1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 std::vector<ArchiveFile *> elf::archiveFiles; 47 std::vector<BinaryFile *> elf::binaryFiles; 48 std::vector<BitcodeFile *> elf::bitcodeFiles; 49 std::vector<LazyObjFile *> elf::lazyObjFiles; 50 std::vector<InputFile *> elf::objectFiles; 51 std::vector<SharedFile *> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = std::string(f->getName()); 63 else 64 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 65 } 66 return f->toStringCache; 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver.save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 119 /*RequiresNullTerminator=*/false); 120 if (auto ec = mbOrErr.getError()) { 121 error("cannot open " + path + ": " + ec.message()); 122 return None; 123 } 124 125 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 126 MemoryBufferRef mbref = mb->getMemBufferRef(); 127 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 128 129 if (tar) 130 tar->append(relativeToRoot(path), mbref.getBuffer()); 131 return mbref; 132 } 133 134 // All input object files must be for the same architecture 135 // (e.g. it does not make sense to link x86 object files with 136 // MIPS object files.) This function checks for that error. 137 static bool isCompatible(InputFile *file) { 138 if (!file->isElf() && !isa<BitcodeFile>(file)) 139 return true; 140 141 if (file->ekind == config->ekind && file->emachine == config->emachine) { 142 if (config->emachine != EM_MIPS) 143 return true; 144 if (isMipsN32Abi(file) == config->mipsN32Abi) 145 return true; 146 } 147 148 StringRef target = 149 !config->bfdname.empty() ? config->bfdname : config->emulation; 150 if (!target.empty()) { 151 error(toString(file) + " is incompatible with " + target); 152 return false; 153 } 154 155 InputFile *existing; 156 if (!objectFiles.empty()) 157 existing = objectFiles[0]; 158 else if (!sharedFiles.empty()) 159 existing = sharedFiles[0]; 160 else if (!bitcodeFiles.empty()) 161 existing = bitcodeFiles[0]; 162 else 163 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 164 "determine target emulation"); 165 166 error(toString(file) + " is incompatible with " + toString(existing)); 167 return false; 168 } 169 170 template <class ELFT> static void doParseFile(InputFile *file) { 171 if (!isCompatible(file)) 172 return; 173 174 // Binary file 175 if (auto *f = dyn_cast<BinaryFile>(file)) { 176 binaryFiles.push_back(f); 177 f->parse(); 178 return; 179 } 180 181 // .a file 182 if (auto *f = dyn_cast<ArchiveFile>(file)) { 183 archiveFiles.push_back(f); 184 f->parse(); 185 return; 186 } 187 188 // Lazy object file 189 if (auto *f = dyn_cast<LazyObjFile>(file)) { 190 lazyObjFiles.push_back(f); 191 f->parse<ELFT>(); 192 return; 193 } 194 195 if (config->trace) 196 message(toString(file)); 197 198 // .so file 199 if (auto *f = dyn_cast<SharedFile>(file)) { 200 f->parse<ELFT>(); 201 return; 202 } 203 204 // LLVM bitcode file 205 if (auto *f = dyn_cast<BitcodeFile>(file)) { 206 bitcodeFiles.push_back(f); 207 f->parse<ELFT>(); 208 return; 209 } 210 211 // Regular object file 212 objectFiles.push_back(file); 213 cast<ObjFile<ELFT>>(file)->parse(); 214 } 215 216 // Add symbols in File to the symbol table. 217 void elf::parseFile(InputFile *file) { 218 switch (config->ekind) { 219 case ELF32LEKind: 220 doParseFile<ELF32LE>(file); 221 return; 222 case ELF32BEKind: 223 doParseFile<ELF32BE>(file); 224 return; 225 case ELF64LEKind: 226 doParseFile<ELF64LE>(file); 227 return; 228 case ELF64BEKind: 229 doParseFile<ELF64BE>(file); 230 return; 231 default: 232 llvm_unreachable("unknown ELFT"); 233 } 234 } 235 236 // Concatenates arguments to construct a string representing an error location. 237 static std::string createFileLineMsg(StringRef path, unsigned line) { 238 std::string filename = std::string(path::filename(path)); 239 std::string lineno = ":" + std::to_string(line); 240 if (filename == path) 241 return filename + lineno; 242 return filename + lineno + " (" + path.str() + lineno + ")"; 243 } 244 245 template <class ELFT> 246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 247 InputSectionBase &sec, uint64_t offset) { 248 // In DWARF, functions and variables are stored to different places. 249 // First, lookup a function for a given offset. 250 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 251 return createFileLineMsg(info->FileName, info->Line); 252 253 // If it failed, lookup again as a variable. 254 if (Optional<std::pair<std::string, unsigned>> fileLine = 255 file.getVariableLoc(sym.getName())) 256 return createFileLineMsg(fileLine->first, fileLine->second); 257 258 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 259 return std::string(file.sourceFile); 260 } 261 262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 263 uint64_t offset) { 264 if (kind() != ObjKind) 265 return ""; 266 switch (config->ekind) { 267 default: 268 llvm_unreachable("Invalid kind"); 269 case ELF32LEKind: 270 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 271 case ELF32BEKind: 272 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 273 case ELF64LEKind: 274 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 275 case ELF64BEKind: 276 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 277 } 278 } 279 280 StringRef InputFile::getNameForScript() const { 281 if (archiveName.empty()) 282 return getName(); 283 284 if (nameForScriptCache.empty()) 285 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 286 287 return nameForScriptCache; 288 } 289 290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 291 llvm::call_once(initDwarf, [this]() { 292 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 293 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 294 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 295 [&](Error warning) { 296 warn(getName() + ": " + toString(std::move(warning))); 297 })); 298 }); 299 300 return dwarf.get(); 301 } 302 303 // Returns the pair of file name and line number describing location of data 304 // object (variable, array, etc) definition. 305 template <class ELFT> 306 Optional<std::pair<std::string, unsigned>> 307 ObjFile<ELFT>::getVariableLoc(StringRef name) { 308 return getDwarf()->getVariableLoc(name); 309 } 310 311 // Returns source line information for a given offset 312 // using DWARF debug info. 313 template <class ELFT> 314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 315 uint64_t offset) { 316 // Detect SectionIndex for specified section. 317 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 318 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 319 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 320 if (s == sections[curIndex]) { 321 sectionIndex = curIndex; 322 break; 323 } 324 } 325 326 return getDwarf()->getDILineInfo(offset, sectionIndex); 327 } 328 329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 330 ekind = getELFKind(mb, ""); 331 332 switch (ekind) { 333 case ELF32LEKind: 334 init<ELF32LE>(); 335 break; 336 case ELF32BEKind: 337 init<ELF32BE>(); 338 break; 339 case ELF64LEKind: 340 init<ELF64LE>(); 341 break; 342 case ELF64BEKind: 343 init<ELF64BE>(); 344 break; 345 default: 346 llvm_unreachable("getELFKind"); 347 } 348 } 349 350 template <typename Elf_Shdr> 351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 352 for (const Elf_Shdr &sec : sections) 353 if (sec.sh_type == type) 354 return &sec; 355 return nullptr; 356 } 357 358 template <class ELFT> void ELFFileBase::init() { 359 using Elf_Shdr = typename ELFT::Shdr; 360 using Elf_Sym = typename ELFT::Sym; 361 362 // Initialize trivial attributes. 363 const ELFFile<ELFT> &obj = getObj<ELFT>(); 364 emachine = obj.getHeader().e_machine; 365 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 366 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 367 368 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 369 370 // Find a symbol table. 371 bool isDSO = 372 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 373 const Elf_Shdr *symtabSec = 374 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 375 376 if (!symtabSec) 377 return; 378 379 // Initialize members corresponding to a symbol table. 380 firstGlobal = symtabSec->sh_info; 381 382 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 383 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 384 fatal(toString(this) + ": invalid sh_info in symbol table"); 385 386 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 387 numELFSyms = eSyms.size(); 388 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 389 } 390 391 template <class ELFT> 392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 393 return CHECK( 394 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 395 this); 396 } 397 398 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 399 if (this->symbols.empty()) 400 return {}; 401 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 402 } 403 404 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 405 return makeArrayRef(this->symbols).slice(this->firstGlobal); 406 } 407 408 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 409 // Read a section table. justSymbols is usually false. 410 if (this->justSymbols) 411 initializeJustSymbols(); 412 else 413 initializeSections(ignoreComdats); 414 415 // Read a symbol table. 416 initializeSymbols(); 417 } 418 419 // Sections with SHT_GROUP and comdat bits define comdat section groups. 420 // They are identified and deduplicated by group name. This function 421 // returns a group name. 422 template <class ELFT> 423 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 424 const Elf_Shdr &sec) { 425 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 426 if (sec.sh_info >= symbols.size()) 427 fatal(toString(this) + ": invalid symbol index"); 428 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 429 StringRef signature = CHECK(sym.getName(this->stringTable), this); 430 431 // As a special case, if a symbol is a section symbol and has no name, 432 // we use a section name as a signature. 433 // 434 // Such SHT_GROUP sections are invalid from the perspective of the ELF 435 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 436 // older produce such sections as outputs for the -r option, so we need 437 // a bug-compatibility. 438 if (signature.empty() && sym.getType() == STT_SECTION) 439 return getSectionName(sec); 440 return signature; 441 } 442 443 template <class ELFT> 444 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 445 if (!(sec.sh_flags & SHF_MERGE)) 446 return false; 447 448 // On a regular link we don't merge sections if -O0 (default is -O1). This 449 // sometimes makes the linker significantly faster, although the output will 450 // be bigger. 451 // 452 // Doing the same for -r would create a problem as it would combine sections 453 // with different sh_entsize. One option would be to just copy every SHF_MERGE 454 // section as is to the output. While this would produce a valid ELF file with 455 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 456 // they see two .debug_str. We could have separate logic for combining 457 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 458 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 459 // logic for -r. 460 if (config->optimize == 0 && !config->relocatable) 461 return false; 462 463 // A mergeable section with size 0 is useless because they don't have 464 // any data to merge. A mergeable string section with size 0 can be 465 // argued as invalid because it doesn't end with a null character. 466 // We'll avoid a mess by handling them as if they were non-mergeable. 467 if (sec.sh_size == 0) 468 return false; 469 470 // Check for sh_entsize. The ELF spec is not clear about the zero 471 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 472 // the section does not hold a table of fixed-size entries". We know 473 // that Rust 1.13 produces a string mergeable section with a zero 474 // sh_entsize. Here we just accept it rather than being picky about it. 475 uint64_t entSize = sec.sh_entsize; 476 if (entSize == 0) 477 return false; 478 if (sec.sh_size % entSize) 479 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 480 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 481 Twine(entSize) + ")"); 482 483 if (sec.sh_flags & SHF_WRITE) 484 fatal(toString(this) + ":(" + name + 485 "): writable SHF_MERGE section is not supported"); 486 487 return true; 488 } 489 490 // This is for --just-symbols. 491 // 492 // --just-symbols is a very minor feature that allows you to link your 493 // output against other existing program, so that if you load both your 494 // program and the other program into memory, your output can refer the 495 // other program's symbols. 496 // 497 // When the option is given, we link "just symbols". The section table is 498 // initialized with null pointers. 499 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 500 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 501 this->sections.resize(sections.size()); 502 } 503 504 // An ELF object file may contain a `.deplibs` section. If it exists, the 505 // section contains a list of library specifiers such as `m` for libm. This 506 // function resolves a given name by finding the first matching library checking 507 // the various ways that a library can be specified to LLD. This ELF extension 508 // is a form of autolinking and is called `dependent libraries`. It is currently 509 // unique to LLVM and lld. 510 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 511 if (!config->dependentLibraries) 512 return; 513 if (fs::exists(specifier)) 514 driver->addFile(specifier, /*withLOption=*/false); 515 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 516 driver->addFile(*s, /*withLOption=*/true); 517 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 518 driver->addFile(*s, /*withLOption=*/true); 519 else 520 error(toString(f) + 521 ": unable to find library from dependent library specifier: " + 522 specifier); 523 } 524 525 // Record the membership of a section group so that in the garbage collection 526 // pass, section group members are kept or discarded as a unit. 527 template <class ELFT> 528 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 529 ArrayRef<typename ELFT::Word> entries) { 530 bool hasAlloc = false; 531 for (uint32_t index : entries.slice(1)) { 532 if (index >= sections.size()) 533 return; 534 if (InputSectionBase *s = sections[index]) 535 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 536 hasAlloc = true; 537 } 538 539 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 540 // collection. See the comment in markLive(). This rule retains .debug_types 541 // and .rela.debug_types. 542 if (!hasAlloc) 543 return; 544 545 // Connect the members in a circular doubly-linked list via 546 // nextInSectionGroup. 547 InputSectionBase *head; 548 InputSectionBase *prev = nullptr; 549 for (uint32_t index : entries.slice(1)) { 550 InputSectionBase *s = sections[index]; 551 if (!s || s == &InputSection::discarded) 552 continue; 553 if (prev) 554 prev->nextInSectionGroup = s; 555 else 556 head = s; 557 prev = s; 558 } 559 if (prev) 560 prev->nextInSectionGroup = head; 561 } 562 563 template <class ELFT> 564 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 565 const ELFFile<ELFT> &obj = this->getObj(); 566 567 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 568 uint64_t size = objSections.size(); 569 this->sections.resize(size); 570 this->sectionStringTable = 571 CHECK(obj.getSectionStringTable(objSections), this); 572 573 std::vector<ArrayRef<Elf_Word>> selectedGroups; 574 // SHT_LLVM_CALL_GRAPH_PROFILE Section Index. 575 size_t cgProfileSectionIndex = 0; 576 577 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 578 if (this->sections[i] == &InputSection::discarded) 579 continue; 580 const Elf_Shdr &sec = objSections[i]; 581 582 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) { 583 cgProfile = 584 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec)); 585 cgProfileSectionIndex = i; 586 } 587 588 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 589 // if -r is given, we'll let the final link discard such sections. 590 // This is compatible with GNU. 591 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 592 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 593 // We ignore the address-significance table if we know that the object 594 // file was created by objcopy or ld -r. This is because these tools 595 // will reorder the symbols in the symbol table, invalidating the data 596 // in the address-significance table, which refers to symbols by index. 597 if (sec.sh_link != 0) 598 this->addrsigSec = &sec; 599 else if (config->icf == ICFLevel::Safe) 600 warn(toString(this) + 601 ": --icf=safe conservatively ignores " 602 "SHT_LLVM_ADDRSIG [index " + 603 Twine(i) + 604 "] with sh_link=0 " 605 "(likely created using objcopy or ld -r)"); 606 } 607 this->sections[i] = &InputSection::discarded; 608 continue; 609 } 610 611 switch (sec.sh_type) { 612 case SHT_GROUP: { 613 // De-duplicate section groups by their signatures. 614 StringRef signature = getShtGroupSignature(objSections, sec); 615 this->sections[i] = &InputSection::discarded; 616 617 ArrayRef<Elf_Word> entries = 618 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 619 if (entries.empty()) 620 fatal(toString(this) + ": empty SHT_GROUP"); 621 622 Elf_Word flag = entries[0]; 623 if (flag && flag != GRP_COMDAT) 624 fatal(toString(this) + ": unsupported SHT_GROUP format"); 625 626 bool keepGroup = 627 (flag & GRP_COMDAT) == 0 || ignoreComdats || 628 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 629 .second; 630 if (keepGroup) { 631 if (config->relocatable) 632 this->sections[i] = createInputSection(sec); 633 selectedGroups.push_back(entries); 634 continue; 635 } 636 637 // Otherwise, discard group members. 638 for (uint32_t secIndex : entries.slice(1)) { 639 if (secIndex >= size) 640 fatal(toString(this) + 641 ": invalid section index in group: " + Twine(secIndex)); 642 this->sections[secIndex] = &InputSection::discarded; 643 } 644 break; 645 } 646 case SHT_SYMTAB_SHNDX: 647 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 648 break; 649 case SHT_SYMTAB: 650 case SHT_STRTAB: 651 case SHT_REL: 652 case SHT_RELA: 653 case SHT_NULL: 654 break; 655 default: 656 this->sections[i] = createInputSection(sec); 657 } 658 } 659 660 // We have a second loop. It is used to: 661 // 1) handle SHF_LINK_ORDER sections. 662 // 2) create SHT_REL[A] sections. In some cases the section header index of a 663 // relocation section may be smaller than that of the relocated section. In 664 // such cases, the relocation section would attempt to reference a target 665 // section that has not yet been created. For simplicity, delay creation of 666 // relocation sections until now. 667 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 668 if (this->sections[i] == &InputSection::discarded) 669 continue; 670 const Elf_Shdr &sec = objSections[i]; 671 672 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) { 673 this->sections[i] = createInputSection(sec); 674 if (cgProfileSectionIndex && sec.sh_info == cgProfileSectionIndex) { 675 if (sec.sh_type == SHT_REL) 676 cgProfileRel = CHECK(getObj().rels(sec), this); 677 } 678 } 679 680 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 681 // the flag. 682 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 683 continue; 684 685 InputSectionBase *linkSec = nullptr; 686 if (sec.sh_link < this->sections.size()) 687 linkSec = this->sections[sec.sh_link]; 688 if (!linkSec) 689 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 690 691 // A SHF_LINK_ORDER section is discarded if its linked-to section is 692 // discarded. 693 InputSection *isec = cast<InputSection>(this->sections[i]); 694 linkSec->dependentSections.push_back(isec); 695 if (!isa<InputSection>(linkSec)) 696 error("a section " + isec->name + 697 " with SHF_LINK_ORDER should not refer a non-regular section: " + 698 toString(linkSec)); 699 } 700 701 for (ArrayRef<Elf_Word> entries : selectedGroups) 702 handleSectionGroup<ELFT>(this->sections, entries); 703 } 704 705 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 706 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 707 // the input objects have been compiled. 708 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 709 const InputFile *f) { 710 Optional<unsigned> attr = 711 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 712 if (!attr.hasValue()) 713 // If an ABI tag isn't present then it is implicitly given the value of 0 714 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 715 // including some in glibc that don't use FP args (and should have value 3) 716 // don't have the attribute so we do not consider an implicit value of 0 717 // as a clash. 718 return; 719 720 unsigned vfpArgs = attr.getValue(); 721 ARMVFPArgKind arg; 722 switch (vfpArgs) { 723 case ARMBuildAttrs::BaseAAPCS: 724 arg = ARMVFPArgKind::Base; 725 break; 726 case ARMBuildAttrs::HardFPAAPCS: 727 arg = ARMVFPArgKind::VFP; 728 break; 729 case ARMBuildAttrs::ToolChainFPPCS: 730 // Tool chain specific convention that conforms to neither AAPCS variant. 731 arg = ARMVFPArgKind::ToolChain; 732 break; 733 case ARMBuildAttrs::CompatibleFPAAPCS: 734 // Object compatible with all conventions. 735 return; 736 default: 737 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 738 return; 739 } 740 // Follow ld.bfd and error if there is a mix of calling conventions. 741 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 742 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 743 else 744 config->armVFPArgs = arg; 745 } 746 747 // The ARM support in lld makes some use of instructions that are not available 748 // on all ARM architectures. Namely: 749 // - Use of BLX instruction for interworking between ARM and Thumb state. 750 // - Use of the extended Thumb branch encoding in relocation. 751 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 752 // The ARM Attributes section contains information about the architecture chosen 753 // at compile time. We follow the convention that if at least one input object 754 // is compiled with an architecture that supports these features then lld is 755 // permitted to use them. 756 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 757 Optional<unsigned> attr = 758 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 759 if (!attr.hasValue()) 760 return; 761 auto arch = attr.getValue(); 762 switch (arch) { 763 case ARMBuildAttrs::Pre_v4: 764 case ARMBuildAttrs::v4: 765 case ARMBuildAttrs::v4T: 766 // Architectures prior to v5 do not support BLX instruction 767 break; 768 case ARMBuildAttrs::v5T: 769 case ARMBuildAttrs::v5TE: 770 case ARMBuildAttrs::v5TEJ: 771 case ARMBuildAttrs::v6: 772 case ARMBuildAttrs::v6KZ: 773 case ARMBuildAttrs::v6K: 774 config->armHasBlx = true; 775 // Architectures used in pre-Cortex processors do not support 776 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 777 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 778 break; 779 default: 780 // All other Architectures have BLX and extended branch encoding 781 config->armHasBlx = true; 782 config->armJ1J2BranchEncoding = true; 783 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 784 // All Architectures used in Cortex processors with the exception 785 // of v6-M and v6S-M have the MOVT and MOVW instructions. 786 config->armHasMovtMovw = true; 787 break; 788 } 789 } 790 791 // If a source file is compiled with x86 hardware-assisted call flow control 792 // enabled, the generated object file contains feature flags indicating that 793 // fact. This function reads the feature flags and returns it. 794 // 795 // Essentially we want to read a single 32-bit value in this function, but this 796 // function is rather complicated because the value is buried deep inside a 797 // .note.gnu.property section. 798 // 799 // The section consists of one or more NOTE records. Each NOTE record consists 800 // of zero or more type-length-value fields. We want to find a field of a 801 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 802 // the ABI is unnecessarily complicated. 803 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 804 using Elf_Nhdr = typename ELFT::Nhdr; 805 using Elf_Note = typename ELFT::Note; 806 807 uint32_t featuresSet = 0; 808 ArrayRef<uint8_t> data = sec.data(); 809 auto reportFatal = [&](const uint8_t *place, const char *msg) { 810 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 811 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 812 }; 813 while (!data.empty()) { 814 // Read one NOTE record. 815 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 816 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 817 reportFatal(data.data(), "data is too short"); 818 819 Elf_Note note(*nhdr); 820 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 821 data = data.slice(nhdr->getSize()); 822 continue; 823 } 824 825 uint32_t featureAndType = config->emachine == EM_AARCH64 826 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 827 : GNU_PROPERTY_X86_FEATURE_1_AND; 828 829 // Read a body of a NOTE record, which consists of type-length-value fields. 830 ArrayRef<uint8_t> desc = note.getDesc(); 831 while (!desc.empty()) { 832 const uint8_t *place = desc.data(); 833 if (desc.size() < 8) 834 reportFatal(place, "program property is too short"); 835 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 836 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 837 desc = desc.slice(8); 838 if (desc.size() < size) 839 reportFatal(place, "program property is too short"); 840 841 if (type == featureAndType) { 842 // We found a FEATURE_1_AND field. There may be more than one of these 843 // in a .note.gnu.property section, for a relocatable object we 844 // accumulate the bits set. 845 if (size < 4) 846 reportFatal(place, "FEATURE_1_AND entry is too short"); 847 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 848 } 849 850 // Padding is present in the note descriptor, if necessary. 851 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 852 } 853 854 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 855 data = data.slice(nhdr->getSize()); 856 } 857 858 return featuresSet; 859 } 860 861 template <class ELFT> 862 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 863 uint32_t idx = sec.sh_info; 864 if (idx >= this->sections.size()) 865 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 866 InputSectionBase *target = this->sections[idx]; 867 868 // Strictly speaking, a relocation section must be included in the 869 // group of the section it relocates. However, LLVM 3.3 and earlier 870 // would fail to do so, so we gracefully handle that case. 871 if (target == &InputSection::discarded) 872 return nullptr; 873 874 if (!target) 875 fatal(toString(this) + ": unsupported relocation reference"); 876 return target; 877 } 878 879 // Create a regular InputSection class that has the same contents 880 // as a given section. 881 static InputSection *toRegularSection(MergeInputSection *sec) { 882 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 883 sec->data(), sec->name); 884 } 885 886 template <class ELFT> 887 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 888 StringRef name = getSectionName(sec); 889 890 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { 891 ARMAttributeParser attributes; 892 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 893 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 894 ? support::little 895 : support::big)) { 896 auto *isec = make<InputSection>(*this, sec, name); 897 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 898 } else { 899 updateSupportedARMFeatures(attributes); 900 updateARMVFPArgs(attributes, this); 901 902 // FIXME: Retain the first attribute section we see. The eglibc ARM 903 // dynamic loaders require the presence of an attribute section for dlopen 904 // to work. In a full implementation we would merge all attribute 905 // sections. 906 if (in.attributes == nullptr) { 907 in.attributes = make<InputSection>(*this, sec, name); 908 return in.attributes; 909 } 910 return &InputSection::discarded; 911 } 912 } 913 914 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { 915 RISCVAttributeParser attributes; 916 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 917 if (Error e = attributes.parse(contents, support::little)) { 918 auto *isec = make<InputSection>(*this, sec, name); 919 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 920 } else { 921 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 922 // present. 923 924 // FIXME: Retain the first attribute section we see. Tools such as 925 // llvm-objdump make use of the attribute section to determine which 926 // standard extensions to enable. In a full implementation we would merge 927 // all attribute sections. 928 if (in.attributes == nullptr) { 929 in.attributes = make<InputSection>(*this, sec, name); 930 return in.attributes; 931 } 932 return &InputSection::discarded; 933 } 934 } 935 936 switch (sec.sh_type) { 937 case SHT_LLVM_DEPENDENT_LIBRARIES: { 938 if (config->relocatable) 939 break; 940 ArrayRef<char> data = 941 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 942 if (!data.empty() && data.back() != '\0') { 943 error(toString(this) + 944 ": corrupted dependent libraries section (unterminated string): " + 945 name); 946 return &InputSection::discarded; 947 } 948 for (const char *d = data.begin(), *e = data.end(); d < e;) { 949 StringRef s(d); 950 addDependentLibrary(s, this); 951 d += s.size() + 1; 952 } 953 return &InputSection::discarded; 954 } 955 case SHT_RELA: 956 case SHT_REL: { 957 // Find a relocation target section and associate this section with that. 958 // Target may have been discarded if it is in a different section group 959 // and the group is discarded, even though it's a violation of the 960 // spec. We handle that situation gracefully by discarding dangling 961 // relocation sections. 962 InputSectionBase *target = getRelocTarget(sec); 963 if (!target) 964 return nullptr; 965 966 // ELF spec allows mergeable sections with relocations, but they are 967 // rare, and it is in practice hard to merge such sections by contents, 968 // because applying relocations at end of linking changes section 969 // contents. So, we simply handle such sections as non-mergeable ones. 970 // Degrading like this is acceptable because section merging is optional. 971 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 972 target = toRegularSection(ms); 973 this->sections[sec.sh_info] = target; 974 } 975 976 if (target->firstRelocation) 977 fatal(toString(this) + 978 ": multiple relocation sections to one section are not supported"); 979 980 if (sec.sh_type == SHT_RELA) { 981 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this); 982 target->firstRelocation = rels.begin(); 983 target->numRelocations = rels.size(); 984 target->areRelocsRela = true; 985 } else { 986 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this); 987 target->firstRelocation = rels.begin(); 988 target->numRelocations = rels.size(); 989 target->areRelocsRela = false; 990 } 991 assert(isUInt<31>(target->numRelocations)); 992 993 // Relocation sections are usually removed from the output, so return 994 // `nullptr` for the normal case. However, if -r or --emit-relocs is 995 // specified, we need to copy them to the output. (Some post link analysis 996 // tools specify --emit-relocs to obtain the information.) 997 if (!config->relocatable && !config->emitRelocs) 998 return nullptr; 999 InputSection *relocSec = make<InputSection>(*this, sec, name); 1000 // If the relocated section is discarded (due to /DISCARD/ or 1001 // --gc-sections), the relocation section should be discarded as well. 1002 target->dependentSections.push_back(relocSec); 1003 return relocSec; 1004 } 1005 } 1006 1007 // The GNU linker uses .note.GNU-stack section as a marker indicating 1008 // that the code in the object file does not expect that the stack is 1009 // executable (in terms of NX bit). If all input files have the marker, 1010 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 1011 // make the stack non-executable. Most object files have this section as 1012 // of 2017. 1013 // 1014 // But making the stack non-executable is a norm today for security 1015 // reasons. Failure to do so may result in a serious security issue. 1016 // Therefore, we make LLD always add PT_GNU_STACK unless it is 1017 // explicitly told to do otherwise (by -z execstack). Because the stack 1018 // executable-ness is controlled solely by command line options, 1019 // .note.GNU-stack sections are simply ignored. 1020 if (name == ".note.GNU-stack") 1021 return &InputSection::discarded; 1022 1023 // Object files that use processor features such as Intel Control-Flow 1024 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 1025 // .note.gnu.property section containing a bitfield of feature bits like the 1026 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 1027 // 1028 // Since we merge bitmaps from multiple object files to create a new 1029 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 1030 // file's .note.gnu.property section. 1031 if (name == ".note.gnu.property") { 1032 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 1033 return &InputSection::discarded; 1034 } 1035 1036 // Split stacks is a feature to support a discontiguous stack, 1037 // commonly used in the programming language Go. For the details, 1038 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1039 // for split stack will include a .note.GNU-split-stack section. 1040 if (name == ".note.GNU-split-stack") { 1041 if (config->relocatable) { 1042 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1043 return &InputSection::discarded; 1044 } 1045 this->splitStack = true; 1046 return &InputSection::discarded; 1047 } 1048 1049 // An object file cmpiled for split stack, but where some of the 1050 // functions were compiled with the no_split_stack_attribute will 1051 // include a .note.GNU-no-split-stack section. 1052 if (name == ".note.GNU-no-split-stack") { 1053 this->someNoSplitStack = true; 1054 return &InputSection::discarded; 1055 } 1056 1057 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1058 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1059 // sections. Drop those sections to avoid duplicate symbol errors. 1060 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1061 // fixed for a while. 1062 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1063 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1064 return &InputSection::discarded; 1065 1066 // If we are creating a new .build-id section, strip existing .build-id 1067 // sections so that the output won't have more than one .build-id. 1068 // This is not usually a problem because input object files normally don't 1069 // have .build-id sections, but you can create such files by 1070 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1071 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1072 return &InputSection::discarded; 1073 1074 // The linker merges EH (exception handling) frames and creates a 1075 // .eh_frame_hdr section for runtime. So we handle them with a special 1076 // class. For relocatable outputs, they are just passed through. 1077 if (name == ".eh_frame" && !config->relocatable) 1078 return make<EhInputSection>(*this, sec, name); 1079 1080 if (shouldMerge(sec, name)) 1081 return make<MergeInputSection>(*this, sec, name); 1082 return make<InputSection>(*this, sec, name); 1083 } 1084 1085 template <class ELFT> 1086 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1087 return CHECK(getObj().getSectionName(sec, sectionStringTable), this); 1088 } 1089 1090 // Initialize this->Symbols. this->Symbols is a parallel array as 1091 // its corresponding ELF symbol table. 1092 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1093 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1094 this->symbols.resize(eSyms.size()); 1095 1096 // Fill in InputFile::symbols. Some entries have been initialized 1097 // because of LazyObjFile. 1098 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1099 if (this->symbols[i]) 1100 continue; 1101 const Elf_Sym &eSym = eSyms[i]; 1102 uint32_t secIdx = getSectionIndex(eSym); 1103 if (secIdx >= this->sections.size()) 1104 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1105 if (eSym.getBinding() != STB_LOCAL) { 1106 if (i < firstGlobal) 1107 error(toString(this) + ": non-local symbol (" + Twine(i) + 1108 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1109 ")"); 1110 this->symbols[i] = 1111 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1112 continue; 1113 } 1114 1115 // Handle local symbols. Local symbols are not added to the symbol 1116 // table because they are not visible from other object files. We 1117 // allocate symbol instances and add their pointers to symbols. 1118 if (i >= firstGlobal) 1119 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1120 ") found at index >= .symtab's sh_info (" + 1121 Twine(firstGlobal) + ")"); 1122 1123 InputSectionBase *sec = this->sections[secIdx]; 1124 uint8_t type = eSym.getType(); 1125 if (type == STT_FILE) 1126 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1127 if (this->stringTable.size() <= eSym.st_name) 1128 fatal(toString(this) + ": invalid symbol name offset"); 1129 StringRefZ name = this->stringTable.data() + eSym.st_name; 1130 1131 if (eSym.st_shndx == SHN_UNDEF) 1132 this->symbols[i] = 1133 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); 1134 else if (sec == &InputSection::discarded) 1135 this->symbols[i] = 1136 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, 1137 /*discardedSecIdx=*/secIdx); 1138 else 1139 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, 1140 type, eSym.st_value, eSym.st_size, sec); 1141 } 1142 1143 // Symbol resolution of non-local symbols. 1144 SmallVector<unsigned, 32> unds; 1145 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1146 const Elf_Sym &eSym = eSyms[i]; 1147 uint8_t binding = eSym.getBinding(); 1148 if (binding == STB_LOCAL) 1149 continue; // Errored above. 1150 1151 uint32_t secIdx = getSectionIndex(eSym); 1152 InputSectionBase *sec = this->sections[secIdx]; 1153 uint8_t stOther = eSym.st_other; 1154 uint8_t type = eSym.getType(); 1155 uint64_t value = eSym.st_value; 1156 uint64_t size = eSym.st_size; 1157 StringRefZ name = this->stringTable.data() + eSym.st_name; 1158 1159 // Handle global undefined symbols. 1160 if (eSym.st_shndx == SHN_UNDEF) { 1161 unds.push_back(i); 1162 continue; 1163 } 1164 1165 // Handle global common symbols. 1166 if (eSym.st_shndx == SHN_COMMON) { 1167 if (value == 0 || value >= UINT32_MAX) 1168 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1169 "' has invalid alignment: " + Twine(value)); 1170 this->symbols[i]->resolve( 1171 CommonSymbol{this, name, binding, stOther, type, value, size}); 1172 continue; 1173 } 1174 1175 // If a defined symbol is in a discarded section, handle it as if it 1176 // were an undefined symbol. Such symbol doesn't comply with the 1177 // standard, but in practice, a .eh_frame often directly refer 1178 // COMDAT member sections, and if a comdat group is discarded, some 1179 // defined symbol in a .eh_frame becomes dangling symbols. 1180 if (sec == &InputSection::discarded) { 1181 Undefined und{this, name, binding, stOther, type, secIdx}; 1182 Symbol *sym = this->symbols[i]; 1183 // !ArchiveFile::parsed or LazyObjFile::fetched means that the file 1184 // containing this object has not finished processing, i.e. this symbol is 1185 // a result of a lazy symbol fetch. We should demote the lazy symbol to an 1186 // Undefined so that any relocations outside of the group to it will 1187 // trigger a discarded section error. 1188 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1189 !cast<ArchiveFile>(sym->file)->parsed) || 1190 (sym->symbolKind == Symbol::LazyObjectKind && 1191 cast<LazyObjFile>(sym->file)->fetched)) 1192 sym->replace(und); 1193 else 1194 sym->resolve(und); 1195 continue; 1196 } 1197 1198 // Handle global defined symbols. 1199 if (binding == STB_GLOBAL || binding == STB_WEAK || 1200 binding == STB_GNU_UNIQUE) { 1201 this->symbols[i]->resolve( 1202 Defined{this, name, binding, stOther, type, value, size, sec}); 1203 continue; 1204 } 1205 1206 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1207 } 1208 1209 // Undefined symbols (excluding those defined relative to non-prevailing 1210 // sections) can trigger recursive fetch. Process defined symbols first so 1211 // that the relative order between a defined symbol and an undefined symbol 1212 // does not change the symbol resolution behavior. In addition, a set of 1213 // interconnected symbols will all be resolved to the same file, instead of 1214 // being resolved to different files. 1215 for (unsigned i : unds) { 1216 const Elf_Sym &eSym = eSyms[i]; 1217 StringRefZ name = this->stringTable.data() + eSym.st_name; 1218 this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(), 1219 eSym.st_other, eSym.getType()}); 1220 this->symbols[i]->referenced = true; 1221 } 1222 } 1223 1224 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1225 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1226 file(std::move(file)) {} 1227 1228 void ArchiveFile::parse() { 1229 for (const Archive::Symbol &sym : file->symbols()) 1230 symtab->addSymbol(LazyArchive{*this, sym}); 1231 1232 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1233 // archive has been processed. 1234 parsed = true; 1235 } 1236 1237 // Returns a buffer pointing to a member file containing a given symbol. 1238 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1239 Archive::Child c = 1240 CHECK(sym.getMember(), toString(this) + 1241 ": could not get the member for symbol " + 1242 toELFString(sym)); 1243 1244 if (!seen.insert(c.getChildOffset()).second) 1245 return; 1246 1247 MemoryBufferRef mb = 1248 CHECK(c.getMemoryBufferRef(), 1249 toString(this) + 1250 ": could not get the buffer for the member defining symbol " + 1251 toELFString(sym)); 1252 1253 if (tar && c.getParent()->isThin()) 1254 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1255 1256 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1257 file->groupId = groupId; 1258 parseFile(file); 1259 } 1260 1261 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1262 // A tentative definition will be promoted to a global definition if there are 1263 // no non-tentative definitions to dominate it. When we hold a tentative 1264 // definition to a symbol and are inspecting archive members for inclusion 1265 // there are 2 ways we can proceed: 1266 // 1267 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1268 // tentative to real definition has already happened) and not inspect 1269 // archive members for Global/Weak definitions to replace the tentative 1270 // definition. An archive member would only be included if it satisfies some 1271 // other undefined symbol. This is the behavior Gold uses. 1272 // 1273 // 2) Consider the tentative definition as still undefined (ie the promotion to 1274 // a real definition happens only after all symbol resolution is done). 1275 // The linker searches archive members for global or weak definitions to 1276 // replace the tentative definition with. This is the behavior used by 1277 // GNU ld. 1278 // 1279 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1280 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1281 // (pre F90) FORTRAN code that is packaged into an archive. 1282 // 1283 // The following functions search archive members for definitions to replace 1284 // tentative definitions (implementing behavior 2). 1285 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1286 StringRef archiveName) { 1287 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1288 for (const irsymtab::Reader::SymbolRef &sym : 1289 symtabFile.TheReader.symbols()) { 1290 if (sym.isGlobal() && sym.getName() == symName) 1291 return !sym.isUndefined() && !sym.isCommon(); 1292 } 1293 return false; 1294 } 1295 1296 template <class ELFT> 1297 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1298 StringRef archiveName) { 1299 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1300 StringRef stringtable = obj->getStringTable(); 1301 1302 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1303 Expected<StringRef> name = sym.getName(stringtable); 1304 if (name && name.get() == symName) 1305 return sym.isDefined() && !sym.isCommon(); 1306 } 1307 return false; 1308 } 1309 1310 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1311 StringRef archiveName) { 1312 switch (getELFKind(mb, archiveName)) { 1313 case ELF32LEKind: 1314 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1315 case ELF32BEKind: 1316 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1317 case ELF64LEKind: 1318 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1319 case ELF64BEKind: 1320 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1321 default: 1322 llvm_unreachable("getELFKind"); 1323 } 1324 } 1325 1326 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) { 1327 Archive::Child c = 1328 CHECK(sym.getMember(), toString(this) + 1329 ": could not get the member for symbol " + 1330 toELFString(sym)); 1331 MemoryBufferRef mb = 1332 CHECK(c.getMemoryBufferRef(), 1333 toString(this) + 1334 ": could not get the buffer for the member defining symbol " + 1335 toELFString(sym)); 1336 1337 if (isBitcode(mb)) 1338 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1339 1340 return isNonCommonDef(mb, sym.getName(), getName()); 1341 } 1342 1343 size_t ArchiveFile::getMemberCount() const { 1344 size_t count = 0; 1345 Error err = Error::success(); 1346 for (const Archive::Child &c : file->children(err)) { 1347 (void)c; 1348 ++count; 1349 } 1350 // This function is used by --print-archive-stats=, where an error does not 1351 // really matter. 1352 consumeError(std::move(err)); 1353 return count; 1354 } 1355 1356 unsigned SharedFile::vernauxNum; 1357 1358 // Parse the version definitions in the object file if present, and return a 1359 // vector whose nth element contains a pointer to the Elf_Verdef for version 1360 // identifier n. Version identifiers that are not definitions map to nullptr. 1361 template <typename ELFT> 1362 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1363 const typename ELFT::Shdr *sec) { 1364 if (!sec) 1365 return {}; 1366 1367 // We cannot determine the largest verdef identifier without inspecting 1368 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1369 // sequentially starting from 1, so we predict that the largest identifier 1370 // will be verdefCount. 1371 unsigned verdefCount = sec->sh_info; 1372 std::vector<const void *> verdefs(verdefCount + 1); 1373 1374 // Build the Verdefs array by following the chain of Elf_Verdef objects 1375 // from the start of the .gnu.version_d section. 1376 const uint8_t *verdef = base + sec->sh_offset; 1377 for (unsigned i = 0; i != verdefCount; ++i) { 1378 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1379 verdef += curVerdef->vd_next; 1380 unsigned verdefIndex = curVerdef->vd_ndx; 1381 verdefs.resize(verdefIndex + 1); 1382 verdefs[verdefIndex] = curVerdef; 1383 } 1384 return verdefs; 1385 } 1386 1387 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1388 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1389 // implement sophisticated error checking like in llvm-readobj because the value 1390 // of such diagnostics is low. 1391 template <typename ELFT> 1392 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1393 const typename ELFT::Shdr *sec) { 1394 if (!sec) 1395 return {}; 1396 std::vector<uint32_t> verneeds; 1397 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1398 const uint8_t *verneedBuf = data.begin(); 1399 for (unsigned i = 0; i != sec->sh_info; ++i) { 1400 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1401 fatal(toString(this) + " has an invalid Verneed"); 1402 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1403 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1404 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1405 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1406 fatal(toString(this) + " has an invalid Vernaux"); 1407 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1408 if (aux->vna_name >= this->stringTable.size()) 1409 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1410 uint16_t version = aux->vna_other & VERSYM_VERSION; 1411 if (version >= verneeds.size()) 1412 verneeds.resize(version + 1); 1413 verneeds[version] = aux->vna_name; 1414 vernauxBuf += aux->vna_next; 1415 } 1416 verneedBuf += vn->vn_next; 1417 } 1418 return verneeds; 1419 } 1420 1421 // We do not usually care about alignments of data in shared object 1422 // files because the loader takes care of it. However, if we promote a 1423 // DSO symbol to point to .bss due to copy relocation, we need to keep 1424 // the original alignment requirements. We infer it in this function. 1425 template <typename ELFT> 1426 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1427 const typename ELFT::Sym &sym) { 1428 uint64_t ret = UINT64_MAX; 1429 if (sym.st_value) 1430 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1431 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1432 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1433 return (ret > UINT32_MAX) ? 0 : ret; 1434 } 1435 1436 // Fully parse the shared object file. 1437 // 1438 // This function parses symbol versions. If a DSO has version information, 1439 // the file has a ".gnu.version_d" section which contains symbol version 1440 // definitions. Each symbol is associated to one version through a table in 1441 // ".gnu.version" section. That table is a parallel array for the symbol 1442 // table, and each table entry contains an index in ".gnu.version_d". 1443 // 1444 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1445 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1446 // ".gnu.version_d". 1447 // 1448 // The file format for symbol versioning is perhaps a bit more complicated 1449 // than necessary, but you can easily understand the code if you wrap your 1450 // head around the data structure described above. 1451 template <class ELFT> void SharedFile::parse() { 1452 using Elf_Dyn = typename ELFT::Dyn; 1453 using Elf_Shdr = typename ELFT::Shdr; 1454 using Elf_Sym = typename ELFT::Sym; 1455 using Elf_Verdef = typename ELFT::Verdef; 1456 using Elf_Versym = typename ELFT::Versym; 1457 1458 ArrayRef<Elf_Dyn> dynamicTags; 1459 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1460 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1461 1462 const Elf_Shdr *versymSec = nullptr; 1463 const Elf_Shdr *verdefSec = nullptr; 1464 const Elf_Shdr *verneedSec = nullptr; 1465 1466 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1467 for (const Elf_Shdr &sec : sections) { 1468 switch (sec.sh_type) { 1469 default: 1470 continue; 1471 case SHT_DYNAMIC: 1472 dynamicTags = 1473 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1474 break; 1475 case SHT_GNU_versym: 1476 versymSec = &sec; 1477 break; 1478 case SHT_GNU_verdef: 1479 verdefSec = &sec; 1480 break; 1481 case SHT_GNU_verneed: 1482 verneedSec = &sec; 1483 break; 1484 } 1485 } 1486 1487 if (versymSec && numELFSyms == 0) { 1488 error("SHT_GNU_versym should be associated with symbol table"); 1489 return; 1490 } 1491 1492 // Search for a DT_SONAME tag to initialize this->soName. 1493 for (const Elf_Dyn &dyn : dynamicTags) { 1494 if (dyn.d_tag == DT_NEEDED) { 1495 uint64_t val = dyn.getVal(); 1496 if (val >= this->stringTable.size()) 1497 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1498 dtNeeded.push_back(this->stringTable.data() + val); 1499 } else if (dyn.d_tag == DT_SONAME) { 1500 uint64_t val = dyn.getVal(); 1501 if (val >= this->stringTable.size()) 1502 fatal(toString(this) + ": invalid DT_SONAME entry"); 1503 soName = this->stringTable.data() + val; 1504 } 1505 } 1506 1507 // DSOs are uniquified not by filename but by soname. 1508 DenseMap<StringRef, SharedFile *>::iterator it; 1509 bool wasInserted; 1510 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1511 1512 // If a DSO appears more than once on the command line with and without 1513 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1514 // user can add an extra DSO with --no-as-needed to force it to be added to 1515 // the dependency list. 1516 it->second->isNeeded |= isNeeded; 1517 if (!wasInserted) 1518 return; 1519 1520 sharedFiles.push_back(this); 1521 1522 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1523 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1524 1525 // Parse ".gnu.version" section which is a parallel array for the symbol 1526 // table. If a given file doesn't have a ".gnu.version" section, we use 1527 // VER_NDX_GLOBAL. 1528 size_t size = numELFSyms - firstGlobal; 1529 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1530 if (versymSec) { 1531 ArrayRef<Elf_Versym> versym = 1532 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1533 this) 1534 .slice(firstGlobal); 1535 for (size_t i = 0; i < size; ++i) 1536 versyms[i] = versym[i].vs_index; 1537 } 1538 1539 // System libraries can have a lot of symbols with versions. Using a 1540 // fixed buffer for computing the versions name (foo@ver) can save a 1541 // lot of allocations. 1542 SmallString<0> versionedNameBuffer; 1543 1544 // Add symbols to the symbol table. 1545 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1546 for (size_t i = 0; i < syms.size(); ++i) { 1547 const Elf_Sym &sym = syms[i]; 1548 1549 // ELF spec requires that all local symbols precede weak or global 1550 // symbols in each symbol table, and the index of first non-local symbol 1551 // is stored to sh_info. If a local symbol appears after some non-local 1552 // symbol, that's a violation of the spec. 1553 StringRef name = CHECK(sym.getName(this->stringTable), this); 1554 if (sym.getBinding() == STB_LOCAL) { 1555 warn("found local symbol '" + name + 1556 "' in global part of symbol table in file " + toString(this)); 1557 continue; 1558 } 1559 1560 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1561 if (sym.isUndefined()) { 1562 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1563 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1564 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1565 if (idx >= verneeds.size()) { 1566 error("corrupt input file: version need index " + Twine(idx) + 1567 " for symbol " + name + " is out of bounds\n>>> defined in " + 1568 toString(this)); 1569 continue; 1570 } 1571 StringRef verName = this->stringTable.data() + verneeds[idx]; 1572 versionedNameBuffer.clear(); 1573 name = 1574 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1575 } 1576 Symbol *s = symtab->addSymbol( 1577 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1578 s->exportDynamic = true; 1579 if (s->isUndefined() && !s->isWeak() && 1580 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1581 requiredSymbols.push_back(s); 1582 continue; 1583 } 1584 1585 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1586 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1587 // workaround for this bug. 1588 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1589 name == "_gp_disp") 1590 continue; 1591 1592 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1593 if (!(versyms[i] & VERSYM_HIDDEN)) { 1594 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1595 sym.st_other, sym.getType(), sym.st_value, 1596 sym.st_size, alignment, idx}); 1597 } 1598 1599 // Also add the symbol with the versioned name to handle undefined symbols 1600 // with explicit versions. 1601 if (idx == VER_NDX_GLOBAL) 1602 continue; 1603 1604 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1605 error("corrupt input file: version definition index " + Twine(idx) + 1606 " for symbol " + name + " is out of bounds\n>>> defined in " + 1607 toString(this)); 1608 continue; 1609 } 1610 1611 StringRef verName = 1612 this->stringTable.data() + 1613 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1614 versionedNameBuffer.clear(); 1615 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1616 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1617 sym.st_other, sym.getType(), sym.st_value, 1618 sym.st_size, alignment, idx}); 1619 } 1620 } 1621 1622 static ELFKind getBitcodeELFKind(const Triple &t) { 1623 if (t.isLittleEndian()) 1624 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1625 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1626 } 1627 1628 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1629 switch (t.getArch()) { 1630 case Triple::aarch64: 1631 case Triple::aarch64_be: 1632 return EM_AARCH64; 1633 case Triple::amdgcn: 1634 case Triple::r600: 1635 return EM_AMDGPU; 1636 case Triple::arm: 1637 case Triple::thumb: 1638 return EM_ARM; 1639 case Triple::avr: 1640 return EM_AVR; 1641 case Triple::mips: 1642 case Triple::mipsel: 1643 case Triple::mips64: 1644 case Triple::mips64el: 1645 return EM_MIPS; 1646 case Triple::msp430: 1647 return EM_MSP430; 1648 case Triple::ppc: 1649 case Triple::ppcle: 1650 return EM_PPC; 1651 case Triple::ppc64: 1652 case Triple::ppc64le: 1653 return EM_PPC64; 1654 case Triple::riscv32: 1655 case Triple::riscv64: 1656 return EM_RISCV; 1657 case Triple::x86: 1658 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1659 case Triple::x86_64: 1660 return EM_X86_64; 1661 default: 1662 error(path + ": could not infer e_machine from bitcode target triple " + 1663 t.str()); 1664 return EM_NONE; 1665 } 1666 } 1667 1668 static uint8_t getOsAbi(const Triple &t) { 1669 switch (t.getOS()) { 1670 case Triple::AMDHSA: 1671 return ELF::ELFOSABI_AMDGPU_HSA; 1672 case Triple::AMDPAL: 1673 return ELF::ELFOSABI_AMDGPU_PAL; 1674 case Triple::Mesa3D: 1675 return ELF::ELFOSABI_AMDGPU_MESA3D; 1676 default: 1677 return ELF::ELFOSABI_NONE; 1678 } 1679 } 1680 1681 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1682 uint64_t offsetInArchive) 1683 : InputFile(BitcodeKind, mb) { 1684 this->archiveName = std::string(archiveName); 1685 1686 std::string path = mb.getBufferIdentifier().str(); 1687 if (config->thinLTOIndexOnly) 1688 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1689 1690 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1691 // name. If two archives define two members with the same name, this 1692 // causes a collision which result in only one of the objects being taken 1693 // into consideration at LTO time (which very likely causes undefined 1694 // symbols later in the link stage). So we append file offset to make 1695 // filename unique. 1696 StringRef name = 1697 archiveName.empty() 1698 ? saver.save(path) 1699 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1700 utostr(offsetInArchive) + ")"); 1701 MemoryBufferRef mbref(mb.getBuffer(), name); 1702 1703 obj = CHECK(lto::InputFile::create(mbref), this); 1704 1705 Triple t(obj->getTargetTriple()); 1706 ekind = getBitcodeELFKind(t); 1707 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1708 osabi = getOsAbi(t); 1709 } 1710 1711 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1712 switch (gvVisibility) { 1713 case GlobalValue::DefaultVisibility: 1714 return STV_DEFAULT; 1715 case GlobalValue::HiddenVisibility: 1716 return STV_HIDDEN; 1717 case GlobalValue::ProtectedVisibility: 1718 return STV_PROTECTED; 1719 } 1720 llvm_unreachable("unknown visibility"); 1721 } 1722 1723 template <class ELFT> 1724 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1725 const lto::InputFile::Symbol &objSym, 1726 BitcodeFile &f) { 1727 StringRef name = saver.save(objSym.getName()); 1728 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1729 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1730 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1731 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1732 1733 int c = objSym.getComdatIndex(); 1734 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1735 Undefined newSym(&f, name, binding, visibility, type); 1736 if (canOmitFromDynSym) 1737 newSym.exportDynamic = false; 1738 Symbol *ret = symtab->addSymbol(newSym); 1739 ret->referenced = true; 1740 return ret; 1741 } 1742 1743 if (objSym.isCommon()) 1744 return symtab->addSymbol( 1745 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1746 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1747 1748 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1749 if (canOmitFromDynSym) 1750 newSym.exportDynamic = false; 1751 return symtab->addSymbol(newSym); 1752 } 1753 1754 template <class ELFT> void BitcodeFile::parse() { 1755 std::vector<bool> keptComdats; 1756 for (StringRef s : obj->getComdatTable()) 1757 keptComdats.push_back( 1758 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1759 1760 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1761 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1762 1763 for (auto l : obj->getDependentLibraries()) 1764 addDependentLibrary(l, this); 1765 } 1766 1767 void BinaryFile::parse() { 1768 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1769 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1770 8, data, ".data"); 1771 sections.push_back(section); 1772 1773 // For each input file foo that is embedded to a result as a binary 1774 // blob, we define _binary_foo_{start,end,size} symbols, so that 1775 // user programs can access blobs by name. Non-alphanumeric 1776 // characters in a filename are replaced with underscore. 1777 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1778 for (size_t i = 0; i < s.size(); ++i) 1779 if (!isAlnum(s[i])) 1780 s[i] = '_'; 1781 1782 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1783 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1784 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1785 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1786 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1787 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1788 } 1789 1790 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1791 uint64_t offsetInArchive) { 1792 if (isBitcode(mb)) 1793 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1794 1795 switch (getELFKind(mb, archiveName)) { 1796 case ELF32LEKind: 1797 return make<ObjFile<ELF32LE>>(mb, archiveName); 1798 case ELF32BEKind: 1799 return make<ObjFile<ELF32BE>>(mb, archiveName); 1800 case ELF64LEKind: 1801 return make<ObjFile<ELF64LE>>(mb, archiveName); 1802 case ELF64BEKind: 1803 return make<ObjFile<ELF64BE>>(mb, archiveName); 1804 default: 1805 llvm_unreachable("getELFKind"); 1806 } 1807 } 1808 1809 void LazyObjFile::fetch() { 1810 if (fetched) 1811 return; 1812 fetched = true; 1813 1814 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1815 file->groupId = groupId; 1816 1817 // Copy symbol vector so that the new InputFile doesn't have to 1818 // insert the same defined symbols to the symbol table again. 1819 file->symbols = std::move(symbols); 1820 1821 parseFile(file); 1822 } 1823 1824 template <class ELFT> void LazyObjFile::parse() { 1825 using Elf_Sym = typename ELFT::Sym; 1826 1827 // A lazy object file wraps either a bitcode file or an ELF file. 1828 if (isBitcode(this->mb)) { 1829 std::unique_ptr<lto::InputFile> obj = 1830 CHECK(lto::InputFile::create(this->mb), this); 1831 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1832 if (sym.isUndefined()) 1833 continue; 1834 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1835 } 1836 return; 1837 } 1838 1839 if (getELFKind(this->mb, archiveName) != config->ekind) { 1840 error("incompatible file: " + this->mb.getBufferIdentifier()); 1841 return; 1842 } 1843 1844 // Find a symbol table. 1845 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1846 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1847 1848 for (const typename ELFT::Shdr &sec : sections) { 1849 if (sec.sh_type != SHT_SYMTAB) 1850 continue; 1851 1852 // A symbol table is found. 1853 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1854 uint32_t firstGlobal = sec.sh_info; 1855 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1856 this->symbols.resize(eSyms.size()); 1857 1858 // Get existing symbols or insert placeholder symbols. 1859 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1860 if (eSyms[i].st_shndx != SHN_UNDEF) 1861 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1862 1863 // Replace existing symbols with LazyObject symbols. 1864 // 1865 // resolve() may trigger this->fetch() if an existing symbol is an 1866 // undefined symbol. If that happens, this LazyObjFile has served 1867 // its purpose, and we can exit from the loop early. 1868 for (Symbol *sym : this->symbols) { 1869 if (!sym) 1870 continue; 1871 sym->resolve(LazyObject{*this, sym->getName()}); 1872 1873 // If fetched, stop iterating because this->symbols has been transferred 1874 // to the instantiated ObjFile. 1875 if (fetched) 1876 return; 1877 } 1878 return; 1879 } 1880 } 1881 1882 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) { 1883 if (isBitcode(mb)) 1884 return isBitcodeNonCommonDef(mb, name, archiveName); 1885 1886 return isNonCommonDef(mb, name, archiveName); 1887 } 1888 1889 std::string elf::replaceThinLTOSuffix(StringRef path) { 1890 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1891 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1892 1893 if (path.consume_back(suffix)) 1894 return (path + repl).str(); 1895 return std::string(path); 1896 } 1897 1898 template void BitcodeFile::parse<ELF32LE>(); 1899 template void BitcodeFile::parse<ELF32BE>(); 1900 template void BitcodeFile::parse<ELF64LE>(); 1901 template void BitcodeFile::parse<ELF64BE>(); 1902 1903 template void LazyObjFile::parse<ELF32LE>(); 1904 template void LazyObjFile::parse<ELF32BE>(); 1905 template void LazyObjFile::parse<ELF64LE>(); 1906 template void LazyObjFile::parse<ELF64BE>(); 1907 1908 template class elf::ObjFile<ELF32LE>; 1909 template class elf::ObjFile<ELF32BE>; 1910 template class elf::ObjFile<ELF64LE>; 1911 template class elf::ObjFile<ELF64BE>; 1912 1913 template void SharedFile::parse<ELF32LE>(); 1914 template void SharedFile::parse<ELF32BE>(); 1915 template void SharedFile::parse<ELF64LE>(); 1916 template void SharedFile::parse<ELF64BE>(); 1917