which consists of type-length-value fields. 794 ArrayRef<uint8_t> desc = note.getDesc(); 795 while (!desc.empty()) { 796 const uint8_t *place = desc.data(); 797 if (desc.size() < 8) 798 reportFatal(place, "program property is too short"); 799 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 800 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 801 desc = desc.slice(8); 802 if (desc.size() < size) 803 reportFatal(place, "program property is too short"); 804 805 if (type == featureAndType) { 806 // We found a FEATURE_1_AND field. There may be more than one of these 807 // in a .note.gnu.property section, for a relocatable object we 808 // accumulate the bits set. 809 if (size < 4) 810 reportFatal(place, "FEATURE_1_AND entry is too short"); 811 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 812 } 813 814 // Padding is present in the note descriptor, if necessary. 815 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 816 } 817 818 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 819 data = data.slice(nhdr->getSize()); 820 } 821 822 return featuresSet; 823 } 824 825 template <class ELFT> 826 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, StringRef name, 827 const Elf_Shdr &sec) { 828 uint32_t info = sec.sh_info; 829 if (info < this->sections.size()) { 830 InputSectionBase *target = this->sections[info]; 831 832 // Strictly speaking, a relocation section must be included in the 833 // group of the section it relocates. However, LLVM 3.3 and earlier 834 // would fail to do so, so we gracefully handle that case. 835 if (target == &InputSection::discarded) 836 return nullptr; 837 838 if (target != nullptr) 839 return target; 840 } 841 842 error(toString(this) + Twine(": relocation section ") + name + " (index " + 843 Twine(idx) + ") has invalid sh_info (" + Twine(info) + ")"); 844 return nullptr; 845 } 846 847 // Create a regular InputSection class that has the same contents 848 // as a given section. 849 static InputSection *toRegularSection(MergeInputSection *sec) { 850 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 851 sec->data(), sec->name); 852 } 853 854 template <class ELFT> 855 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 856 const Elf_Shdr &sec, 857 StringRef shstrtab) { 858 StringRef name = CHECK(getObj().getSectionName(sec, shstrtab), this); 859 860 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { 861 ARMAttributeParser attributes; 862 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 863 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 864 ? support::little 865 : support::big)) { 866 auto *isec = make<InputSection>(*this, sec, name); 867 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 868 } else { 869 updateSupportedARMFeatures(attributes); 870 updateARMVFPArgs(attributes, this); 871 872 // FIXME: Retain the first attribute section we see. The eglibc ARM 873 // dynamic loaders require the presence of an attribute section for dlopen 874 // to work. In a full implementation we would merge all attribute 875 // sections. 876 if (in.attributes == nullptr) { 877 in.attributes = make<InputSection>(*this, sec, name); 878 return in.attributes; 879 } 880 return &InputSection::discarded; 881 } 882 } 883 884 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { 885 RISCVAttributeParser attributes; 886 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 887 if (Error e = attributes.parse(contents, support::little)) { 888 auto *isec = make<InputSection>(*this, sec, name); 889 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 890 } else { 891 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 892 // present. 893 894 // FIXME: Retain the first attribute section we see. Tools such as 895 // llvm-objdump make use of the attribute section to determine which 896 // standard extensions to enable. In a full implementation we would merge 897 // all attribute sections. 898 if (in.attributes == nullptr) { 899 in.attributes = make<InputSection>(*this, sec, name); 900 return in.attributes; 901 } 902 return &InputSection::discarded; 903 } 904 } 905 906 switch (sec.sh_type) { 907 case SHT_LLVM_DEPENDENT_LIBRARIES: { 908 if (config->relocatable) 909 break; 910 ArrayRef<char> data = 911 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 912 if (!data.empty() && data.back() != '\0') { 913 error(toString(this) + 914 ": corrupted dependent libraries section (unterminated string): " + 915 name); 916 return &InputSection::discarded; 917 } 918 for (const char *d = data.begin(), *e = data.end(); d < e;) { 919 StringRef s(d); 920 addDependentLibrary(s, this); 921 d += s.size() + 1; 922 } 923 return &InputSection::discarded; 924 } 925 case SHT_RELA: 926 case SHT_REL: { 927 // Find a relocation target section and associate this section with that. 928 // Target may have been discarded if it is in a different section group 929 // and the group is discarded, even though it's a violation of the 930 // spec. We handle that situation gracefully by discarding dangling 931 // relocation sections. 932 InputSectionBase *target = getRelocTarget(idx, name, sec); 933 if (!target) 934 return nullptr; 935 936 // ELF spec allows mergeable sections with relocations, but they are 937 // rare, and it is in practice hard to merge such sections by contents, 938 // because applying relocations at end of linking changes section 939 // contents. So, we simply handle such sections as non-mergeable ones. 940 // Degrading like this is acceptable because section merging is optional. 941 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 942 target = toRegularSection(ms); 943 this->sections[sec.sh_info] = target; 944 } 945 946 if (target->relSecIdx != 0) 947 fatal(toString(this) + 948 ": multiple relocation sections to one section are not supported"); 949 target->relSecIdx = idx; 950 951 // Relocation sections are usually removed from the output, so return 952 // `nullptr` for the normal case. However, if -r or --emit-relocs is 953 // specified, we need to copy them to the output. (Some post link analysis 954 // tools specify --emit-relocs to obtain the information.) 955 if (!config->copyRelocs) 956 return nullptr; 957 InputSection *relocSec = make<InputSection>(*this, sec, name); 958 // If the relocated section is discarded (due to /DISCARD/ or 959 // --gc-sections), the relocation section should be discarded as well. 960 target->dependentSections.push_back(relocSec); 961 return relocSec; 962 } 963 } 964 965 if (name.startswith(".n")) { 966 // The GNU linker uses .note.GNU-stack section as a marker indicating 967 // that the code in the object file does not expect that the stack is 968 // executable (in terms of NX bit). If all input files have the marker, 969 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 970 // make the stack non-executable. Most object files have this section as 971 // of 2017. 972 // 973 // But making the stack non-executable is a norm today for security 974 // reasons. Failure to do so may result in a serious security issue. 975 // Therefore, we make LLD always add PT_GNU_STACK unless it is 976 // explicitly told to do otherwise (by -z execstack). Because the stack 977 // executable-ness is controlled solely by command line options, 978 // .note.GNU-stack sections are simply ignored. 979 if (name == ".note.GNU-stack") 980 return &InputSection::discarded; 981 982 // Object files that use processor features such as Intel Control-Flow 983 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 984 // .note.gnu.property section containing a bitfield of feature bits like the 985 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 986 // 987 // Since we merge bitmaps from multiple object files to create a new 988 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 989 // file's .note.gnu.property section. 990 if (name == ".note.gnu.property") { 991 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 992 return &InputSection::discarded; 993 } 994 995 // Split stacks is a feature to support a discontiguous stack, 996 // commonly used in the programming language Go. For the details, 997 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 998 // for split stack will include a .note.GNU-split-stack section. 999 if (name == ".note.GNU-split-stack") { 1000 if (config->relocatable) { 1001 error( 1002 "cannot mix split-stack and non-split-stack in a relocatable link"); 1003 return &InputSection::discarded; 1004 } 1005 this->splitStack = true; 1006 return &InputSection::discarded; 1007 } 1008 1009 // An object file cmpiled for split stack, but where some of the 1010 // functions were compiled with the no_split_stack_attribute will 1011 // include a .note.GNU-no-split-stack section. 1012 if (name == ".note.GNU-no-split-stack") { 1013 this->someNoSplitStack = true; 1014 return &InputSection::discarded; 1015 } 1016 1017 // Strip existing .note.gnu.build-id sections so that the output won't have 1018 // more than one build-id. This is not usually a problem because input 1019 // object files normally don't have .build-id sections, but you can create 1020 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 1021 // against it. 1022 if (name == ".note.gnu.build-id") 1023 return &InputSection::discarded; 1024 } 1025 1026 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1027 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1028 // sections. Drop those sections to avoid duplicate symbol errors. 1029 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1030 // fixed for a while. 1031 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1032 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1033 return &InputSection::discarded; 1034 1035 // The linker merges EH (exception handling) frames and creates a 1036 // .eh_frame_hdr section for runtime. So we handle them with a special 1037 // class. For relocatable outputs, they are just passed through. 1038 if (name == ".eh_frame" && !config->relocatable) 1039 return make<EhInputSection>(*this, sec, name); 1040 1041 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1042 return make<MergeInputSection>(*this, sec, name); 1043 return make<InputSection>(*this, sec, name); 1044 } 1045 1046 // Initialize this->Symbols. this->Symbols is a parallel array as 1047 // its corresponding ELF symbol table. 1048 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1049 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1050 this->symbols.resize(eSyms.size()); 1051 SymbolUnion *locals = 1052 firstGlobal == 0 1053 ? nullptr 1054 : getSpecificAllocSingleton<SymbolUnion>().Allocate(firstGlobal); 1055 1056 for (size_t i = 0; i != firstGlobal; ++i) { 1057 const Elf_Sym &eSym = eSyms[i]; 1058 uint32_t secIdx = getSectionIndex(eSym); 1059 if (secIdx >= this->sections.size()) 1060 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1061 if (eSym.getBinding() != STB_LOCAL) 1062 error(toString(this) + ": non-local symbol (" + Twine(i) + 1063 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1064 ")"); 1065 1066 InputSectionBase *sec = this->sections[secIdx]; 1067 uint8_t type = eSym.getType(); 1068 if (type == STT_FILE) 1069 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1070 if (this->stringTable.size() <= eSym.st_name) 1071 fatal(toString(this) + ": invalid symbol name offset"); 1072 StringRefZ name = this->stringTable.data() + eSym.st_name; 1073 1074 this->symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1075 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1076 new (this->symbols[i]) 1077 Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1078 /*discardedSecIdx=*/secIdx); 1079 else 1080 new (this->symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type, 1081 eSym.st_value, eSym.st_size, sec); 1082 } 1083 1084 // Some entries have been filled by LazyObjFile. 1085 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1086 if (!this->symbols[i]) 1087 this->symbols[i] = 1088 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1089 1090 // Perform symbol resolution on non-local symbols. 1091 SmallVector<unsigned, 32> undefineds; 1092 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1093 const Elf_Sym &eSym = eSyms[i]; 1094 uint8_t binding = eSym.getBinding(); 1095 if (binding == STB_LOCAL) { 1096 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1097 ") found at index >= .symtab's sh_info (" + 1098 Twine(firstGlobal) + ")"); 1099 continue; 1100 } 1101 uint32_t secIdx = getSectionIndex(eSym); 1102 if (secIdx >= this->sections.size()) 1103 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1104 InputSectionBase *sec = this->sections[secIdx]; 1105 uint8_t stOther = eSym.st_other; 1106 uint8_t type = eSym.getType(); 1107 uint64_t value = eSym.st_value; 1108 uint64_t size = eSym.st_size; 1109 1110 if (eSym.st_shndx == SHN_UNDEF) { 1111 undefineds.push_back(i); 1112 continue; 1113 } 1114 1115 Symbol *sym = this->symbols[i]; 1116 const StringRef name = sym->getName(); 1117 if (eSym.st_shndx == SHN_COMMON) { 1118 if (value == 0 || value >= UINT32_MAX) 1119 fatal(toString(this) + ": common symbol '" + name + 1120 "' has invalid alignment: " + Twine(value)); 1121 sym->resolve( 1122 CommonSymbol{this, name, binding, stOther, type, value, size}); 1123 continue; 1124 } 1125 1126 // If a defined symbol is in a discarded section, handle it as if it 1127 // were an undefined symbol. Such symbol doesn't comply with the 1128 // standard, but in practice, a .eh_frame often directly refer 1129 // COMDAT member sections, and if a comdat group is discarded, some 1130 // defined symbol in a .eh_frame becomes dangling symbols. 1131 if (sec == &InputSection::discarded) { 1132 Undefined und{this, name, binding, stOther, type, secIdx}; 1133 // !ArchiveFile::parsed or LazyObjFile::extracted means that the file 1134 // containing this object has not finished processing, i.e. this symbol is 1135 // a result of a lazy symbol extract. We should demote the lazy symbol to 1136 // an Undefined so that any relocations outside of the group to it will 1137 // trigger a discarded section error. 1138 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1139 !cast<ArchiveFile>(sym->file)->parsed) || 1140 (sym->symbolKind == Symbol::LazyObjectKind && 1141 cast<LazyObjFile>(sym->file)->extracted)) { 1142 sym->replace(und); 1143 // Prevent LTO from internalizing the symbol in case there is a 1144 // reference to this symbol from this file. 1145 sym->isUsedInRegularObj = true; 1146 } else 1147 sym->resolve(und); 1148 continue; 1149 } 1150 1151 // Handle global defined symbols. 1152 if (binding == STB_GLOBAL || binding == STB_WEAK || 1153 binding == STB_GNU_UNIQUE) { 1154 sym->resolve( 1155 Defined{this, name, binding, stOther, type, value, size, sec}); 1156 continue; 1157 } 1158 1159 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1160 } 1161 1162 // Undefined symbols (excluding those defined relative to non-prevailing 1163 // sections) can trigger recursive extract. Process defined symbols first so 1164 // that the relative order between a defined symbol and an undefined symbol 1165 // does not change the symbol resolution behavior. In addition, a set of 1166 // interconnected symbols will all be resolved to the same file, instead of 1167 // being resolved to different files. 1168 for (unsigned i : undefineds) { 1169 const Elf_Sym &eSym = eSyms[i]; 1170 Symbol *sym = this->symbols[i]; 1171 sym->resolve(Undefined{this, sym->getName(), eSym.getBinding(), 1172 eSym.st_other, eSym.getType()}); 1173 sym->referenced = true; 1174 } 1175 } 1176 1177 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1178 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1179 file(std::move(file)) {} 1180 1181 void ArchiveFile::parse() { 1182 for (const Archive::Symbol &sym : file->symbols()) 1183 symtab->addSymbol(LazyArchive{*this, sym}); 1184 1185 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1186 // archive has been processed. 1187 parsed = true; 1188 } 1189 1190 // Returns a buffer pointing to a member file containing a given symbol. 1191 void ArchiveFile::extract(const Archive::Symbol &sym) { 1192 Archive::Child c = 1193 CHECK(sym.getMember(), toString(this) + 1194 ": could not get the member for symbol " + 1195 toELFString(sym)); 1196 1197 if (!seen.insert(c.getChildOffset()).second) 1198 return; 1199 1200 MemoryBufferRef mb = 1201 CHECK(c.getMemoryBufferRef(), 1202 toString(this) + 1203 ": could not get the buffer for the member defining symbol " + 1204 toELFString(sym)); 1205 1206 if (tar && c.getParent()->isThin()) 1207 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1208 1209 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1210 file->groupId = groupId; 1211 parseFile(file); 1212 } 1213 1214 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1215 // A tentative definition will be promoted to a global definition if there are 1216 // no non-tentative definitions to dominate it. When we hold a tentative 1217 // definition to a symbol and are inspecting archive members for inclusion 1218 // there are 2 ways we can proceed: 1219 // 1220 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1221 // tentative to real definition has already happened) and not inspect 1222 // archive members for Global/Weak definitions to replace the tentative 1223 // definition. An archive member would only be included if it satisfies some 1224 // other undefined symbol. This is the behavior Gold uses. 1225 // 1226 // 2) Consider the tentative definition as still undefined (ie the promotion to 1227 // a real definition happens only after all symbol resolution is done). 1228 // The linker searches archive members for STB_GLOBAL definitions to 1229 // replace the tentative definition with. This is the behavior used by 1230 // GNU ld. 1231 // 1232 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1233 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1234 // (pre F90) FORTRAN code that is packaged into an archive. 1235 // 1236 // The following functions search archive members for definitions to replace 1237 // tentative definitions (implementing behavior 2). 1238 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1239 StringRef archiveName) { 1240 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1241 for (const irsymtab::Reader::SymbolRef &sym : 1242 symtabFile.TheReader.symbols()) { 1243 if (sym.isGlobal() && sym.getName() == symName) 1244 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1245 } 1246 return false; 1247 } 1248 1249 template <class ELFT> 1250 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1251 StringRef archiveName) { 1252 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1253 StringRef stringtable = obj->getStringTable(); 1254 1255 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1256 Expected<StringRef> name = sym.getName(stringtable); 1257 if (name && name.get() == symName) 1258 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1259 !sym.isCommon(); 1260 } 1261 return false; 1262 } 1263 1264 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1265 StringRef archiveName) { 1266 switch (getELFKind(mb, archiveName)) { 1267 case ELF32LEKind: 1268 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1269 case ELF32BEKind: 1270 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1271 case ELF64LEKind: 1272 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1273 case ELF64BEKind: 1274 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1275 default: 1276 llvm_unreachable("getELFKind"); 1277 } 1278 } 1279 1280 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) { 1281 Archive::Child c = 1282 CHECK(sym.getMember(), toString(this) + 1283 ": could not get the member for symbol " + 1284 toELFString(sym)); 1285 MemoryBufferRef mb = 1286 CHECK(c.getMemoryBufferRef(), 1287 toString(this) + 1288 ": could not get the buffer for the member defining symbol " + 1289 toELFString(sym)); 1290 1291 if (isBitcode(mb)) 1292 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1293 1294 return isNonCommonDef(mb, sym.getName(), getName()); 1295 } 1296 1297 size_t ArchiveFile::getMemberCount() const { 1298 size_t count = 0; 1299 Error err = Error::success(); 1300 for (const Archive::Child &c : file->children(err)) { 1301 (void)c; 1302 ++count; 1303 } 1304 // This function is used by --print-archive-stats=, where an error does not 1305 // really matter. 1306 consumeError(std::move(err)); 1307 return count; 1308 } 1309 1310 unsigned SharedFile::vernauxNum; 1311 1312 // Parse the version definitions in the object file if present, and return a 1313 // vector whose nth element contains a pointer to the Elf_Verdef for version 1314 // identifier n. Version identifiers that are not definitions map to nullptr. 1315 template <typename ELFT> 1316 static SmallVector<const void *, 0> 1317 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1318 if (!sec) 1319 return {}; 1320 1321 // Build the Verdefs array by following the chain of Elf_Verdef objects 1322 // from the start of the .gnu.version_d section. 1323 SmallVector<const void *, 0> verdefs; 1324 const uint8_t *verdef = base + sec->sh_offset; 1325 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1326 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1327 verdef += curVerdef->vd_next; 1328 unsigned verdefIndex = curVerdef->vd_ndx; 1329 if (verdefIndex >= verdefs.size()) 1330 verdefs.resize(verdefIndex + 1); 1331 verdefs[verdefIndex] = curVerdef; 1332 } 1333 return verdefs; 1334 } 1335 1336 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1337 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1338 // implement sophisticated error checking like in llvm-readobj because the value 1339 // of such diagnostics is low. 1340 template <typename ELFT> 1341 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1342 const typename ELFT::Shdr *sec) { 1343 if (!sec) 1344 return {}; 1345 std::vector<uint32_t> verneeds; 1346 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1347 const uint8_t *verneedBuf = data.begin(); 1348 for (unsigned i = 0; i != sec->sh_info; ++i) { 1349 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1350 fatal(toString(this) + " has an invalid Verneed"); 1351 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1352 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1353 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1354 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1355 fatal(toString(this) + " has an invalid Vernaux"); 1356 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1357 if (aux->vna_name >= this->stringTable.size()) 1358 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1359 uint16_t version = aux->vna_other & VERSYM_VERSION; 1360 if (version >= verneeds.size()) 1361 verneeds.resize(version + 1); 1362 verneeds[version] = aux->vna_name; 1363 vernauxBuf += aux->vna_next; 1364 } 1365 verneedBuf += vn->vn_next; 1366 } 1367 return verneeds; 1368 } 1369 1370 // We do not usually care about alignments of data in shared object 1371 // files because the loader takes care of it. However, if we promote a 1372 // DSO symbol to point to .bss due to copy relocation, we need to keep 1373 // the original alignment requirements. We infer it in this function. 1374 template <typename ELFT> 1375 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1376 const typename ELFT::Sym &sym) { 1377 uint64_t ret = UINT64_MAX; 1378 if (sym.st_value) 1379 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1380 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1381 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1382 return (ret > UINT32_MAX) ? 0 : ret; 1383 } 1384 1385 // Fully parse the shared object file. 1386 // 1387 // This function parses symbol versions. If a DSO has version information, 1388 // the file has a ".gnu.version_d" section which contains symbol version 1389 // definitions. Each symbol is associated to one version through a table in 1390 // ".gnu.version" section. That table is a parallel array for the symbol 1391 // table, and each table entry contains an index in ".gnu.version_d". 1392 // 1393 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1394 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1395 // ".gnu.version_d". 1396 // 1397 // The file format for symbol versioning is perhaps a bit more complicated 1398 // than necessary, but you can easily understand the code if you wrap your 1399 // head around the data structure described above. 1400 template <class ELFT> void SharedFile::parse() { 1401 using Elf_Dyn = typename ELFT::Dyn; 1402 using Elf_Shdr = typename ELFT::Shdr; 1403 using Elf_Sym = typename ELFT::Sym; 1404 using Elf_Verdef = typename ELFT::Verdef; 1405 using Elf_Versym = typename ELFT::Versym; 1406 1407 ArrayRef<Elf_Dyn> dynamicTags; 1408 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1409 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1410 1411 const Elf_Shdr *versymSec = nullptr; 1412 const Elf_Shdr *verdefSec = nullptr; 1413 const Elf_Shdr *verneedSec = nullptr; 1414 1415 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1416 for (const Elf_Shdr &sec : sections) { 1417 switch (sec.sh_type) { 1418 default: 1419 continue; 1420 case SHT_DYNAMIC: 1421 dynamicTags = 1422 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1423 break; 1424 case SHT_GNU_versym: 1425 versymSec = &sec; 1426 break; 1427 case SHT_GNU_verdef: 1428 verdefSec = &sec; 1429 break; 1430 case SHT_GNU_verneed: 1431 verneedSec = &sec; 1432 break; 1433 } 1434 } 1435 1436 if (versymSec && numELFSyms == 0) { 1437 error("SHT_GNU_versym should be associated with symbol table"); 1438 return; 1439 } 1440 1441 // Search for a DT_SONAME tag to initialize this->soName. 1442 for (const Elf_Dyn &dyn : dynamicTags) { 1443 if (dyn.d_tag == DT_NEEDED) { 1444 uint64_t val = dyn.getVal(); 1445 if (val >= this->stringTable.size()) 1446 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1447 dtNeeded.push_back(this->stringTable.data() + val); 1448 } else if (dyn.d_tag == DT_SONAME) { 1449 uint64_t val = dyn.getVal(); 1450 if (val >= this->stringTable.size()) 1451 fatal(toString(this) + ": invalid DT_SONAME entry"); 1452 soName = this->stringTable.data() + val; 1453 } 1454 } 1455 1456 // DSOs are uniquified not by filename but by soname. 1457 DenseMap<StringRef, SharedFile *>::iterator it; 1458 bool wasInserted; 1459 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1460 1461 // If a DSO appears more than once on the command line with and without 1462 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1463 // user can add an extra DSO with --no-as-needed to force it to be added to 1464 // the dependency list. 1465 it->second->isNeeded |= isNeeded; 1466 if (!wasInserted) 1467 return; 1468 1469 sharedFiles.push_back(this); 1470 1471 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1472 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1473 1474 // Parse ".gnu.version" section which is a parallel array for the symbol 1475 // table. If a given file doesn't have a ".gnu.version" section, we use 1476 // VER_NDX_GLOBAL. 1477 size_t size = numELFSyms - firstGlobal; 1478 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1479 if (versymSec) { 1480 ArrayRef<Elf_Versym> versym = 1481 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1482 this) 1483 .slice(firstGlobal); 1484 for (size_t i = 0; i < size; ++i) 1485 versyms[i] = versym[i].vs_index; 1486 } 1487 1488 // System libraries can have a lot of symbols with versions. Using a 1489 // fixed buffer for computing the versions name (foo@ver) can save a 1490 // lot of allocations. 1491 SmallString<0> versionedNameBuffer; 1492 1493 // Add symbols to the symbol table. 1494 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1495 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1496 const Elf_Sym &sym = syms[i]; 1497 1498 // ELF spec requires that all local symbols precede weak or global 1499 // symbols in each symbol table, and the index of first non-local symbol 1500 // is stored to sh_info. If a local symbol appears after some non-local 1501 // symbol, that's a violation of the spec. 1502 StringRef name = CHECK(sym.getName(this->stringTable), this); 1503 if (sym.getBinding() == STB_LOCAL) { 1504 warn("found local symbol '" + name + 1505 "' in global part of symbol table in file " + toString(this)); 1506 continue; 1507 } 1508 1509 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1510 if (sym.isUndefined()) { 1511 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1512 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1513 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1514 if (idx >= verneeds.size()) { 1515 error("corrupt input file: version need index " + Twine(idx) + 1516 " for symbol " + name + " is out of bounds\n>>> defined in " + 1517 toString(this)); 1518 continue; 1519 } 1520 StringRef verName = this->stringTable.data() + verneeds[idx]; 1521 versionedNameBuffer.clear(); 1522 name = 1523 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1524 } 1525 Symbol *s = symtab->addSymbol( 1526 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1527 s->exportDynamic = true; 1528 if (s->isUndefined() && sym.getBinding() != STB_WEAK && 1529 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1530 requiredSymbols.push_back(s); 1531 continue; 1532 } 1533 1534 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1535 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1536 // workaround for this bug. 1537 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1538 name == "_gp_disp") 1539 continue; 1540 1541 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1542 if (!(versyms[i] & VERSYM_HIDDEN)) { 1543 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1544 sym.st_other, sym.getType(), sym.st_value, 1545 sym.st_size, alignment, idx}); 1546 } 1547 1548 // Also add the symbol with the versioned name to handle undefined symbols 1549 // with explicit versions. 1550 if (idx == VER_NDX_GLOBAL) 1551 continue; 1552 1553 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1554 error("corrupt input file: version definition index " + Twine(idx) + 1555 " for symbol " + name + " is out of bounds\n>>> defined in " + 1556 toString(this)); 1557 continue; 1558 } 1559 1560 StringRef verName = 1561 this->stringTable.data() + 1562 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1563 versionedNameBuffer.clear(); 1564 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1565 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1566 sym.st_other, sym.getType(), sym.st_value, 1567 sym.st_size, alignment, idx}); 1568 } 1569 } 1570 1571 static ELFKind getBitcodeELFKind(const Triple &t) { 1572 if (t.isLittleEndian()) 1573 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1574 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1575 } 1576 1577 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1578 switch (t.getArch()) { 1579 case Triple::aarch64: 1580 case Triple::aarch64_be: 1581 return EM_AARCH64; 1582 case Triple::amdgcn: 1583 case Triple::r600: 1584 return EM_AMDGPU; 1585 case Triple::arm: 1586 case Triple::thumb: 1587 return EM_ARM; 1588 case Triple::avr: 1589 return EM_AVR; 1590 case Triple::hexagon: 1591 return EM_HEXAGON; 1592 case Triple::mips: 1593 case Triple::mipsel: 1594 case Triple::mips64: 1595 case Triple::mips64el: 1596 return EM_MIPS; 1597 case Triple::msp430: 1598 return EM_MSP430; 1599 case Triple::ppc: 1600 case Triple::ppcle: 1601 return EM_PPC; 1602 case Triple::ppc64: 1603 case Triple::ppc64le: 1604 return EM_PPC64; 1605 case Triple::riscv32: 1606 case Triple::riscv64: 1607 return EM_RISCV; 1608 case Triple::x86: 1609 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1610 case Triple::x86_64: 1611 return EM_X86_64; 1612 default: 1613 error(path + ": could not infer e_machine from bitcode target triple " + 1614 t.str()); 1615 return EM_NONE; 1616 } 1617 } 1618 1619 static uint8_t getOsAbi(const Triple &t) { 1620 switch (t.getOS()) { 1621 case Triple::AMDHSA: 1622 return ELF::ELFOSABI_AMDGPU_HSA; 1623 case Triple::AMDPAL: 1624 return ELF::ELFOSABI_AMDGPU_PAL; 1625 case Triple::Mesa3D: 1626 return ELF::ELFOSABI_AMDGPU_MESA3D; 1627 default: 1628 return ELF::ELFOSABI_NONE; 1629 } 1630 } 1631 1632 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1633 uint64_t offsetInArchive) 1634 : InputFile(BitcodeKind, mb) { 1635 this->archiveName = archiveName; 1636 1637 std::string path = mb.getBufferIdentifier().str(); 1638 if (config->thinLTOIndexOnly) 1639 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1640 1641 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1642 // name. If two archives define two members with the same name, this 1643 // causes a collision which result in only one of the objects being taken 1644 // into consideration at LTO time (which very likely causes undefined 1645 // symbols later in the link stage). So we append file offset to make 1646 // filename unique. 1647 StringRef name = 1648 archiveName.empty() 1649 ? saver.save(path) 1650 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1651 utostr(offsetInArchive) + ")"); 1652 MemoryBufferRef mbref(mb.getBuffer(), name); 1653 1654 obj = CHECK(lto::InputFile::create(mbref), this); 1655 1656 Triple t(obj->getTargetTriple()); 1657 ekind = getBitcodeELFKind(t); 1658 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1659 osabi = getOsAbi(t); 1660 } 1661 1662 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1663 switch (gvVisibility) { 1664 case GlobalValue::DefaultVisibility: 1665 return STV_DEFAULT; 1666 case GlobalValue::HiddenVisibility: 1667 return STV_HIDDEN; 1668 case GlobalValue::ProtectedVisibility: 1669 return STV_PROTECTED; 1670 } 1671 llvm_unreachable("unknown visibility"); 1672 } 1673 1674 template <class ELFT> 1675 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1676 const lto::InputFile::Symbol &objSym, 1677 BitcodeFile &f) { 1678 StringRef name = saver.save(objSym.getName()); 1679 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1680 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1681 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1682 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1683 1684 int c = objSym.getComdatIndex(); 1685 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1686 Undefined newSym(&f, name, binding, visibility, type); 1687 if (canOmitFromDynSym) 1688 newSym.exportDynamic = false; 1689 Symbol *ret = symtab->addSymbol(newSym); 1690 ret->referenced = true; 1691 return ret; 1692 } 1693 1694 if (objSym.isCommon()) 1695 return symtab->addSymbol( 1696 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1697 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1698 1699 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1700 if (canOmitFromDynSym) 1701 newSym.exportDynamic = false; 1702 return symtab->addSymbol(newSym); 1703 } 1704 1705 template <class ELFT> void BitcodeFile::parse() { 1706 std::vector<bool> keptComdats; 1707 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1708 keptComdats.push_back( 1709 s.second == Comdat::NoDeduplicate || 1710 symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1711 .second); 1712 } 1713 1714 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1715 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1716 1717 for (auto l : obj->getDependentLibraries()) 1718 addDependentLibrary(l, this); 1719 } 1720 1721 void BinaryFile::parse() { 1722 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1723 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1724 8, data, ".data"); 1725 sections.push_back(section); 1726 1727 // For each input file foo that is embedded to a result as a binary 1728 // blob, we define _binary_foo_{start,end,size} symbols, so that 1729 // user programs can access blobs by name. Non-alphanumeric 1730 // characters in a filename are replaced with underscore. 1731 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1732 for (size_t i = 0; i < s.size(); ++i) 1733 if (!isAlnum(s[i])) 1734 s[i] = '_'; 1735 1736 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1737 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1738 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1739 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1740 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1741 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1742 } 1743 1744 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1745 uint64_t offsetInArchive) { 1746 if (isBitcode(mb)) 1747 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1748 1749 switch (getELFKind(mb, archiveName)) { 1750 case ELF32LEKind: 1751 return make<ObjFile<ELF32LE>>(mb, archiveName); 1752 case ELF32BEKind: 1753 return make<ObjFile<ELF32BE>>(mb, archiveName); 1754 case ELF64LEKind: 1755 return make<ObjFile<ELF64LE>>(mb, archiveName); 1756 case ELF64BEKind: 1757 return make<ObjFile<ELF64BE>>(mb, archiveName); 1758 default: 1759 llvm_unreachable("getELFKind"); 1760 } 1761 } 1762 1763 void LazyObjFile::extract() { 1764 if (extracted) 1765 return; 1766 extracted = true; 1767 1768 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1769 file->groupId = groupId; 1770 1771 // Copy symbol vector so that the new InputFile doesn't have to 1772 // insert the same defined symbols to the symbol table again. 1773 file->symbols = std::move(symbols); 1774 1775 parseFile(file); 1776 } 1777 1778 template <class ELFT> void LazyObjFile::parse() { 1779 using Elf_Sym = typename ELFT::Sym; 1780 1781 // A lazy object file wraps either a bitcode file or an ELF file. 1782 if (isBitcode(this->mb)) { 1783 std::unique_ptr<lto::InputFile> obj = 1784 CHECK(lto::InputFile::create(this->mb), this); 1785 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1786 if (sym.isUndefined()) 1787 continue; 1788 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1789 } 1790 return; 1791 } 1792 1793 if (getELFKind(this->mb, archiveName) != config->ekind) { 1794 error("incompatible file: " + this->mb.getBufferIdentifier()); 1795 return; 1796 } 1797 1798 // Find a symbol table. 1799 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1800 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1801 1802 for (const typename ELFT::Shdr &sec : sections) { 1803 if (sec.sh_type != SHT_SYMTAB) 1804 continue; 1805 1806 // A symbol table is found. 1807 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1808 uint32_t firstGlobal = sec.sh_info; 1809 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1810 this->symbols.resize(eSyms.size()); 1811 1812 // Get existing symbols or insert placeholder symbols. 1813 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1814 if (eSyms[i].st_shndx != SHN_UNDEF) 1815 this->symbols[i] = 1816 symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1817 1818 // Replace existing symbols with LazyObject symbols. 1819 // 1820 // resolve() may trigger this->extract() if an existing symbol is an 1821 // undefined symbol. If that happens, this LazyObjFile has served 1822 // its purpose, and we can exit from the loop early. 1823 for (Symbol *sym : this->symbols) { 1824 if (!sym) 1825 continue; 1826 sym->resolve(LazyObject{*this, sym->getName()}); 1827 1828 // If extracted, stop iterating because this->symbols has been transferred 1829 // to the instantiated ObjFile. 1830 if (extracted) 1831 return; 1832 } 1833 return; 1834 } 1835 } 1836 1837 bool LazyObjFile::shouldExtractForCommon(const StringRef &name) { 1838 if (isBitcode(mb)) 1839 return isBitcodeNonCommonDef(mb, name, archiveName); 1840 1841 return isNonCommonDef(mb, name, archiveName); 1842 } 1843 1844 std::string elf::replaceThinLTOSuffix(StringRef path) { 1845 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1846 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1847 1848 if (path.consume_back(suffix)) 1849 return (path + repl).str(); 1850 return std::string(path); 1851 } 1852 1853 template void BitcodeFile::parse<ELF32LE>(); 1854 template void BitcodeFile::parse<ELF32BE>(); 1855 template void BitcodeFile::parse<ELF64LE>(); 1856 template void BitcodeFile::parse<ELF64BE>(); 1857 1858 template void LazyObjFile::parse<ELF32LE>(); 1859 template void LazyObjFile::parse<ELF32BE>(); 1860 template void LazyObjFile::parse<ELF64LE>(); 1861 template void LazyObjFile::parse<ELF64BE>(); 1862 1863 template class elf::ObjFile<ELF32LE>; 1864 template class elf::ObjFile<ELF32BE>; 1865 template class elf::ObjFile<ELF64LE>; 1866 template class elf::ObjFile<ELF64BE>; 1867 1868 template void SharedFile::parse<ELF32LE>(); 1869 template void SharedFile::parse<ELF32BE>(); 1870 template void SharedFile::parse<ELF64LE>(); 1871 template void SharedFile::parse<ELF64BE>(); 1872