1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 using namespace lld; 40 using namespace lld::elf; 41 42 bool InputFile::isInGroup; 43 uint32_t InputFile::nextGroupId; 44 45 std::vector<ArchiveFile *> elf::archiveFiles; 46 std::vector<BinaryFile *> elf::binaryFiles; 47 std::vector<BitcodeFile *> elf::bitcodeFiles; 48 std::vector<LazyObjFile *> elf::lazyObjFiles; 49 std::vector<InputFile *> elf::objectFiles; 50 std::vector<SharedFile *> elf::sharedFiles; 51 52 std::unique_ptr<TarWriter> elf::tar; 53 54 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 55 std::string lld::toString(const InputFile *f) { 56 if (!f) 57 return "<internal>"; 58 59 if (f->toStringCache.empty()) { 60 if (f->archiveName.empty()) 61 f->toStringCache = std::string(f->getName()); 62 else 63 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 64 } 65 return f->toStringCache; 66 } 67 68 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 69 unsigned char size; 70 unsigned char endian; 71 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 72 73 auto report = [&](StringRef msg) { 74 StringRef filename = mb.getBufferIdentifier(); 75 if (archiveName.empty()) 76 fatal(filename + ": " + msg); 77 else 78 fatal(archiveName + "(" + filename + "): " + msg); 79 }; 80 81 if (!mb.getBuffer().startswith(ElfMagic)) 82 report("not an ELF file"); 83 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 84 report("corrupted ELF file: invalid data encoding"); 85 if (size != ELFCLASS32 && size != ELFCLASS64) 86 report("corrupted ELF file: invalid file class"); 87 88 size_t bufSize = mb.getBuffer().size(); 89 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 90 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 91 report("corrupted ELF file: file is too short"); 92 93 if (size == ELFCLASS32) 94 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 95 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 96 } 97 98 InputFile::InputFile(Kind k, MemoryBufferRef m) 99 : mb(m), groupId(nextGroupId), fileKind(k) { 100 // All files within the same --{start,end}-group get the same group ID. 101 // Otherwise, a new file will get a new group ID. 102 if (!isInGroup) 103 ++nextGroupId; 104 } 105 106 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 107 // The --chroot option changes our virtual root directory. 108 // This is useful when you are dealing with files created by --reproduce. 109 if (!config->chroot.empty() && path.startswith("/")) 110 path = saver.save(config->chroot + path); 111 112 log(path); 113 config->dependencyFiles.insert(llvm::CachedHashString(path)); 114 115 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 116 if (auto ec = mbOrErr.getError()) { 117 error("cannot open " + path + ": " + ec.message()); 118 return None; 119 } 120 121 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 122 MemoryBufferRef mbref = mb->getMemBufferRef(); 123 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 124 125 if (tar) 126 tar->append(relativeToRoot(path), mbref.getBuffer()); 127 return mbref; 128 } 129 130 // All input object files must be for the same architecture 131 // (e.g. it does not make sense to link x86 object files with 132 // MIPS object files.) This function checks for that error. 133 static bool isCompatible(InputFile *file) { 134 if (!file->isElf() && !isa<BitcodeFile>(file)) 135 return true; 136 137 if (file->ekind == config->ekind && file->emachine == config->emachine) { 138 if (config->emachine != EM_MIPS) 139 return true; 140 if (isMipsN32Abi(file) == config->mipsN32Abi) 141 return true; 142 } 143 144 StringRef target = 145 !config->bfdname.empty() ? config->bfdname : config->emulation; 146 if (!target.empty()) { 147 error(toString(file) + " is incompatible with " + target); 148 return false; 149 } 150 151 InputFile *existing; 152 if (!objectFiles.empty()) 153 existing = objectFiles[0]; 154 else if (!sharedFiles.empty()) 155 existing = sharedFiles[0]; 156 else if (!bitcodeFiles.empty()) 157 existing = bitcodeFiles[0]; 158 else 159 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 160 "determine target emulation"); 161 162 error(toString(file) + " is incompatible with " + toString(existing)); 163 return false; 164 } 165 166 template <class ELFT> static void doParseFile(InputFile *file) { 167 if (!isCompatible(file)) 168 return; 169 170 // Binary file 171 if (auto *f = dyn_cast<BinaryFile>(file)) { 172 binaryFiles.push_back(f); 173 f->parse(); 174 return; 175 } 176 177 // .a file 178 if (auto *f = dyn_cast<ArchiveFile>(file)) { 179 archiveFiles.push_back(f); 180 f->parse(); 181 return; 182 } 183 184 // Lazy object file 185 if (auto *f = dyn_cast<LazyObjFile>(file)) { 186 lazyObjFiles.push_back(f); 187 f->parse<ELFT>(); 188 return; 189 } 190 191 if (config->trace) 192 message(toString(file)); 193 194 // .so file 195 if (auto *f = dyn_cast<SharedFile>(file)) { 196 f->parse<ELFT>(); 197 return; 198 } 199 200 // LLVM bitcode file 201 if (auto *f = dyn_cast<BitcodeFile>(file)) { 202 bitcodeFiles.push_back(f); 203 f->parse<ELFT>(); 204 return; 205 } 206 207 // Regular object file 208 objectFiles.push_back(file); 209 cast<ObjFile<ELFT>>(file)->parse(); 210 } 211 212 // Add symbols in File to the symbol table. 213 void elf::parseFile(InputFile *file) { 214 switch (config->ekind) { 215 case ELF32LEKind: 216 doParseFile<ELF32LE>(file); 217 return; 218 case ELF32BEKind: 219 doParseFile<ELF32BE>(file); 220 return; 221 case ELF64LEKind: 222 doParseFile<ELF64LE>(file); 223 return; 224 case ELF64BEKind: 225 doParseFile<ELF64BE>(file); 226 return; 227 default: 228 llvm_unreachable("unknown ELFT"); 229 } 230 } 231 232 // Concatenates arguments to construct a string representing an error location. 233 static std::string createFileLineMsg(StringRef path, unsigned line) { 234 std::string filename = std::string(path::filename(path)); 235 std::string lineno = ":" + std::to_string(line); 236 if (filename == path) 237 return filename + lineno; 238 return filename + lineno + " (" + path.str() + lineno + ")"; 239 } 240 241 template <class ELFT> 242 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 243 InputSectionBase &sec, uint64_t offset) { 244 // In DWARF, functions and variables are stored to different places. 245 // First, lookup a function for a given offset. 246 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 247 return createFileLineMsg(info->FileName, info->Line); 248 249 // If it failed, lookup again as a variable. 250 if (Optional<std::pair<std::string, unsigned>> fileLine = 251 file.getVariableLoc(sym.getName())) 252 return createFileLineMsg(fileLine->first, fileLine->second); 253 254 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 255 return std::string(file.sourceFile); 256 } 257 258 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 259 uint64_t offset) { 260 if (kind() != ObjKind) 261 return ""; 262 switch (config->ekind) { 263 default: 264 llvm_unreachable("Invalid kind"); 265 case ELF32LEKind: 266 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 267 case ELF32BEKind: 268 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 269 case ELF64LEKind: 270 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 271 case ELF64BEKind: 272 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 273 } 274 } 275 276 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 277 llvm::call_once(initDwarf, [this]() { 278 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 279 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 280 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 281 [&](Error warning) { 282 warn(getName() + ": " + toString(std::move(warning))); 283 })); 284 }); 285 286 return dwarf.get(); 287 } 288 289 // Returns the pair of file name and line number describing location of data 290 // object (variable, array, etc) definition. 291 template <class ELFT> 292 Optional<std::pair<std::string, unsigned>> 293 ObjFile<ELFT>::getVariableLoc(StringRef name) { 294 return getDwarf()->getVariableLoc(name); 295 } 296 297 // Returns source line information for a given offset 298 // using DWARF debug info. 299 template <class ELFT> 300 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 301 uint64_t offset) { 302 // Detect SectionIndex for specified section. 303 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 304 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 305 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 306 if (s == sections[curIndex]) { 307 sectionIndex = curIndex; 308 break; 309 } 310 } 311 312 return getDwarf()->getDILineInfo(offset, sectionIndex); 313 } 314 315 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 316 ekind = getELFKind(mb, ""); 317 318 switch (ekind) { 319 case ELF32LEKind: 320 init<ELF32LE>(); 321 break; 322 case ELF32BEKind: 323 init<ELF32BE>(); 324 break; 325 case ELF64LEKind: 326 init<ELF64LE>(); 327 break; 328 case ELF64BEKind: 329 init<ELF64BE>(); 330 break; 331 default: 332 llvm_unreachable("getELFKind"); 333 } 334 } 335 336 template <typename Elf_Shdr> 337 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 338 for (const Elf_Shdr &sec : sections) 339 if (sec.sh_type == type) 340 return &sec; 341 return nullptr; 342 } 343 344 template <class ELFT> void ELFFileBase::init() { 345 using Elf_Shdr = typename ELFT::Shdr; 346 using Elf_Sym = typename ELFT::Sym; 347 348 // Initialize trivial attributes. 349 const ELFFile<ELFT> &obj = getObj<ELFT>(); 350 emachine = obj.getHeader()->e_machine; 351 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 352 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 353 354 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 355 356 // Find a symbol table. 357 bool isDSO = 358 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 359 const Elf_Shdr *symtabSec = 360 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 361 362 if (!symtabSec) 363 return; 364 365 // Initialize members corresponding to a symbol table. 366 firstGlobal = symtabSec->sh_info; 367 368 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 369 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 370 fatal(toString(this) + ": invalid sh_info in symbol table"); 371 372 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 373 numELFSyms = eSyms.size(); 374 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 375 } 376 377 template <class ELFT> 378 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 379 return CHECK( 380 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 381 this); 382 } 383 384 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 385 if (this->symbols.empty()) 386 return {}; 387 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 388 } 389 390 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 391 return makeArrayRef(this->symbols).slice(this->firstGlobal); 392 } 393 394 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 395 // Read a section table. justSymbols is usually false. 396 if (this->justSymbols) 397 initializeJustSymbols(); 398 else 399 initializeSections(ignoreComdats); 400 401 // Read a symbol table. 402 initializeSymbols(); 403 } 404 405 // Sections with SHT_GROUP and comdat bits define comdat section groups. 406 // They are identified and deduplicated by group name. This function 407 // returns a group name. 408 template <class ELFT> 409 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 410 const Elf_Shdr &sec) { 411 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 412 if (sec.sh_info >= symbols.size()) 413 fatal(toString(this) + ": invalid symbol index"); 414 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 415 StringRef signature = CHECK(sym.getName(this->stringTable), this); 416 417 // As a special case, if a symbol is a section symbol and has no name, 418 // we use a section name as a signature. 419 // 420 // Such SHT_GROUP sections are invalid from the perspective of the ELF 421 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 422 // older produce such sections as outputs for the -r option, so we need 423 // a bug-compatibility. 424 if (signature.empty() && sym.getType() == STT_SECTION) 425 return getSectionName(sec); 426 return signature; 427 } 428 429 template <class ELFT> 430 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 431 if (!(sec.sh_flags & SHF_MERGE)) 432 return false; 433 434 // On a regular link we don't merge sections if -O0 (default is -O1). This 435 // sometimes makes the linker significantly faster, although the output will 436 // be bigger. 437 // 438 // Doing the same for -r would create a problem as it would combine sections 439 // with different sh_entsize. One option would be to just copy every SHF_MERGE 440 // section as is to the output. While this would produce a valid ELF file with 441 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 442 // they see two .debug_str. We could have separate logic for combining 443 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 444 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 445 // logic for -r. 446 if (config->optimize == 0 && !config->relocatable) 447 return false; 448 449 // A mergeable section with size 0 is useless because they don't have 450 // any data to merge. A mergeable string section with size 0 can be 451 // argued as invalid because it doesn't end with a null character. 452 // We'll avoid a mess by handling them as if they were non-mergeable. 453 if (sec.sh_size == 0) 454 return false; 455 456 // Check for sh_entsize. The ELF spec is not clear about the zero 457 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 458 // the section does not hold a table of fixed-size entries". We know 459 // that Rust 1.13 produces a string mergeable section with a zero 460 // sh_entsize. Here we just accept it rather than being picky about it. 461 uint64_t entSize = sec.sh_entsize; 462 if (entSize == 0) 463 return false; 464 if (sec.sh_size % entSize) 465 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 466 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 467 Twine(entSize) + ")"); 468 469 if (sec.sh_flags & SHF_WRITE) 470 fatal(toString(this) + ":(" + name + 471 "): writable SHF_MERGE section is not supported"); 472 473 return true; 474 } 475 476 // This is for --just-symbols. 477 // 478 // --just-symbols is a very minor feature that allows you to link your 479 // output against other existing program, so that if you load both your 480 // program and the other program into memory, your output can refer the 481 // other program's symbols. 482 // 483 // When the option is given, we link "just symbols". The section table is 484 // initialized with null pointers. 485 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 486 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 487 this->sections.resize(sections.size()); 488 } 489 490 // An ELF object file may contain a `.deplibs` section. If it exists, the 491 // section contains a list of library specifiers such as `m` for libm. This 492 // function resolves a given name by finding the first matching library checking 493 // the various ways that a library can be specified to LLD. This ELF extension 494 // is a form of autolinking and is called `dependent libraries`. It is currently 495 // unique to LLVM and lld. 496 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 497 if (!config->dependentLibraries) 498 return; 499 if (fs::exists(specifier)) 500 driver->addFile(specifier, /*withLOption=*/false); 501 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 502 driver->addFile(*s, /*withLOption=*/true); 503 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 504 driver->addFile(*s, /*withLOption=*/true); 505 else 506 error(toString(f) + 507 ": unable to find library from dependent library specifier: " + 508 specifier); 509 } 510 511 // Record the membership of a section group so that in the garbage collection 512 // pass, section group members are kept or discarded as a unit. 513 template <class ELFT> 514 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 515 ArrayRef<typename ELFT::Word> entries) { 516 bool hasAlloc = false; 517 for (uint32_t index : entries.slice(1)) { 518 if (index >= sections.size()) 519 return; 520 if (InputSectionBase *s = sections[index]) 521 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 522 hasAlloc = true; 523 } 524 525 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 526 // collection. See the comment in markLive(). This rule retains .debug_types 527 // and .rela.debug_types. 528 if (!hasAlloc) 529 return; 530 531 // Connect the members in a circular doubly-linked list via 532 // nextInSectionGroup. 533 InputSectionBase *head; 534 InputSectionBase *prev = nullptr; 535 for (uint32_t index : entries.slice(1)) { 536 InputSectionBase *s = sections[index]; 537 if (!s || s == &InputSection::discarded) 538 continue; 539 if (prev) 540 prev->nextInSectionGroup = s; 541 else 542 head = s; 543 prev = s; 544 } 545 if (prev) 546 prev->nextInSectionGroup = head; 547 } 548 549 template <class ELFT> 550 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 551 const ELFFile<ELFT> &obj = this->getObj(); 552 553 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 554 uint64_t size = objSections.size(); 555 this->sections.resize(size); 556 this->sectionStringTable = 557 CHECK(obj.getSectionStringTable(objSections), this); 558 559 std::vector<ArrayRef<Elf_Word>> selectedGroups; 560 561 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 562 if (this->sections[i] == &InputSection::discarded) 563 continue; 564 const Elf_Shdr &sec = objSections[i]; 565 566 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 567 cgProfile = 568 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 569 570 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 571 // if -r is given, we'll let the final link discard such sections. 572 // This is compatible with GNU. 573 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 574 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 575 // We ignore the address-significance table if we know that the object 576 // file was created by objcopy or ld -r. This is because these tools 577 // will reorder the symbols in the symbol table, invalidating the data 578 // in the address-significance table, which refers to symbols by index. 579 if (sec.sh_link != 0) 580 this->addrsigSec = &sec; 581 else if (config->icf == ICFLevel::Safe) 582 warn(toString(this) + ": --icf=safe is incompatible with object " 583 "files created using objcopy or ld -r"); 584 } 585 this->sections[i] = &InputSection::discarded; 586 continue; 587 } 588 589 switch (sec.sh_type) { 590 case SHT_GROUP: { 591 // De-duplicate section groups by their signatures. 592 StringRef signature = getShtGroupSignature(objSections, sec); 593 this->sections[i] = &InputSection::discarded; 594 595 596 ArrayRef<Elf_Word> entries = 597 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 598 if (entries.empty()) 599 fatal(toString(this) + ": empty SHT_GROUP"); 600 601 // The first word of a SHT_GROUP section contains flags. Currently, 602 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 603 // An group with the empty flag doesn't define anything; such sections 604 // are just skipped. 605 if (entries[0] == 0) 606 continue; 607 608 if (entries[0] != GRP_COMDAT) 609 fatal(toString(this) + ": unsupported SHT_GROUP format"); 610 611 bool isNew = 612 ignoreComdats || 613 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 614 .second; 615 if (isNew) { 616 if (config->relocatable) 617 this->sections[i] = createInputSection(sec); 618 selectedGroups.push_back(entries); 619 continue; 620 } 621 622 // Otherwise, discard group members. 623 for (uint32_t secIndex : entries.slice(1)) { 624 if (secIndex >= size) 625 fatal(toString(this) + 626 ": invalid section index in group: " + Twine(secIndex)); 627 this->sections[secIndex] = &InputSection::discarded; 628 } 629 break; 630 } 631 case SHT_SYMTAB_SHNDX: 632 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 633 break; 634 case SHT_SYMTAB: 635 case SHT_STRTAB: 636 case SHT_REL: 637 case SHT_RELA: 638 case SHT_NULL: 639 break; 640 default: 641 this->sections[i] = createInputSection(sec); 642 } 643 } 644 645 // We have a second loop. It is used to: 646 // 1) handle SHF_LINK_ORDER sections. 647 // 2) create SHT_REL[A] sections. In some cases the section header index of a 648 // relocation section may be smaller than that of the relocated section. In 649 // such cases, the relocation section would attempt to reference a target 650 // section that has not yet been created. For simplicity, delay creation of 651 // relocation sections until now. 652 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 653 if (this->sections[i] == &InputSection::discarded) 654 continue; 655 const Elf_Shdr &sec = objSections[i]; 656 657 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 658 this->sections[i] = createInputSection(sec); 659 660 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 661 // the flag. 662 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 663 continue; 664 665 InputSectionBase *linkSec = nullptr; 666 if (sec.sh_link < this->sections.size()) 667 linkSec = this->sections[sec.sh_link]; 668 if (!linkSec) 669 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 670 671 // A SHF_LINK_ORDER section is discarded if its linked-to section is 672 // discarded. 673 InputSection *isec = cast<InputSection>(this->sections[i]); 674 linkSec->dependentSections.push_back(isec); 675 if (!isa<InputSection>(linkSec)) 676 error("a section " + isec->name + 677 " with SHF_LINK_ORDER should not refer a non-regular section: " + 678 toString(linkSec)); 679 } 680 681 for (ArrayRef<Elf_Word> entries : selectedGroups) 682 handleSectionGroup<ELFT>(this->sections, entries); 683 } 684 685 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 686 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 687 // the input objects have been compiled. 688 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 689 const InputFile *f) { 690 Optional<unsigned> attr = 691 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 692 if (!attr.hasValue()) 693 // If an ABI tag isn't present then it is implicitly given the value of 0 694 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 695 // including some in glibc that don't use FP args (and should have value 3) 696 // don't have the attribute so we do not consider an implicit value of 0 697 // as a clash. 698 return; 699 700 unsigned vfpArgs = attr.getValue(); 701 ARMVFPArgKind arg; 702 switch (vfpArgs) { 703 case ARMBuildAttrs::BaseAAPCS: 704 arg = ARMVFPArgKind::Base; 705 break; 706 case ARMBuildAttrs::HardFPAAPCS: 707 arg = ARMVFPArgKind::VFP; 708 break; 709 case ARMBuildAttrs::ToolChainFPPCS: 710 // Tool chain specific convention that conforms to neither AAPCS variant. 711 arg = ARMVFPArgKind::ToolChain; 712 break; 713 case ARMBuildAttrs::CompatibleFPAAPCS: 714 // Object compatible with all conventions. 715 return; 716 default: 717 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 718 return; 719 } 720 // Follow ld.bfd and error if there is a mix of calling conventions. 721 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 722 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 723 else 724 config->armVFPArgs = arg; 725 } 726 727 // The ARM support in lld makes some use of instructions that are not available 728 // on all ARM architectures. Namely: 729 // - Use of BLX instruction for interworking between ARM and Thumb state. 730 // - Use of the extended Thumb branch encoding in relocation. 731 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 732 // The ARM Attributes section contains information about the architecture chosen 733 // at compile time. We follow the convention that if at least one input object 734 // is compiled with an architecture that supports these features then lld is 735 // permitted to use them. 736 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 737 Optional<unsigned> attr = 738 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 739 if (!attr.hasValue()) 740 return; 741 auto arch = attr.getValue(); 742 switch (arch) { 743 case ARMBuildAttrs::Pre_v4: 744 case ARMBuildAttrs::v4: 745 case ARMBuildAttrs::v4T: 746 // Architectures prior to v5 do not support BLX instruction 747 break; 748 case ARMBuildAttrs::v5T: 749 case ARMBuildAttrs::v5TE: 750 case ARMBuildAttrs::v5TEJ: 751 case ARMBuildAttrs::v6: 752 case ARMBuildAttrs::v6KZ: 753 case ARMBuildAttrs::v6K: 754 config->armHasBlx = true; 755 // Architectures used in pre-Cortex processors do not support 756 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 757 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 758 break; 759 default: 760 // All other Architectures have BLX and extended branch encoding 761 config->armHasBlx = true; 762 config->armJ1J2BranchEncoding = true; 763 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 764 // All Architectures used in Cortex processors with the exception 765 // of v6-M and v6S-M have the MOVT and MOVW instructions. 766 config->armHasMovtMovw = true; 767 break; 768 } 769 } 770 771 // If a source file is compiled with x86 hardware-assisted call flow control 772 // enabled, the generated object file contains feature flags indicating that 773 // fact. This function reads the feature flags and returns it. 774 // 775 // Essentially we want to read a single 32-bit value in this function, but this 776 // function is rather complicated because the value is buried deep inside a 777 // .note.gnu.property section. 778 // 779 // The section consists of one or more NOTE records. Each NOTE record consists 780 // of zero or more type-length-value fields. We want to find a field of a 781 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 782 // the ABI is unnecessarily complicated. 783 template <class ELFT> 784 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 785 using Elf_Nhdr = typename ELFT::Nhdr; 786 using Elf_Note = typename ELFT::Note; 787 788 uint32_t featuresSet = 0; 789 while (!data.empty()) { 790 // Read one NOTE record. 791 if (data.size() < sizeof(Elf_Nhdr)) 792 fatal(toString(obj) + ": .note.gnu.property: section too short"); 793 794 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 795 if (data.size() < nhdr->getSize()) 796 fatal(toString(obj) + ": .note.gnu.property: section too short"); 797 798 Elf_Note note(*nhdr); 799 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 800 data = data.slice(nhdr->getSize()); 801 continue; 802 } 803 804 uint32_t featureAndType = config->emachine == EM_AARCH64 805 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 806 : GNU_PROPERTY_X86_FEATURE_1_AND; 807 808 // Read a body of a NOTE record, which consists of type-length-value fields. 809 ArrayRef<uint8_t> desc = note.getDesc(); 810 while (!desc.empty()) { 811 if (desc.size() < 8) 812 fatal(toString(obj) + ": .note.gnu.property: section too short"); 813 814 uint32_t type = read32le(desc.data()); 815 uint32_t size = read32le(desc.data() + 4); 816 817 if (type == featureAndType) { 818 // We found a FEATURE_1_AND field. There may be more than one of these 819 // in a .note.gnu.property section, for a relocatable object we 820 // accumulate the bits set. 821 featuresSet |= read32le(desc.data() + 8); 822 } 823 824 // On 64-bit, a payload may be followed by a 4-byte padding to make its 825 // size a multiple of 8. 826 if (ELFT::Is64Bits) 827 size = alignTo(size, 8); 828 829 desc = desc.slice(size + 8); // +8 for Type and Size 830 } 831 832 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 833 data = data.slice(nhdr->getSize()); 834 } 835 836 return featuresSet; 837 } 838 839 template <class ELFT> 840 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 841 uint32_t idx = sec.sh_info; 842 if (idx >= this->sections.size()) 843 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 844 InputSectionBase *target = this->sections[idx]; 845 846 // Strictly speaking, a relocation section must be included in the 847 // group of the section it relocates. However, LLVM 3.3 and earlier 848 // would fail to do so, so we gracefully handle that case. 849 if (target == &InputSection::discarded) 850 return nullptr; 851 852 if (!target) 853 fatal(toString(this) + ": unsupported relocation reference"); 854 return target; 855 } 856 857 // Create a regular InputSection class that has the same contents 858 // as a given section. 859 static InputSection *toRegularSection(MergeInputSection *sec) { 860 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 861 sec->data(), sec->name); 862 } 863 864 template <class ELFT> 865 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 866 StringRef name = getSectionName(sec); 867 868 switch (sec.sh_type) { 869 case SHT_ARM_ATTRIBUTES: { 870 if (config->emachine != EM_ARM) 871 break; 872 ARMAttributeParser attributes; 873 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 874 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 875 ? support::little 876 : support::big)) { 877 auto *isec = make<InputSection>(*this, sec, name); 878 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 879 break; 880 } 881 updateSupportedARMFeatures(attributes); 882 updateARMVFPArgs(attributes, this); 883 884 // FIXME: Retain the first attribute section we see. The eglibc ARM 885 // dynamic loaders require the presence of an attribute section for dlopen 886 // to work. In a full implementation we would merge all attribute sections. 887 if (in.armAttributes == nullptr) { 888 in.armAttributes = make<InputSection>(*this, sec, name); 889 return in.armAttributes; 890 } 891 return &InputSection::discarded; 892 } 893 case SHT_LLVM_DEPENDENT_LIBRARIES: { 894 if (config->relocatable) 895 break; 896 ArrayRef<char> data = 897 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 898 if (!data.empty() && data.back() != '\0') { 899 error(toString(this) + 900 ": corrupted dependent libraries section (unterminated string): " + 901 name); 902 return &InputSection::discarded; 903 } 904 for (const char *d = data.begin(), *e = data.end(); d < e;) { 905 StringRef s(d); 906 addDependentLibrary(s, this); 907 d += s.size() + 1; 908 } 909 return &InputSection::discarded; 910 } 911 case SHT_RELA: 912 case SHT_REL: { 913 // Find a relocation target section and associate this section with that. 914 // Target may have been discarded if it is in a different section group 915 // and the group is discarded, even though it's a violation of the 916 // spec. We handle that situation gracefully by discarding dangling 917 // relocation sections. 918 InputSectionBase *target = getRelocTarget(sec); 919 if (!target) 920 return nullptr; 921 922 // ELF spec allows mergeable sections with relocations, but they are 923 // rare, and it is in practice hard to merge such sections by contents, 924 // because applying relocations at end of linking changes section 925 // contents. So, we simply handle such sections as non-mergeable ones. 926 // Degrading like this is acceptable because section merging is optional. 927 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 928 target = toRegularSection(ms); 929 this->sections[sec.sh_info] = target; 930 } 931 932 if (target->firstRelocation) 933 fatal(toString(this) + 934 ": multiple relocation sections to one section are not supported"); 935 936 if (sec.sh_type == SHT_RELA) { 937 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 938 target->firstRelocation = rels.begin(); 939 target->numRelocations = rels.size(); 940 target->areRelocsRela = true; 941 } else { 942 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 943 target->firstRelocation = rels.begin(); 944 target->numRelocations = rels.size(); 945 target->areRelocsRela = false; 946 } 947 assert(isUInt<31>(target->numRelocations)); 948 949 // Relocation sections are usually removed from the output, so return 950 // `nullptr` for the normal case. However, if -r or --emit-relocs is 951 // specified, we need to copy them to the output. (Some post link analysis 952 // tools specify --emit-relocs to obtain the information.) 953 if (!config->relocatable && !config->emitRelocs) 954 return nullptr; 955 InputSection *relocSec = make<InputSection>(*this, sec, name); 956 // If the relocated section is discarded (due to /DISCARD/ or 957 // --gc-sections), the relocation section should be discarded as well. 958 target->dependentSections.push_back(relocSec); 959 return relocSec; 960 } 961 } 962 963 // The GNU linker uses .note.GNU-stack section as a marker indicating 964 // that the code in the object file does not expect that the stack is 965 // executable (in terms of NX bit). If all input files have the marker, 966 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 967 // make the stack non-executable. Most object files have this section as 968 // of 2017. 969 // 970 // But making the stack non-executable is a norm today for security 971 // reasons. Failure to do so may result in a serious security issue. 972 // Therefore, we make LLD always add PT_GNU_STACK unless it is 973 // explicitly told to do otherwise (by -z execstack). Because the stack 974 // executable-ness is controlled solely by command line options, 975 // .note.GNU-stack sections are simply ignored. 976 if (name == ".note.GNU-stack") 977 return &InputSection::discarded; 978 979 // Object files that use processor features such as Intel Control-Flow 980 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 981 // .note.gnu.property section containing a bitfield of feature bits like the 982 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 983 // 984 // Since we merge bitmaps from multiple object files to create a new 985 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 986 // file's .note.gnu.property section. 987 if (name == ".note.gnu.property") { 988 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 989 this->andFeatures = readAndFeatures(this, contents); 990 return &InputSection::discarded; 991 } 992 993 // Split stacks is a feature to support a discontiguous stack, 994 // commonly used in the programming language Go. For the details, 995 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 996 // for split stack will include a .note.GNU-split-stack section. 997 if (name == ".note.GNU-split-stack") { 998 if (config->relocatable) { 999 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1000 return &InputSection::discarded; 1001 } 1002 this->splitStack = true; 1003 return &InputSection::discarded; 1004 } 1005 1006 // An object file cmpiled for split stack, but where some of the 1007 // functions were compiled with the no_split_stack_attribute will 1008 // include a .note.GNU-no-split-stack section. 1009 if (name == ".note.GNU-no-split-stack") { 1010 this->someNoSplitStack = true; 1011 return &InputSection::discarded; 1012 } 1013 1014 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1015 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1016 // sections. Drop those sections to avoid duplicate symbol errors. 1017 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1018 // fixed for a while. 1019 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1020 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1021 return &InputSection::discarded; 1022 1023 // If we are creating a new .build-id section, strip existing .build-id 1024 // sections so that the output won't have more than one .build-id. 1025 // This is not usually a problem because input object files normally don't 1026 // have .build-id sections, but you can create such files by 1027 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1028 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1029 return &InputSection::discarded; 1030 1031 // The linker merges EH (exception handling) frames and creates a 1032 // .eh_frame_hdr section for runtime. So we handle them with a special 1033 // class. For relocatable outputs, they are just passed through. 1034 if (name == ".eh_frame" && !config->relocatable) 1035 return make<EhInputSection>(*this, sec, name); 1036 1037 if (shouldMerge(sec, name)) 1038 return make<MergeInputSection>(*this, sec, name); 1039 return make<InputSection>(*this, sec, name); 1040 } 1041 1042 template <class ELFT> 1043 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1044 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1045 } 1046 1047 // Initialize this->Symbols. this->Symbols is a parallel array as 1048 // its corresponding ELF symbol table. 1049 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1050 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1051 this->symbols.resize(eSyms.size()); 1052 1053 // Fill in InputFile::symbols. Some entries have been initialized 1054 // because of LazyObjFile. 1055 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1056 if (this->symbols[i]) 1057 continue; 1058 const Elf_Sym &eSym = eSyms[i]; 1059 uint32_t secIdx = getSectionIndex(eSym); 1060 if (secIdx >= this->sections.size()) 1061 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1062 if (eSym.getBinding() != STB_LOCAL) { 1063 if (i < firstGlobal) 1064 error(toString(this) + ": non-local symbol (" + Twine(i) + 1065 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1066 ")"); 1067 this->symbols[i] = 1068 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1069 continue; 1070 } 1071 1072 // Handle local symbols. Local symbols are not added to the symbol 1073 // table because they are not visible from other object files. We 1074 // allocate symbol instances and add their pointers to symbols. 1075 if (i >= firstGlobal) 1076 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1077 ") found at index >= .symtab's sh_info (" + 1078 Twine(firstGlobal) + ")"); 1079 1080 InputSectionBase *sec = this->sections[secIdx]; 1081 uint8_t type = eSym.getType(); 1082 if (type == STT_FILE) 1083 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1084 if (this->stringTable.size() <= eSym.st_name) 1085 fatal(toString(this) + ": invalid symbol name offset"); 1086 StringRefZ name = this->stringTable.data() + eSym.st_name; 1087 1088 if (eSym.st_shndx == SHN_UNDEF) 1089 this->symbols[i] = 1090 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); 1091 else if (sec == &InputSection::discarded) 1092 this->symbols[i] = 1093 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, 1094 /*discardedSecIdx=*/secIdx); 1095 else 1096 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, 1097 type, eSym.st_value, eSym.st_size, sec); 1098 } 1099 1100 // Symbol resolution of non-local symbols. 1101 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1102 const Elf_Sym &eSym = eSyms[i]; 1103 uint8_t binding = eSym.getBinding(); 1104 if (binding == STB_LOCAL) 1105 continue; // Errored above. 1106 1107 uint32_t secIdx = getSectionIndex(eSym); 1108 InputSectionBase *sec = this->sections[secIdx]; 1109 uint8_t stOther = eSym.st_other; 1110 uint8_t type = eSym.getType(); 1111 uint64_t value = eSym.st_value; 1112 uint64_t size = eSym.st_size; 1113 StringRefZ name = this->stringTable.data() + eSym.st_name; 1114 1115 // Handle global undefined symbols. 1116 if (eSym.st_shndx == SHN_UNDEF) { 1117 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1118 this->symbols[i]->referenced = true; 1119 continue; 1120 } 1121 1122 // Handle global common symbols. 1123 if (eSym.st_shndx == SHN_COMMON) { 1124 if (value == 0 || value >= UINT32_MAX) 1125 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1126 "' has invalid alignment: " + Twine(value)); 1127 this->symbols[i]->resolve( 1128 CommonSymbol{this, name, binding, stOther, type, value, size}); 1129 continue; 1130 } 1131 1132 // If a defined symbol is in a discarded section, handle it as if it 1133 // were an undefined symbol. Such symbol doesn't comply with the 1134 // standard, but in practice, a .eh_frame often directly refer 1135 // COMDAT member sections, and if a comdat group is discarded, some 1136 // defined symbol in a .eh_frame becomes dangling symbols. 1137 if (sec == &InputSection::discarded) { 1138 Undefined und{this, name, binding, stOther, type, secIdx}; 1139 Symbol *sym = this->symbols[i]; 1140 // !ArchiveFile::parsed or LazyObjFile::fetched means that the file 1141 // containing this object has not finished processing, i.e. this symbol is 1142 // a result of a lazy symbol fetch. We should demote the lazy symbol to an 1143 // Undefined so that any relocations outside of the group to it will 1144 // trigger a discarded section error. 1145 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1146 !cast<ArchiveFile>(sym->file)->parsed) || 1147 (sym->symbolKind == Symbol::LazyObjectKind && 1148 cast<LazyObjFile>(sym->file)->fetched)) 1149 sym->replace(und); 1150 else 1151 sym->resolve(und); 1152 continue; 1153 } 1154 1155 // Handle global defined symbols. 1156 if (binding == STB_GLOBAL || binding == STB_WEAK || 1157 binding == STB_GNU_UNIQUE) { 1158 this->symbols[i]->resolve( 1159 Defined{this, name, binding, stOther, type, value, size, sec}); 1160 continue; 1161 } 1162 1163 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1164 } 1165 } 1166 1167 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1168 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1169 file(std::move(file)) {} 1170 1171 void ArchiveFile::parse() { 1172 for (const Archive::Symbol &sym : file->symbols()) 1173 symtab->addSymbol(LazyArchive{*this, sym}); 1174 1175 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1176 // archive has been processed. 1177 parsed = true; 1178 } 1179 1180 // Returns a buffer pointing to a member file containing a given symbol. 1181 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1182 Archive::Child c = 1183 CHECK(sym.getMember(), toString(this) + 1184 ": could not get the member for symbol " + 1185 toELFString(sym)); 1186 1187 if (!seen.insert(c.getChildOffset()).second) 1188 return; 1189 1190 MemoryBufferRef mb = 1191 CHECK(c.getMemoryBufferRef(), 1192 toString(this) + 1193 ": could not get the buffer for the member defining symbol " + 1194 toELFString(sym)); 1195 1196 if (tar && c.getParent()->isThin()) 1197 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1198 1199 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1200 file->groupId = groupId; 1201 parseFile(file); 1202 } 1203 1204 size_t ArchiveFile::getMemberCount() const { 1205 size_t count = 0; 1206 Error err = Error::success(); 1207 for (const Archive::Child &c : file->children(err)) { 1208 (void)c; 1209 ++count; 1210 } 1211 // This function is used by --print-archive-stats=, where an error does not 1212 // really matter. 1213 consumeError(std::move(err)); 1214 return count; 1215 } 1216 1217 unsigned SharedFile::vernauxNum; 1218 1219 // Parse the version definitions in the object file if present, and return a 1220 // vector whose nth element contains a pointer to the Elf_Verdef for version 1221 // identifier n. Version identifiers that are not definitions map to nullptr. 1222 template <typename ELFT> 1223 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1224 const typename ELFT::Shdr *sec) { 1225 if (!sec) 1226 return {}; 1227 1228 // We cannot determine the largest verdef identifier without inspecting 1229 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1230 // sequentially starting from 1, so we predict that the largest identifier 1231 // will be verdefCount. 1232 unsigned verdefCount = sec->sh_info; 1233 std::vector<const void *> verdefs(verdefCount + 1); 1234 1235 // Build the Verdefs array by following the chain of Elf_Verdef objects 1236 // from the start of the .gnu.version_d section. 1237 const uint8_t *verdef = base + sec->sh_offset; 1238 for (unsigned i = 0; i != verdefCount; ++i) { 1239 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1240 verdef += curVerdef->vd_next; 1241 unsigned verdefIndex = curVerdef->vd_ndx; 1242 verdefs.resize(verdefIndex + 1); 1243 verdefs[verdefIndex] = curVerdef; 1244 } 1245 return verdefs; 1246 } 1247 1248 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1249 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1250 // implement sophisticated error checking like in llvm-readobj because the value 1251 // of such diagnostics is low. 1252 template <typename ELFT> 1253 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1254 const typename ELFT::Shdr *sec) { 1255 if (!sec) 1256 return {}; 1257 std::vector<uint32_t> verneeds; 1258 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(sec), this); 1259 const uint8_t *verneedBuf = data.begin(); 1260 for (unsigned i = 0; i != sec->sh_info; ++i) { 1261 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1262 fatal(toString(this) + " has an invalid Verneed"); 1263 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1264 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1265 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1266 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1267 fatal(toString(this) + " has an invalid Vernaux"); 1268 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1269 if (aux->vna_name >= this->stringTable.size()) 1270 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1271 uint16_t version = aux->vna_other & VERSYM_VERSION; 1272 if (version >= verneeds.size()) 1273 verneeds.resize(version + 1); 1274 verneeds[version] = aux->vna_name; 1275 vernauxBuf += aux->vna_next; 1276 } 1277 verneedBuf += vn->vn_next; 1278 } 1279 return verneeds; 1280 } 1281 1282 // We do not usually care about alignments of data in shared object 1283 // files because the loader takes care of it. However, if we promote a 1284 // DSO symbol to point to .bss due to copy relocation, we need to keep 1285 // the original alignment requirements. We infer it in this function. 1286 template <typename ELFT> 1287 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1288 const typename ELFT::Sym &sym) { 1289 uint64_t ret = UINT64_MAX; 1290 if (sym.st_value) 1291 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1292 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1293 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1294 return (ret > UINT32_MAX) ? 0 : ret; 1295 } 1296 1297 // Fully parse the shared object file. 1298 // 1299 // This function parses symbol versions. If a DSO has version information, 1300 // the file has a ".gnu.version_d" section which contains symbol version 1301 // definitions. Each symbol is associated to one version through a table in 1302 // ".gnu.version" section. That table is a parallel array for the symbol 1303 // table, and each table entry contains an index in ".gnu.version_d". 1304 // 1305 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1306 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1307 // ".gnu.version_d". 1308 // 1309 // The file format for symbol versioning is perhaps a bit more complicated 1310 // than necessary, but you can easily understand the code if you wrap your 1311 // head around the data structure described above. 1312 template <class ELFT> void SharedFile::parse() { 1313 using Elf_Dyn = typename ELFT::Dyn; 1314 using Elf_Shdr = typename ELFT::Shdr; 1315 using Elf_Sym = typename ELFT::Sym; 1316 using Elf_Verdef = typename ELFT::Verdef; 1317 using Elf_Versym = typename ELFT::Versym; 1318 1319 ArrayRef<Elf_Dyn> dynamicTags; 1320 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1321 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1322 1323 const Elf_Shdr *versymSec = nullptr; 1324 const Elf_Shdr *verdefSec = nullptr; 1325 const Elf_Shdr *verneedSec = nullptr; 1326 1327 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1328 for (const Elf_Shdr &sec : sections) { 1329 switch (sec.sh_type) { 1330 default: 1331 continue; 1332 case SHT_DYNAMIC: 1333 dynamicTags = 1334 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1335 break; 1336 case SHT_GNU_versym: 1337 versymSec = &sec; 1338 break; 1339 case SHT_GNU_verdef: 1340 verdefSec = &sec; 1341 break; 1342 case SHT_GNU_verneed: 1343 verneedSec = &sec; 1344 break; 1345 } 1346 } 1347 1348 if (versymSec && numELFSyms == 0) { 1349 error("SHT_GNU_versym should be associated with symbol table"); 1350 return; 1351 } 1352 1353 // Search for a DT_SONAME tag to initialize this->soName. 1354 for (const Elf_Dyn &dyn : dynamicTags) { 1355 if (dyn.d_tag == DT_NEEDED) { 1356 uint64_t val = dyn.getVal(); 1357 if (val >= this->stringTable.size()) 1358 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1359 dtNeeded.push_back(this->stringTable.data() + val); 1360 } else if (dyn.d_tag == DT_SONAME) { 1361 uint64_t val = dyn.getVal(); 1362 if (val >= this->stringTable.size()) 1363 fatal(toString(this) + ": invalid DT_SONAME entry"); 1364 soName = this->stringTable.data() + val; 1365 } 1366 } 1367 1368 // DSOs are uniquified not by filename but by soname. 1369 DenseMap<StringRef, SharedFile *>::iterator it; 1370 bool wasInserted; 1371 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1372 1373 // If a DSO appears more than once on the command line with and without 1374 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1375 // user can add an extra DSO with --no-as-needed to force it to be added to 1376 // the dependency list. 1377 it->second->isNeeded |= isNeeded; 1378 if (!wasInserted) 1379 return; 1380 1381 sharedFiles.push_back(this); 1382 1383 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1384 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1385 1386 // Parse ".gnu.version" section which is a parallel array for the symbol 1387 // table. If a given file doesn't have a ".gnu.version" section, we use 1388 // VER_NDX_GLOBAL. 1389 size_t size = numELFSyms - firstGlobal; 1390 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1391 if (versymSec) { 1392 ArrayRef<Elf_Versym> versym = 1393 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1394 this) 1395 .slice(firstGlobal); 1396 for (size_t i = 0; i < size; ++i) 1397 versyms[i] = versym[i].vs_index; 1398 } 1399 1400 // System libraries can have a lot of symbols with versions. Using a 1401 // fixed buffer for computing the versions name (foo@ver) can save a 1402 // lot of allocations. 1403 SmallString<0> versionedNameBuffer; 1404 1405 // Add symbols to the symbol table. 1406 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1407 for (size_t i = 0; i < syms.size(); ++i) { 1408 const Elf_Sym &sym = syms[i]; 1409 1410 // ELF spec requires that all local symbols precede weak or global 1411 // symbols in each symbol table, and the index of first non-local symbol 1412 // is stored to sh_info. If a local symbol appears after some non-local 1413 // symbol, that's a violation of the spec. 1414 StringRef name = CHECK(sym.getName(this->stringTable), this); 1415 if (sym.getBinding() == STB_LOCAL) { 1416 warn("found local symbol '" + name + 1417 "' in global part of symbol table in file " + toString(this)); 1418 continue; 1419 } 1420 1421 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1422 if (sym.isUndefined()) { 1423 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1424 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1425 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1426 if (idx >= verneeds.size()) { 1427 error("corrupt input file: version need index " + Twine(idx) + 1428 " for symbol " + name + " is out of bounds\n>>> defined in " + 1429 toString(this)); 1430 continue; 1431 } 1432 StringRef verName = this->stringTable.data() + verneeds[idx]; 1433 versionedNameBuffer.clear(); 1434 name = 1435 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1436 } 1437 Symbol *s = symtab->addSymbol( 1438 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1439 s->exportDynamic = true; 1440 continue; 1441 } 1442 1443 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1444 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1445 // workaround for this bug. 1446 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1447 name == "_gp_disp") 1448 continue; 1449 1450 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1451 if (!(versyms[i] & VERSYM_HIDDEN)) { 1452 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1453 sym.st_other, sym.getType(), sym.st_value, 1454 sym.st_size, alignment, idx}); 1455 } 1456 1457 // Also add the symbol with the versioned name to handle undefined symbols 1458 // with explicit versions. 1459 if (idx == VER_NDX_GLOBAL) 1460 continue; 1461 1462 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1463 error("corrupt input file: version definition index " + Twine(idx) + 1464 " for symbol " + name + " is out of bounds\n>>> defined in " + 1465 toString(this)); 1466 continue; 1467 } 1468 1469 StringRef verName = 1470 this->stringTable.data() + 1471 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1472 versionedNameBuffer.clear(); 1473 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1474 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1475 sym.st_other, sym.getType(), sym.st_value, 1476 sym.st_size, alignment, idx}); 1477 } 1478 } 1479 1480 static ELFKind getBitcodeELFKind(const Triple &t) { 1481 if (t.isLittleEndian()) 1482 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1483 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1484 } 1485 1486 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1487 switch (t.getArch()) { 1488 case Triple::aarch64: 1489 return EM_AARCH64; 1490 case Triple::amdgcn: 1491 case Triple::r600: 1492 return EM_AMDGPU; 1493 case Triple::arm: 1494 case Triple::thumb: 1495 return EM_ARM; 1496 case Triple::avr: 1497 return EM_AVR; 1498 case Triple::mips: 1499 case Triple::mipsel: 1500 case Triple::mips64: 1501 case Triple::mips64el: 1502 return EM_MIPS; 1503 case Triple::msp430: 1504 return EM_MSP430; 1505 case Triple::ppc: 1506 return EM_PPC; 1507 case Triple::ppc64: 1508 case Triple::ppc64le: 1509 return EM_PPC64; 1510 case Triple::riscv32: 1511 case Triple::riscv64: 1512 return EM_RISCV; 1513 case Triple::x86: 1514 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1515 case Triple::x86_64: 1516 return EM_X86_64; 1517 default: 1518 error(path + ": could not infer e_machine from bitcode target triple " + 1519 t.str()); 1520 return EM_NONE; 1521 } 1522 } 1523 1524 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1525 uint64_t offsetInArchive) 1526 : InputFile(BitcodeKind, mb) { 1527 this->archiveName = std::string(archiveName); 1528 1529 std::string path = mb.getBufferIdentifier().str(); 1530 if (config->thinLTOIndexOnly) 1531 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1532 1533 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1534 // name. If two archives define two members with the same name, this 1535 // causes a collision which result in only one of the objects being taken 1536 // into consideration at LTO time (which very likely causes undefined 1537 // symbols later in the link stage). So we append file offset to make 1538 // filename unique. 1539 StringRef name = 1540 archiveName.empty() 1541 ? saver.save(path) 1542 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1543 utostr(offsetInArchive) + ")"); 1544 MemoryBufferRef mbref(mb.getBuffer(), name); 1545 1546 obj = CHECK(lto::InputFile::create(mbref), this); 1547 1548 Triple t(obj->getTargetTriple()); 1549 ekind = getBitcodeELFKind(t); 1550 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1551 } 1552 1553 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1554 switch (gvVisibility) { 1555 case GlobalValue::DefaultVisibility: 1556 return STV_DEFAULT; 1557 case GlobalValue::HiddenVisibility: 1558 return STV_HIDDEN; 1559 case GlobalValue::ProtectedVisibility: 1560 return STV_PROTECTED; 1561 } 1562 llvm_unreachable("unknown visibility"); 1563 } 1564 1565 template <class ELFT> 1566 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1567 const lto::InputFile::Symbol &objSym, 1568 BitcodeFile &f) { 1569 StringRef name = saver.save(objSym.getName()); 1570 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1571 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1572 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1573 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1574 1575 int c = objSym.getComdatIndex(); 1576 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1577 Undefined newSym(&f, name, binding, visibility, type); 1578 if (canOmitFromDynSym) 1579 newSym.exportDynamic = false; 1580 Symbol *ret = symtab->addSymbol(newSym); 1581 ret->referenced = true; 1582 return ret; 1583 } 1584 1585 if (objSym.isCommon()) 1586 return symtab->addSymbol( 1587 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1588 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1589 1590 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1591 if (canOmitFromDynSym) 1592 newSym.exportDynamic = false; 1593 return symtab->addSymbol(newSym); 1594 } 1595 1596 template <class ELFT> void BitcodeFile::parse() { 1597 std::vector<bool> keptComdats; 1598 for (StringRef s : obj->getComdatTable()) 1599 keptComdats.push_back( 1600 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1601 1602 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1603 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1604 1605 for (auto l : obj->getDependentLibraries()) 1606 addDependentLibrary(l, this); 1607 } 1608 1609 void BinaryFile::parse() { 1610 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1611 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1612 8, data, ".data"); 1613 sections.push_back(section); 1614 1615 // For each input file foo that is embedded to a result as a binary 1616 // blob, we define _binary_foo_{start,end,size} symbols, so that 1617 // user programs can access blobs by name. Non-alphanumeric 1618 // characters in a filename are replaced with underscore. 1619 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1620 for (size_t i = 0; i < s.size(); ++i) 1621 if (!isAlnum(s[i])) 1622 s[i] = '_'; 1623 1624 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1625 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1626 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1627 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1628 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1629 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1630 } 1631 1632 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1633 uint64_t offsetInArchive) { 1634 if (isBitcode(mb)) 1635 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1636 1637 switch (getELFKind(mb, archiveName)) { 1638 case ELF32LEKind: 1639 return make<ObjFile<ELF32LE>>(mb, archiveName); 1640 case ELF32BEKind: 1641 return make<ObjFile<ELF32BE>>(mb, archiveName); 1642 case ELF64LEKind: 1643 return make<ObjFile<ELF64LE>>(mb, archiveName); 1644 case ELF64BEKind: 1645 return make<ObjFile<ELF64BE>>(mb, archiveName); 1646 default: 1647 llvm_unreachable("getELFKind"); 1648 } 1649 } 1650 1651 void LazyObjFile::fetch() { 1652 if (fetched) 1653 return; 1654 fetched = true; 1655 1656 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1657 file->groupId = groupId; 1658 1659 // Copy symbol vector so that the new InputFile doesn't have to 1660 // insert the same defined symbols to the symbol table again. 1661 file->symbols = std::move(symbols); 1662 1663 parseFile(file); 1664 } 1665 1666 template <class ELFT> void LazyObjFile::parse() { 1667 using Elf_Sym = typename ELFT::Sym; 1668 1669 // A lazy object file wraps either a bitcode file or an ELF file. 1670 if (isBitcode(this->mb)) { 1671 std::unique_ptr<lto::InputFile> obj = 1672 CHECK(lto::InputFile::create(this->mb), this); 1673 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1674 if (sym.isUndefined()) 1675 continue; 1676 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1677 } 1678 return; 1679 } 1680 1681 if (getELFKind(this->mb, archiveName) != config->ekind) { 1682 error("incompatible file: " + this->mb.getBufferIdentifier()); 1683 return; 1684 } 1685 1686 // Find a symbol table. 1687 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1688 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1689 1690 for (const typename ELFT::Shdr &sec : sections) { 1691 if (sec.sh_type != SHT_SYMTAB) 1692 continue; 1693 1694 // A symbol table is found. 1695 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1696 uint32_t firstGlobal = sec.sh_info; 1697 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1698 this->symbols.resize(eSyms.size()); 1699 1700 // Get existing symbols or insert placeholder symbols. 1701 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1702 if (eSyms[i].st_shndx != SHN_UNDEF) 1703 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1704 1705 // Replace existing symbols with LazyObject symbols. 1706 // 1707 // resolve() may trigger this->fetch() if an existing symbol is an 1708 // undefined symbol. If that happens, this LazyObjFile has served 1709 // its purpose, and we can exit from the loop early. 1710 for (Symbol *sym : this->symbols) { 1711 if (!sym) 1712 continue; 1713 sym->resolve(LazyObject{*this, sym->getName()}); 1714 1715 // If fetched, stop iterating because this->symbols has been transferred 1716 // to the instantiated ObjFile. 1717 if (fetched) 1718 return; 1719 } 1720 return; 1721 } 1722 } 1723 1724 std::string elf::replaceThinLTOSuffix(StringRef path) { 1725 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1726 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1727 1728 if (path.consume_back(suffix)) 1729 return (path + repl).str(); 1730 return std::string(path); 1731 } 1732 1733 template void BitcodeFile::parse<ELF32LE>(); 1734 template void BitcodeFile::parse<ELF32BE>(); 1735 template void BitcodeFile::parse<ELF64LE>(); 1736 template void BitcodeFile::parse<ELF64BE>(); 1737 1738 template void LazyObjFile::parse<ELF32LE>(); 1739 template void LazyObjFile::parse<ELF32BE>(); 1740 template void LazyObjFile::parse<ELF64LE>(); 1741 template void LazyObjFile::parse<ELF64BE>(); 1742 1743 template class elf::ObjFile<ELF32LE>; 1744 template class elf::ObjFile<ELF32BE>; 1745 template class elf::ObjFile<ELF64LE>; 1746 template class elf::ObjFile<ELF64BE>; 1747 1748 template void SharedFile::parse<ELF32LE>(); 1749 template void SharedFile::parse<ELF32BE>(); 1750 template void SharedFile::parse<ELF64LE>(); 1751 template void SharedFile::parse<ELF64BE>(); 1752