1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "Error.h" 13 #include "InputSection.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Bitcode/ReaderWriter.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/IR/LLVMContext.h" 20 #include "llvm/IR/Module.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 using namespace llvm; 24 using namespace llvm::ELF; 25 using namespace llvm::object; 26 using namespace llvm::sys::fs; 27 28 using namespace lld; 29 using namespace lld::elf; 30 31 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 32 std::string elf::getFilename(const InputFile *F) { 33 if (!F) 34 return "(internal)"; 35 if (!F->ArchiveName.empty()) 36 return (F->ArchiveName + "(" + F->getName() + ")").str(); 37 return F->getName(); 38 } 39 40 template <class ELFT> 41 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 42 std::error_code EC; 43 ELFFile<ELFT> F(MB.getBuffer(), EC); 44 if (EC) 45 error(EC, "failed to read " + MB.getBufferIdentifier()); 46 return F; 47 } 48 49 template <class ELFT> static ELFKind getELFKind() { 50 if (ELFT::TargetEndianness == support::little) 51 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 52 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 53 } 54 55 template <class ELFT> 56 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 57 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { 58 EKind = getELFKind<ELFT>(); 59 EMachine = ELFObj.getHeader()->e_machine; 60 } 61 62 template <class ELFT> 63 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 64 if (!Symtab) 65 return Elf_Sym_Range(nullptr, nullptr); 66 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 67 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 68 uint32_t FirstNonLocal = Symtab->sh_info; 69 if (FirstNonLocal > NumSymbols) 70 fatal(getFilename(this) + ": invalid sh_info in symbol table"); 71 72 if (OnlyGlobals) 73 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 74 return makeArrayRef(Syms.begin(), Syms.end()); 75 } 76 77 template <class ELFT> 78 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 79 uint32_t I = Sym.st_shndx; 80 if (I == ELF::SHN_XINDEX) 81 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 82 if (I >= ELF::SHN_LORESERVE) 83 return 0; 84 return I; 85 } 86 87 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 88 if (!Symtab) 89 return; 90 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 91 } 92 93 template <class ELFT> 94 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 95 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 96 97 template <class ELFT> 98 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 99 if (!this->Symtab) 100 return this->SymbolBodies; 101 uint32_t FirstNonLocal = this->Symtab->sh_info; 102 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 103 } 104 105 template <class ELFT> 106 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 107 if (!this->Symtab) 108 return this->SymbolBodies; 109 uint32_t FirstNonLocal = this->Symtab->sh_info; 110 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 111 } 112 113 template <class ELFT> 114 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 115 if (!this->Symtab) 116 return this->SymbolBodies; 117 return makeArrayRef(this->SymbolBodies).slice(1); 118 } 119 120 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 121 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 122 return MipsOptions->Reginfo->ri_gp_value; 123 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 124 return MipsReginfo->Reginfo->ri_gp_value; 125 return 0; 126 } 127 128 template <class ELFT> 129 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 130 // Read section and symbol tables. 131 initializeSections(ComdatGroups); 132 initializeSymbols(); 133 } 134 135 // Sections with SHT_GROUP and comdat bits define comdat section groups. 136 // They are identified and deduplicated by group name. This function 137 // returns a group name. 138 template <class ELFT> 139 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 140 const ELFFile<ELFT> &Obj = this->ELFObj; 141 const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); 142 const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); 143 StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); 144 return check(Sym->getName(Strtab)); 145 } 146 147 template <class ELFT> 148 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 149 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 150 const ELFFile<ELFT> &Obj = this->ELFObj; 151 ArrayRef<Elf_Word> Entries = 152 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 153 if (Entries.empty() || Entries[0] != GRP_COMDAT) 154 fatal(getFilename(this) + ": unsupported SHT_GROUP format"); 155 return Entries.slice(1); 156 } 157 158 template <class ELFT> 159 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 160 // We don't merge sections if -O0 (default is -O1). This makes sometimes 161 // the linker significantly faster, although the output will be bigger. 162 if (Config->Optimize == 0) 163 return false; 164 165 uintX_t Flags = Sec.sh_flags; 166 if (!(Flags & SHF_MERGE)) 167 return false; 168 if (Flags & SHF_WRITE) 169 fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); 170 uintX_t EntSize = Sec.sh_entsize; 171 if (!EntSize || Sec.sh_size % EntSize) 172 fatal(getFilename(this) + 173 ": SHF_MERGE section size must be a multiple of sh_entsize"); 174 175 // Don't try to merge if the alignment is larger than the sh_entsize and this 176 // is not SHF_STRINGS. 177 // 178 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 179 // It would be equivalent for the producer of the .o to just set a larger 180 // sh_entsize. 181 if (Flags & SHF_STRINGS) 182 return true; 183 184 return Sec.sh_addralign <= EntSize; 185 } 186 187 template <class ELFT> 188 void elf::ObjectFile<ELFT>::initializeSections( 189 DenseSet<StringRef> &ComdatGroups) { 190 uint64_t Size = this->ELFObj.getNumSections(); 191 Sections.resize(Size); 192 unsigned I = -1; 193 const ELFFile<ELFT> &Obj = this->ELFObj; 194 for (const Elf_Shdr &Sec : Obj.sections()) { 195 ++I; 196 if (Sections[I] == &InputSection<ELFT>::Discarded) 197 continue; 198 199 switch (Sec.sh_type) { 200 case SHT_GROUP: 201 Sections[I] = &InputSection<ELFT>::Discarded; 202 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 203 continue; 204 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 205 if (SecIndex >= Size) 206 fatal(getFilename(this) + ": invalid section index in group: " + 207 Twine(SecIndex)); 208 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 209 } 210 break; 211 case SHT_SYMTAB: 212 this->Symtab = &Sec; 213 break; 214 case SHT_SYMTAB_SHNDX: 215 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 216 break; 217 case SHT_STRTAB: 218 case SHT_NULL: 219 break; 220 case SHT_RELA: 221 case SHT_REL: { 222 // This section contains relocation information. 223 // If -r is given, we do not interpret or apply relocation 224 // but just copy relocation sections to output. 225 if (Config->Relocatable) { 226 Sections[I] = new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec); 227 break; 228 } 229 230 // Find the relocation target section and associate this 231 // section with it. 232 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 233 if (!Target) 234 break; 235 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 236 S->RelocSections.push_back(&Sec); 237 break; 238 } 239 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 240 if (S->RelocSection) 241 fatal( 242 getFilename(this) + 243 ": multiple relocation sections to .eh_frame are not supported"); 244 S->RelocSection = &Sec; 245 break; 246 } 247 fatal(getFilename(this) + 248 ": relocations pointing to SHF_MERGE are not supported"); 249 } 250 case SHT_ARM_ATTRIBUTES: 251 // FIXME: ARM meta-data section. At present attributes are ignored, 252 // they can be used to reason about object compatibility. 253 Sections[I] = &InputSection<ELFT>::Discarded; 254 break; 255 case SHT_MIPS_REGINFO: 256 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec)); 257 Sections[I] = MipsReginfo.get(); 258 break; 259 case SHT_MIPS_OPTIONS: 260 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec)); 261 Sections[I] = MipsOptions.get(); 262 break; 263 default: 264 Sections[I] = createInputSection(Sec); 265 } 266 } 267 } 268 269 template <class ELFT> 270 InputSectionBase<ELFT> * 271 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 272 uint32_t Idx = Sec.sh_info; 273 if (Idx >= Sections.size()) 274 fatal(getFilename(this) + ": invalid relocated section index: " + 275 Twine(Idx)); 276 InputSectionBase<ELFT> *Target = Sections[Idx]; 277 278 // Strictly speaking, a relocation section must be included in the 279 // group of the section it relocates. However, LLVM 3.3 and earlier 280 // would fail to do so, so we gracefully handle that case. 281 if (Target == &InputSection<ELFT>::Discarded) 282 return nullptr; 283 284 if (!Target) 285 fatal(getFilename(this) + ": unsupported relocation reference"); 286 return Target; 287 } 288 289 template <class ELFT> 290 InputSectionBase<ELFT> * 291 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 292 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 293 294 // .note.GNU-stack is a marker section to control the presence of 295 // PT_GNU_STACK segment in outputs. Since the presence of the segment 296 // is controlled only by the command line option (-z execstack) in LLD, 297 // .note.GNU-stack is ignored. 298 if (Name == ".note.GNU-stack") 299 return &InputSection<ELFT>::Discarded; 300 301 if (Name == ".note.GNU-split-stack") { 302 error("objects using splitstacks are not supported"); 303 return &InputSection<ELFT>::Discarded; 304 } 305 306 if (Config->StripDebug && Name.startswith(".debug")) 307 return &InputSection<ELFT>::Discarded; 308 309 // The linker merges EH (exception handling) frames and creates a 310 // .eh_frame_hdr section for runtime. So we handle them with a special 311 // class. For relocatable outputs, they are just passed through. 312 if (Name == ".eh_frame" && !Config->Relocatable) 313 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec); 314 315 if (shouldMerge(Sec)) 316 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec); 317 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec); 318 } 319 320 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 321 this->initStringTable(); 322 Elf_Sym_Range Syms = this->getElfSymbols(false); 323 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 324 SymbolBodies.reserve(NumSymbols); 325 for (const Elf_Sym &Sym : Syms) 326 SymbolBodies.push_back(createSymbolBody(&Sym)); 327 } 328 329 template <class ELFT> 330 InputSectionBase<ELFT> * 331 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 332 uint32_t Index = this->getSectionIndex(Sym); 333 if (Index == 0) 334 return nullptr; 335 if (Index >= Sections.size() || !Sections[Index]) 336 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 337 InputSectionBase<ELFT> *S = Sections[Index]; 338 if (S == &InputSectionBase<ELFT>::Discarded) 339 return S; 340 return S->Repl; 341 } 342 343 template <class ELFT> 344 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 345 int Binding = Sym->getBinding(); 346 InputSectionBase<ELFT> *Sec = getSection(*Sym); 347 if (Binding == STB_LOCAL) { 348 if (Sym->st_shndx == SHN_UNDEF) 349 return new (this->Alloc) 350 Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); 351 return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); 352 } 353 354 StringRef Name = check(Sym->getName(this->StringTable)); 355 356 switch (Sym->st_shndx) { 357 case SHN_UNDEF: 358 return elf::Symtab<ELFT>::X 359 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 360 /*CanOmitFromDynSym*/ false, this) 361 ->body(); 362 case SHN_COMMON: 363 return elf::Symtab<ELFT>::X 364 ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other, 365 Sym->getType(), this) 366 ->body(); 367 } 368 369 switch (Binding) { 370 default: 371 fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); 372 case STB_GLOBAL: 373 case STB_WEAK: 374 case STB_GNU_UNIQUE: 375 if (Sec == &InputSection<ELFT>::Discarded) 376 return elf::Symtab<ELFT>::X 377 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 378 /*CanOmitFromDynSym*/ false, this) 379 ->body(); 380 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 381 } 382 } 383 384 template <class ELFT> void ArchiveFile::parse() { 385 File = check(Archive::create(MB), "failed to parse archive"); 386 387 // Read the symbol table to construct Lazy objects. 388 for (const Archive::Symbol &Sym : File->symbols()) 389 Symtab<ELFT>::X->addLazyArchive(this, Sym); 390 } 391 392 // Returns a buffer pointing to a member file containing a given symbol. 393 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) { 394 Archive::Child C = 395 check(Sym->getMember(), 396 "could not get the member for symbol " + Sym->getName()); 397 398 if (!Seen.insert(C.getChildOffset()).second) 399 return MemoryBufferRef(); 400 401 MemoryBufferRef Ret = 402 check(C.getMemoryBufferRef(), 403 "could not get the buffer for the member defining symbol " + 404 Sym->getName()); 405 406 if (C.getParent()->isThin() && Driver->Cpio) 407 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 408 Ret.getBuffer()); 409 410 return Ret; 411 } 412 413 template <class ELFT> 414 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 415 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 416 417 template <class ELFT> 418 const typename ELFT::Shdr * 419 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 420 uint32_t Index = this->getSectionIndex(Sym); 421 if (Index == 0) 422 return nullptr; 423 return check(this->ELFObj.getSection(Index)); 424 } 425 426 // Partially parse the shared object file so that we can call 427 // getSoName on this object. 428 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 429 typedef typename ELFT::Dyn Elf_Dyn; 430 typedef typename ELFT::uint uintX_t; 431 const Elf_Shdr *DynamicSec = nullptr; 432 433 const ELFFile<ELFT> Obj = this->ELFObj; 434 for (const Elf_Shdr &Sec : Obj.sections()) { 435 switch (Sec.sh_type) { 436 default: 437 continue; 438 case SHT_DYNSYM: 439 this->Symtab = &Sec; 440 break; 441 case SHT_DYNAMIC: 442 DynamicSec = &Sec; 443 break; 444 case SHT_SYMTAB_SHNDX: 445 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 446 break; 447 case SHT_GNU_versym: 448 this->VersymSec = &Sec; 449 break; 450 case SHT_GNU_verdef: 451 this->VerdefSec = &Sec; 452 break; 453 } 454 } 455 456 this->initStringTable(); 457 SoName = this->getName(); 458 459 if (!DynamicSec) 460 return; 461 auto *Begin = 462 reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset); 463 const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn); 464 465 for (const Elf_Dyn &Dyn : make_range(Begin, End)) { 466 if (Dyn.d_tag == DT_SONAME) { 467 uintX_t Val = Dyn.getVal(); 468 if (Val >= this->StringTable.size()) 469 fatal(getFilename(this) + ": invalid DT_SONAME entry"); 470 SoName = StringRef(this->StringTable.data() + Val); 471 return; 472 } 473 } 474 } 475 476 // Parse the version definitions in the object file if present. Returns a vector 477 // whose nth element contains a pointer to the Elf_Verdef for version identifier 478 // n. Version identifiers that are not definitions map to nullptr. The array 479 // always has at least length 1. 480 template <class ELFT> 481 std::vector<const typename ELFT::Verdef *> 482 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 483 std::vector<const Elf_Verdef *> Verdefs(1); 484 // We only need to process symbol versions for this DSO if it has both a 485 // versym and a verdef section, which indicates that the DSO contains symbol 486 // version definitions. 487 if (!VersymSec || !VerdefSec) 488 return Verdefs; 489 490 // The location of the first global versym entry. 491 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 492 VersymSec->sh_offset) + 493 this->Symtab->sh_info; 494 495 // We cannot determine the largest verdef identifier without inspecting 496 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 497 // sequentially starting from 1, so we predict that the largest identifier 498 // will be VerdefCount. 499 unsigned VerdefCount = VerdefSec->sh_info; 500 Verdefs.resize(VerdefCount + 1); 501 502 // Build the Verdefs array by following the chain of Elf_Verdef objects 503 // from the start of the .gnu.version_d section. 504 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 505 for (unsigned I = 0; I != VerdefCount; ++I) { 506 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 507 Verdef += CurVerdef->vd_next; 508 unsigned VerdefIndex = CurVerdef->vd_ndx; 509 if (Verdefs.size() <= VerdefIndex) 510 Verdefs.resize(VerdefIndex + 1); 511 Verdefs[VerdefIndex] = CurVerdef; 512 } 513 514 return Verdefs; 515 } 516 517 // Fully parse the shared object file. This must be called after parseSoName(). 518 template <class ELFT> void SharedFile<ELFT>::parseRest() { 519 // Create mapping from version identifiers to Elf_Verdef entries. 520 const Elf_Versym *Versym = nullptr; 521 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 522 523 Elf_Sym_Range Syms = this->getElfSymbols(true); 524 for (const Elf_Sym &Sym : Syms) { 525 unsigned VersymIndex = 0; 526 if (Versym) { 527 VersymIndex = Versym->vs_index; 528 ++Versym; 529 } 530 531 StringRef Name = check(Sym.getName(this->StringTable)); 532 if (Sym.isUndefined()) { 533 Undefs.push_back(Name); 534 continue; 535 } 536 537 if (Versym) { 538 // Ignore local symbols and non-default versions. 539 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 540 continue; 541 } 542 543 const Elf_Verdef *V = 544 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 545 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 546 } 547 } 548 549 static ELFKind getELFKind(MemoryBufferRef MB) { 550 std::string TripleStr = getBitcodeTargetTriple(MB, Driver->Context); 551 Triple TheTriple(TripleStr); 552 bool Is64Bits = TheTriple.isArch64Bit(); 553 if (TheTriple.isLittleEndian()) 554 return Is64Bits ? ELF64LEKind : ELF32LEKind; 555 return Is64Bits ? ELF64BEKind : ELF32BEKind; 556 } 557 558 static uint8_t getMachineKind(MemoryBufferRef MB) { 559 std::string TripleStr = getBitcodeTargetTriple(MB, Driver->Context); 560 switch (Triple(TripleStr).getArch()) { 561 case Triple::aarch64: 562 return EM_AARCH64; 563 case Triple::arm: 564 return EM_ARM; 565 case Triple::mips: 566 case Triple::mipsel: 567 case Triple::mips64: 568 case Triple::mips64el: 569 return EM_MIPS; 570 case Triple::ppc: 571 return EM_PPC; 572 case Triple::ppc64: 573 return EM_PPC64; 574 case Triple::x86: 575 return EM_386; 576 case Triple::x86_64: 577 return EM_X86_64; 578 default: 579 fatal(MB.getBufferIdentifier() + 580 ": could not infer e_machine from bitcode target triple " + 581 TripleStr); 582 } 583 } 584 585 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 586 EKind = getELFKind(MB); 587 EMachine = getMachineKind(MB); 588 } 589 590 static uint8_t getGvVisibility(const GlobalValue *GV) { 591 switch (GV->getVisibility()) { 592 case GlobalValue::DefaultVisibility: 593 return STV_DEFAULT; 594 case GlobalValue::HiddenVisibility: 595 return STV_HIDDEN; 596 case GlobalValue::ProtectedVisibility: 597 return STV_PROTECTED; 598 } 599 llvm_unreachable("unknown visibility"); 600 } 601 602 template <class ELFT> 603 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats, 604 const IRObjectFile &Obj, 605 const BasicSymbolRef &Sym) { 606 const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl()); 607 608 SmallString<64> Name; 609 raw_svector_ostream OS(Name); 610 Sym.printName(OS); 611 StringRef NameRef = Saver.save(StringRef(Name)); 612 613 uint32_t Flags = Sym.getFlags(); 614 bool IsWeak = Flags & BasicSymbolRef::SF_Weak; 615 uint32_t Binding = IsWeak ? STB_WEAK : STB_GLOBAL; 616 617 uint8_t Type = STT_NOTYPE; 618 bool CanOmitFromDynSym = false; 619 // FIXME: Expose a thread-local flag for module asm symbols. 620 if (GV) { 621 if (GV->isThreadLocal()) 622 Type = STT_TLS; 623 CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV); 624 } 625 626 uint8_t Visibility; 627 if (GV) 628 Visibility = getGvVisibility(GV); 629 else 630 // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose 631 // protected visibility. 632 Visibility = STV_DEFAULT; 633 634 if (GV) 635 if (const Comdat *C = GV->getComdat()) 636 if (!KeptComdats.count(C)) 637 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 638 CanOmitFromDynSym, this); 639 640 const Module &M = Obj.getModule(); 641 if (Flags & BasicSymbolRef::SF_Undefined) 642 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 643 CanOmitFromDynSym, this); 644 if (Flags & BasicSymbolRef::SF_Common) { 645 // FIXME: Set SF_Common flag correctly for module asm symbols, and expose 646 // size and alignment. 647 assert(GV); 648 const DataLayout &DL = M.getDataLayout(); 649 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 650 return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(), 651 Binding, Visibility, STT_OBJECT, this); 652 } 653 return Symtab<ELFT>::X->addBitcode(NameRef, IsWeak, Visibility, Type, 654 CanOmitFromDynSym, this); 655 } 656 657 bool BitcodeFile::shouldSkip(uint32_t Flags) { 658 return !(Flags & BasicSymbolRef::SF_Global) || 659 (Flags & BasicSymbolRef::SF_FormatSpecific); 660 } 661 662 template <class ELFT> 663 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 664 Obj = check(IRObjectFile::create(MB, Driver->Context)); 665 const Module &M = Obj->getModule(); 666 667 DenseSet<const Comdat *> KeptComdats; 668 for (const auto &P : M.getComdatSymbolTable()) { 669 StringRef N = Saver.save(P.first()); 670 if (ComdatGroups.insert(N).second) 671 KeptComdats.insert(&P.second); 672 } 673 674 for (const BasicSymbolRef &Sym : Obj->symbols()) 675 if (!shouldSkip(Sym.getFlags())) 676 Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym)); 677 } 678 679 template <template <class> class T> 680 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) { 681 unsigned char Size; 682 unsigned char Endian; 683 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 684 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 685 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 686 687 std::unique_ptr<InputFile> Obj; 688 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 689 Obj.reset(new T<ELF32LE>(MB)); 690 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 691 Obj.reset(new T<ELF32BE>(MB)); 692 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 693 Obj.reset(new T<ELF64LE>(MB)); 694 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 695 Obj.reset(new T<ELF64BE>(MB)); 696 else 697 fatal("invalid file class: " + MB.getBufferIdentifier()); 698 699 if (!Config->FirstElf) 700 Config->FirstElf = Obj.get(); 701 return Obj; 702 } 703 704 static bool isBitcode(MemoryBufferRef MB) { 705 using namespace sys::fs; 706 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 707 } 708 709 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB, 710 StringRef ArchiveName) { 711 std::unique_ptr<InputFile> F; 712 if (isBitcode(MB)) 713 F.reset(new BitcodeFile(MB)); 714 else 715 F = createELFFile<ObjectFile>(MB); 716 F->ArchiveName = ArchiveName; 717 return F; 718 } 719 720 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) { 721 return createELFFile<SharedFile>(MB); 722 } 723 724 MemoryBufferRef LazyObjectFile::getBuffer() { 725 if (Seen) 726 return MemoryBufferRef(); 727 Seen = true; 728 return MB; 729 } 730 731 template <class ELFT> 732 void LazyObjectFile::parse() { 733 for (StringRef Sym : getSymbols()) 734 Symtab<ELFT>::X->addLazyObject(Sym, *this); 735 } 736 737 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 738 typedef typename ELFT::Shdr Elf_Shdr; 739 typedef typename ELFT::Sym Elf_Sym; 740 typedef typename ELFT::SymRange Elf_Sym_Range; 741 742 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 743 for (const Elf_Shdr &Sec : Obj.sections()) { 744 if (Sec.sh_type != SHT_SYMTAB) 745 continue; 746 Elf_Sym_Range Syms = Obj.symbols(&Sec); 747 uint32_t FirstNonLocal = Sec.sh_info; 748 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 749 std::vector<StringRef> V; 750 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 751 if (Sym.st_shndx != SHN_UNDEF) 752 V.push_back(check(Sym.getName(StringTable))); 753 return V; 754 } 755 return {}; 756 } 757 758 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 759 LLVMContext Context; 760 std::unique_ptr<IRObjectFile> Obj = 761 check(IRObjectFile::create(this->MB, Context)); 762 std::vector<StringRef> V; 763 for (const BasicSymbolRef &Sym : Obj->symbols()) { 764 uint32_t Flags = Sym.getFlags(); 765 if (BitcodeFile::shouldSkip(Flags)) 766 continue; 767 if (Flags & BasicSymbolRef::SF_Undefined) 768 continue; 769 SmallString<64> Name; 770 raw_svector_ostream OS(Name); 771 Sym.printName(OS); 772 V.push_back(Saver.save(StringRef(Name))); 773 } 774 return V; 775 } 776 777 // Returns a vector of globally-visible defined symbol names. 778 std::vector<StringRef> LazyObjectFile::getSymbols() { 779 if (isBitcode(this->MB)) 780 return getBitcodeSymbols(); 781 782 unsigned char Size; 783 unsigned char Endian; 784 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 785 if (Size == ELFCLASS32) { 786 if (Endian == ELFDATA2LSB) 787 return getElfSymbols<ELF32LE>(); 788 return getElfSymbols<ELF32BE>(); 789 } 790 if (Endian == ELFDATA2LSB) 791 return getElfSymbols<ELF64LE>(); 792 return getElfSymbols<ELF64BE>(); 793 } 794 795 template void ArchiveFile::parse<ELF32LE>(); 796 template void ArchiveFile::parse<ELF32BE>(); 797 template void ArchiveFile::parse<ELF64LE>(); 798 template void ArchiveFile::parse<ELF64BE>(); 799 800 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); 801 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); 802 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); 803 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); 804 805 template void LazyObjectFile::parse<ELF32LE>(); 806 template void LazyObjectFile::parse<ELF32BE>(); 807 template void LazyObjectFile::parse<ELF64LE>(); 808 template void LazyObjectFile::parse<ELF64BE>(); 809 810 template class elf::ELFFileBase<ELF32LE>; 811 template class elf::ELFFileBase<ELF32BE>; 812 template class elf::ELFFileBase<ELF64LE>; 813 template class elf::ELFFileBase<ELF64BE>; 814 815 template class elf::ObjectFile<ELF32LE>; 816 template class elf::ObjectFile<ELF32BE>; 817 template class elf::ObjectFile<ELF64LE>; 818 template class elf::ObjectFile<ELF64BE>; 819 820 template class elf::SharedFile<ELF32LE>; 821 template class elf::SharedFile<ELF32BE>; 822 template class elf::SharedFile<ELF64LE>; 823 template class elf::SharedFile<ELF64BE>; 824