1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "Memory.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/Path.h"
27 #include "llvm/Support/TarWriter.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 using namespace llvm::ELF;
32 using namespace llvm::object;
33 using namespace llvm::sys::fs;
34 
35 using namespace lld;
36 using namespace lld::elf;
37 
38 std::vector<BinaryFile *> elf::BinaryFiles;
39 std::vector<BitcodeFile *> elf::BitcodeFiles;
40 std::vector<InputFile *> elf::ObjectFiles;
41 std::vector<InputFile *> elf::SharedFiles;
42 
43 TarWriter *elf::Tar;
44 
45 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {}
46 
47 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
48   // The --chroot option changes our virtual root directory.
49   // This is useful when you are dealing with files created by --reproduce.
50   if (!Config->Chroot.empty() && Path.startswith("/"))
51     Path = Saver.save(Config->Chroot + Path);
52 
53   log(Path);
54 
55   auto MBOrErr = MemoryBuffer::getFile(Path);
56   if (auto EC = MBOrErr.getError()) {
57     error("cannot open " + Path + ": " + EC.message());
58     return None;
59   }
60 
61   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
62   MemoryBufferRef MBRef = MB->getMemBufferRef();
63   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
64 
65   if (Tar)
66     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
67   return MBRef;
68 }
69 
70 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
71   DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this));
72   const DWARFObject &Obj = Dwarf.getDWARFObj();
73   DwarfLine.reset(new DWARFDebugLine);
74   DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE,
75                               Config->Wordsize);
76 
77   // The second parameter is offset in .debug_line section
78   // for compilation unit (CU) of interest. We have only one
79   // CU (object file), so offset is always 0.
80   // FIXME: Provide the associated DWARFUnit if there is one.  DWARF v5
81   // needs it in order to find indirect strings.
82   const DWARFDebugLine::LineTable *LT =
83       DwarfLine->getOrParseLineTable(LineData, 0, nullptr);
84 
85   // Return if there is no debug information about CU available.
86   if (!Dwarf.getNumCompileUnits())
87     return;
88 
89   // Loop over variable records and insert them to VariableLoc.
90   DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0);
91   for (const auto &Entry : CU->dies()) {
92     DWARFDie Die(CU, &Entry);
93     // Skip all tags that are not variables.
94     if (Die.getTag() != dwarf::DW_TAG_variable)
95       continue;
96 
97     // Skip if a local variable because we don't need them for generating error
98     // messages. In general, only non-local symbols can fail to be linked.
99     if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
100       continue;
101 
102     // Get the source filename index for the variable.
103     unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
104     if (!LT->hasFileAtIndex(File))
105       continue;
106 
107     // Get the line number on which the variable is declared.
108     unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
109 
110     // Get the name of the variable and add the collected information to
111     // VariableLoc. Usually Name is non-empty, but it can be empty if the input
112     // object file lacks some debug info.
113     StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), "");
114     if (!Name.empty())
115       VariableLoc.insert({Name, {File, Line}});
116   }
117 }
118 
119 // Returns the pair of file name and line number describing location of data
120 // object (variable, array, etc) definition.
121 template <class ELFT>
122 Optional<std::pair<std::string, unsigned>>
123 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
124   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
125 
126   // There is always only one CU so it's offset is 0.
127   const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0);
128   if (!LT)
129     return None;
130 
131   // Return if we have no debug information about data object.
132   auto It = VariableLoc.find(Name);
133   if (It == VariableLoc.end())
134     return None;
135 
136   // Take file name string from line table.
137   std::string FileName;
138   if (!LT->getFileNameByIndex(
139           It->second.first /* File */, nullptr,
140           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
141     return None;
142 
143   return std::make_pair(FileName, It->second.second /*Line*/);
144 }
145 
146 // Returns source line information for a given offset
147 // using DWARF debug info.
148 template <class ELFT>
149 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
150                                                   uint64_t Offset) {
151   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
152 
153   // The offset to CU is 0.
154   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
155   if (!Tbl)
156     return None;
157 
158   // Use fake address calcuated by adding section file offset and offset in
159   // section. See comments for ObjectInfo class.
160   DILineInfo Info;
161   Tbl->getFileLineInfoForAddress(
162       S->getOffsetInFile() + Offset, nullptr,
163       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
164   if (Info.Line == 0)
165     return None;
166   return Info;
167 }
168 
169 // Returns source line information for a given offset
170 // using DWARF debug info.
171 template <class ELFT>
172 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) {
173   if (Optional<DILineInfo> Info = getDILineInfo(S, Offset))
174     return Info->FileName + ":" + std::to_string(Info->Line);
175   return "";
176 }
177 
178 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
179 std::string lld::toString(const InputFile *F) {
180   if (!F)
181     return "<internal>";
182 
183   if (F->ToStringCache.empty()) {
184     if (F->ArchiveName.empty())
185       F->ToStringCache = F->getName();
186     else
187       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
188   }
189   return F->ToStringCache;
190 }
191 
192 template <class ELFT>
193 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
194   if (ELFT::TargetEndianness == support::little)
195     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
196   else
197     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
198 
199   EMachine = getObj().getHeader()->e_machine;
200   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
201 }
202 
203 template <class ELFT>
204 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
205   return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end());
206 }
207 
208 template <class ELFT>
209 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
210   return check(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX),
211                toString(this));
212 }
213 
214 template <class ELFT>
215 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
216                                    const Elf_Shdr *Symtab) {
217   FirstNonLocal = Symtab->sh_info;
218   ELFSyms = check(getObj().symbols(Symtab), toString(this));
219   if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size())
220     fatal(toString(this) + ": invalid sh_info in symbol table");
221 
222   StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections),
223                       toString(this));
224 }
225 
226 template <class ELFT>
227 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
228     : ELFFileBase<ELFT>(Base::ObjKind, M) {
229   this->ArchiveName = ArchiveName;
230 }
231 
232 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
233   if (this->Symbols.empty())
234     return {};
235   return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1);
236 }
237 
238 template <class ELFT>
239 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
240   // Read section and symbol tables.
241   initializeSections(ComdatGroups);
242   initializeSymbols();
243 }
244 
245 // Sections with SHT_GROUP and comdat bits define comdat section groups.
246 // They are identified and deduplicated by group name. This function
247 // returns a group name.
248 template <class ELFT>
249 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
250                                               const Elf_Shdr &Sec) {
251   // Group signatures are stored as symbol names in object files.
252   // sh_info contains a symbol index, so we fetch a symbol and read its name.
253   if (this->ELFSyms.empty())
254     this->initSymtab(
255         Sections,
256         check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this)));
257 
258   const Elf_Sym *Sym = check(
259       object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), toString(this));
260   StringRef Signature = check(Sym->getName(this->StringTable), toString(this));
261 
262   // As a special case, if a symbol is a section symbol and has no name,
263   // we use a section name as a signature.
264   //
265   // Such SHT_GROUP sections are invalid from the perspective of the ELF
266   // standard, but GNU gold 1.14 (the neweset version as of July 2017) or
267   // older produce such sections as outputs for the -r option, so we need
268   // a bug-compatibility.
269   if (Signature.empty() && Sym->getType() == STT_SECTION)
270     return getSectionName(Sec);
271   return Signature;
272 }
273 
274 template <class ELFT>
275 ArrayRef<typename ObjFile<ELFT>::Elf_Word>
276 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
277   const ELFFile<ELFT> &Obj = this->getObj();
278   ArrayRef<Elf_Word> Entries = check(
279       Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this));
280   if (Entries.empty() || Entries[0] != GRP_COMDAT)
281     fatal(toString(this) + ": unsupported SHT_GROUP format");
282   return Entries.slice(1);
283 }
284 
285 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
286   // We don't merge sections if -O0 (default is -O1). This makes sometimes
287   // the linker significantly faster, although the output will be bigger.
288   if (Config->Optimize == 0)
289     return false;
290 
291   // Do not merge sections if generating a relocatable object. It makes
292   // the code simpler because we do not need to update relocation addends
293   // to reflect changes introduced by merging.
294   if (Config->Relocatable)
295     return false;
296 
297   // A mergeable section with size 0 is useless because they don't have
298   // any data to merge. A mergeable string section with size 0 can be
299   // argued as invalid because it doesn't end with a null character.
300   // We'll avoid a mess by handling them as if they were non-mergeable.
301   if (Sec.sh_size == 0)
302     return false;
303 
304   // Check for sh_entsize. The ELF spec is not clear about the zero
305   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
306   // the section does not hold a table of fixed-size entries". We know
307   // that Rust 1.13 produces a string mergeable section with a zero
308   // sh_entsize. Here we just accept it rather than being picky about it.
309   uint64_t EntSize = Sec.sh_entsize;
310   if (EntSize == 0)
311     return false;
312   if (Sec.sh_size % EntSize)
313     fatal(toString(this) +
314           ": SHF_MERGE section size must be a multiple of sh_entsize");
315 
316   uint64_t Flags = Sec.sh_flags;
317   if (!(Flags & SHF_MERGE))
318     return false;
319   if (Flags & SHF_WRITE)
320     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
321 
322   // Don't try to merge if the alignment is larger than the sh_entsize and this
323   // is not SHF_STRINGS.
324   //
325   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
326   // It would be equivalent for the producer of the .o to just set a larger
327   // sh_entsize.
328   if (Flags & SHF_STRINGS)
329     return true;
330 
331   return Sec.sh_addralign <= EntSize;
332 }
333 
334 template <class ELFT>
335 void ObjFile<ELFT>::initializeSections(
336     DenseSet<CachedHashStringRef> &ComdatGroups) {
337   const ELFFile<ELFT> &Obj = this->getObj();
338 
339   ArrayRef<Elf_Shdr> ObjSections =
340       check(this->getObj().sections(), toString(this));
341   uint64_t Size = ObjSections.size();
342   this->Sections.resize(Size);
343   this->SectionStringTable =
344       check(Obj.getSectionStringTable(ObjSections), toString(this));
345 
346   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
347     if (this->Sections[I] == &InputSection::Discarded)
348       continue;
349     const Elf_Shdr &Sec = ObjSections[I];
350 
351     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
352     // if -r is given, we'll let the final link discard such sections.
353     // This is compatible with GNU.
354     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
355       this->Sections[I] = &InputSection::Discarded;
356       continue;
357     }
358 
359     switch (Sec.sh_type) {
360     case SHT_GROUP: {
361       // De-duplicate section groups by their signatures.
362       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
363       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
364       this->Sections[I] = &InputSection::Discarded;
365 
366       // If it is a new section group, we want to keep group members.
367       // Group leader sections, which contain indices of group members, are
368       // discarded because they are useless beyond this point. The only
369       // exception is the -r option because in order to produce re-linkable
370       // object files, we want to pass through basically everything.
371       if (IsNew) {
372         if (Config->Relocatable)
373           this->Sections[I] = createInputSection(Sec);
374         continue;
375       }
376 
377       // Otherwise, discard group members.
378       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
379         if (SecIndex >= Size)
380           fatal(toString(this) +
381                 ": invalid section index in group: " + Twine(SecIndex));
382         this->Sections[SecIndex] = &InputSection::Discarded;
383       }
384       break;
385     }
386     case SHT_SYMTAB:
387       this->initSymtab(ObjSections, &Sec);
388       break;
389     case SHT_SYMTAB_SHNDX:
390       this->SymtabSHNDX =
391           check(Obj.getSHNDXTable(Sec, ObjSections), toString(this));
392       break;
393     case SHT_STRTAB:
394     case SHT_NULL:
395       break;
396     default:
397       this->Sections[I] = createInputSection(Sec);
398     }
399 
400     // .ARM.exidx sections have a reverse dependency on the InputSection they
401     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
402     if (Sec.sh_flags & SHF_LINK_ORDER) {
403       if (Sec.sh_link >= this->Sections.size())
404         fatal(toString(this) + ": invalid sh_link index: " +
405               Twine(Sec.sh_link));
406       this->Sections[Sec.sh_link]->DependentSections.push_back(
407           cast<InputSection>(this->Sections[I]));
408     }
409   }
410 }
411 
412 template <class ELFT>
413 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
414   uint32_t Idx = Sec.sh_info;
415   if (Idx >= this->Sections.size())
416     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
417   InputSectionBase *Target = this->Sections[Idx];
418 
419   // Strictly speaking, a relocation section must be included in the
420   // group of the section it relocates. However, LLVM 3.3 and earlier
421   // would fail to do so, so we gracefully handle that case.
422   if (Target == &InputSection::Discarded)
423     return nullptr;
424 
425   if (!Target)
426     fatal(toString(this) + ": unsupported relocation reference");
427   return Target;
428 }
429 
430 // Create a regular InputSection class that has the same contents
431 // as a given section.
432 InputSectionBase *toRegularSection(MergeInputSection *Sec) {
433   auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment,
434                                  Sec->Data, Sec->Name);
435   Ret->File = Sec->File;
436   return Ret;
437 }
438 
439 template <class ELFT>
440 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
441   StringRef Name = getSectionName(Sec);
442 
443   switch (Sec.sh_type) {
444   case SHT_ARM_ATTRIBUTES:
445     // FIXME: ARM meta-data section. Retain the first attribute section
446     // we see. The eglibc ARM dynamic loaders require the presence of an
447     // attribute section for dlopen to work.
448     // In a full implementation we would merge all attribute sections.
449     if (InX::ARMAttributes == nullptr) {
450       InX::ARMAttributes = make<InputSection>(this, &Sec, Name);
451       return InX::ARMAttributes;
452     }
453     return &InputSection::Discarded;
454   case SHT_RELA:
455   case SHT_REL: {
456     // Find the relocation target section and associate this
457     // section with it. Target can be discarded, for example
458     // if it is a duplicated member of SHT_GROUP section, we
459     // do not create or proccess relocatable sections then.
460     InputSectionBase *Target = getRelocTarget(Sec);
461     if (!Target)
462       return nullptr;
463 
464     // This section contains relocation information.
465     // If -r is given, we do not interpret or apply relocation
466     // but just copy relocation sections to output.
467     if (Config->Relocatable)
468       return make<InputSection>(this, &Sec, Name);
469 
470     if (Target->FirstRelocation)
471       fatal(toString(this) +
472             ": multiple relocation sections to one section are not supported");
473 
474     // Mergeable sections with relocations are tricky because relocations
475     // need to be taken into account when comparing section contents for
476     // merging. It's not worth supporting such mergeable sections because
477     // they are rare and it'd complicates the internal design (we usually
478     // have to determine if two sections are mergeable early in the link
479     // process much before applying relocations). We simply handle mergeable
480     // sections with relocations as non-mergeable.
481     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
482       Target = toRegularSection(MS);
483       this->Sections[Sec.sh_info] = Target;
484     }
485 
486     size_t NumRelocations;
487     if (Sec.sh_type == SHT_RELA) {
488       ArrayRef<Elf_Rela> Rels =
489           check(this->getObj().relas(&Sec), toString(this));
490       Target->FirstRelocation = Rels.begin();
491       NumRelocations = Rels.size();
492       Target->AreRelocsRela = true;
493     } else {
494       ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this));
495       Target->FirstRelocation = Rels.begin();
496       NumRelocations = Rels.size();
497       Target->AreRelocsRela = false;
498     }
499     assert(isUInt<31>(NumRelocations));
500     Target->NumRelocations = NumRelocations;
501 
502     // Relocation sections processed by the linker are usually removed
503     // from the output, so returning `nullptr` for the normal case.
504     // However, if -emit-relocs is given, we need to leave them in the output.
505     // (Some post link analysis tools need this information.)
506     if (Config->EmitRelocs) {
507       InputSection *RelocSec = make<InputSection>(this, &Sec, Name);
508       // We will not emit relocation section if target was discarded.
509       Target->DependentSections.push_back(RelocSec);
510       return RelocSec;
511     }
512     return nullptr;
513   }
514   }
515 
516   // The GNU linker uses .note.GNU-stack section as a marker indicating
517   // that the code in the object file does not expect that the stack is
518   // executable (in terms of NX bit). If all input files have the marker,
519   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
520   // make the stack non-executable. Most object files have this section as
521   // of 2017.
522   //
523   // But making the stack non-executable is a norm today for security
524   // reasons. Failure to do so may result in a serious security issue.
525   // Therefore, we make LLD always add PT_GNU_STACK unless it is
526   // explicitly told to do otherwise (by -z execstack). Because the stack
527   // executable-ness is controlled solely by command line options,
528   // .note.GNU-stack sections are simply ignored.
529   if (Name == ".note.GNU-stack")
530     return &InputSection::Discarded;
531 
532   // Split stacks is a feature to support a discontiguous stack. At least
533   // as of 2017, it seems that the feature is not being used widely.
534   // Only GNU gold supports that. We don't. For the details about that,
535   // see https://gcc.gnu.org/wiki/SplitStacks
536   if (Name == ".note.GNU-split-stack") {
537     error(toString(this) +
538           ": object file compiled with -fsplit-stack is not supported");
539     return &InputSection::Discarded;
540   }
541 
542   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
543   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
544   // sections. Drop those sections to avoid duplicate symbol errors.
545   // FIXME: This is glibc PR20543, we should remove this hack once that has been
546   // fixed for a while.
547   if (Name.startswith(".gnu.linkonce."))
548     return &InputSection::Discarded;
549 
550   // The linker merges EH (exception handling) frames and creates a
551   // .eh_frame_hdr section for runtime. So we handle them with a special
552   // class. For relocatable outputs, they are just passed through.
553   if (Name == ".eh_frame" && !Config->Relocatable)
554     return make<EhInputSection>(this, &Sec, Name);
555 
556   if (shouldMerge(Sec))
557     return make<MergeInputSection>(this, &Sec, Name);
558   return make<InputSection>(this, &Sec, Name);
559 }
560 
561 template <class ELFT>
562 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
563   return check(this->getObj().getSectionName(&Sec, SectionStringTable),
564                toString(this));
565 }
566 
567 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
568   this->Symbols.reserve(this->ELFSyms.size());
569   for (const Elf_Sym &Sym : this->ELFSyms)
570     this->Symbols.push_back(createSymbol(&Sym));
571 }
572 
573 template <class ELFT>
574 InputSectionBase *ObjFile<ELFT>::getSection(uint32_t Index) const {
575   if (Index == 0)
576     return nullptr;
577   if (Index >= this->Sections.size())
578     fatal(toString(this) + ": invalid section index: " + Twine(Index));
579 
580   if (InputSectionBase *Sec = this->Sections[Index])
581     return Sec->Repl;
582   return nullptr;
583 }
584 
585 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
586   int Binding = Sym->getBinding();
587   InputSectionBase *Sec = getSection(this->getSectionIndex(*Sym));
588 
589   uint8_t StOther = Sym->st_other;
590   uint8_t Type = Sym->getType();
591   uint64_t Value = Sym->st_value;
592   uint64_t Size = Sym->st_size;
593 
594   if (Binding == STB_LOCAL) {
595     if (Sym->getType() == STT_FILE)
596       SourceFile = check(Sym->getName(this->StringTable), toString(this));
597 
598     if (this->StringTable.size() <= Sym->st_name)
599       fatal(toString(this) + ": invalid symbol name offset");
600 
601     StringRefZ Name = this->StringTable.data() + Sym->st_name;
602     if (Sym->st_shndx == SHN_UNDEF)
603       return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type);
604 
605     return make<Defined>(Name, /*IsLocal=*/true, StOther, Type, Value, Size,
606                          Sec);
607   }
608 
609   StringRef Name = check(Sym->getName(this->StringTable), toString(this));
610 
611   switch (Sym->st_shndx) {
612   case SHN_UNDEF:
613     return Symtab->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding, StOther,
614                                       Type,
615                                       /*CanOmitFromDynSym=*/false, this);
616   case SHN_COMMON:
617     if (Value == 0 || Value >= UINT32_MAX)
618       fatal(toString(this) + ": common symbol '" + Name +
619             "' has invalid alignment: " + Twine(Value));
620     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this);
621   }
622 
623   switch (Binding) {
624   default:
625     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
626   case STB_GLOBAL:
627   case STB_WEAK:
628   case STB_GNU_UNIQUE:
629     if (Sec == &InputSection::Discarded)
630       return Symtab->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding,
631                                         StOther, Type,
632                                         /*CanOmitFromDynSym=*/false, this);
633     return Symtab->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding,
634                                     Sec, this);
635   }
636 }
637 
638 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
639     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
640       File(std::move(File)) {}
641 
642 template <class ELFT> void ArchiveFile::parse() {
643   Symbols.reserve(File->getNumberOfSymbols());
644   for (const Archive::Symbol &Sym : File->symbols())
645     Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym));
646 }
647 
648 // Returns a buffer pointing to a member file containing a given symbol.
649 std::pair<MemoryBufferRef, uint64_t>
650 ArchiveFile::getMember(const Archive::Symbol *Sym) {
651   Archive::Child C =
652       check(Sym->getMember(), toString(this) +
653                                   ": could not get the member for symbol " +
654                                   Sym->getName());
655 
656   if (!Seen.insert(C.getChildOffset()).second)
657     return {MemoryBufferRef(), 0};
658 
659   MemoryBufferRef Ret =
660       check(C.getMemoryBufferRef(),
661             toString(this) +
662                 ": could not get the buffer for the member defining symbol " +
663                 Sym->getName());
664 
665   if (C.getParent()->isThin() && Tar)
666     Tar->append(relativeToRoot(check(C.getFullName(), toString(this))),
667                 Ret.getBuffer());
668   if (C.getParent()->isThin())
669     return {Ret, 0};
670   return {Ret, C.getChildOffset()};
671 }
672 
673 template <class ELFT>
674 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
675     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
676       AsNeeded(Config->AsNeeded) {}
677 
678 // Partially parse the shared object file so that we can call
679 // getSoName on this object.
680 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
681   const Elf_Shdr *DynamicSec = nullptr;
682   const ELFFile<ELFT> Obj = this->getObj();
683   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
684 
685   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
686   for (const Elf_Shdr &Sec : Sections) {
687     switch (Sec.sh_type) {
688     default:
689       continue;
690     case SHT_DYNSYM:
691       this->initSymtab(Sections, &Sec);
692       break;
693     case SHT_DYNAMIC:
694       DynamicSec = &Sec;
695       break;
696     case SHT_SYMTAB_SHNDX:
697       this->SymtabSHNDX =
698           check(Obj.getSHNDXTable(Sec, Sections), toString(this));
699       break;
700     case SHT_GNU_versym:
701       this->VersymSec = &Sec;
702       break;
703     case SHT_GNU_verdef:
704       this->VerdefSec = &Sec;
705       break;
706     }
707   }
708 
709   if (this->VersymSec && this->ELFSyms.empty())
710     error("SHT_GNU_versym should be associated with symbol table");
711 
712   // Search for a DT_SONAME tag to initialize this->SoName.
713   if (!DynamicSec)
714     return;
715   ArrayRef<Elf_Dyn> Arr =
716       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
717             toString(this));
718   for (const Elf_Dyn &Dyn : Arr) {
719     if (Dyn.d_tag == DT_SONAME) {
720       uint64_t Val = Dyn.getVal();
721       if (Val >= this->StringTable.size())
722         fatal(toString(this) + ": invalid DT_SONAME entry");
723       SoName = this->StringTable.data() + Val;
724       return;
725     }
726   }
727 }
728 
729 // Parse the version definitions in the object file if present. Returns a vector
730 // whose nth element contains a pointer to the Elf_Verdef for version identifier
731 // n. Version identifiers that are not definitions map to nullptr. The array
732 // always has at least length 1.
733 template <class ELFT>
734 std::vector<const typename ELFT::Verdef *>
735 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
736   std::vector<const Elf_Verdef *> Verdefs(1);
737   // We only need to process symbol versions for this DSO if it has both a
738   // versym and a verdef section, which indicates that the DSO contains symbol
739   // version definitions.
740   if (!VersymSec || !VerdefSec)
741     return Verdefs;
742 
743   // The location of the first global versym entry.
744   const char *Base = this->MB.getBuffer().data();
745   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
746            this->FirstNonLocal;
747 
748   // We cannot determine the largest verdef identifier without inspecting
749   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
750   // sequentially starting from 1, so we predict that the largest identifier
751   // will be VerdefCount.
752   unsigned VerdefCount = VerdefSec->sh_info;
753   Verdefs.resize(VerdefCount + 1);
754 
755   // Build the Verdefs array by following the chain of Elf_Verdef objects
756   // from the start of the .gnu.version_d section.
757   const char *Verdef = Base + VerdefSec->sh_offset;
758   for (unsigned I = 0; I != VerdefCount; ++I) {
759     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
760     Verdef += CurVerdef->vd_next;
761     unsigned VerdefIndex = CurVerdef->vd_ndx;
762     if (Verdefs.size() <= VerdefIndex)
763       Verdefs.resize(VerdefIndex + 1);
764     Verdefs[VerdefIndex] = CurVerdef;
765   }
766 
767   return Verdefs;
768 }
769 
770 // Fully parse the shared object file. This must be called after parseSoName().
771 template <class ELFT> void SharedFile<ELFT>::parseRest() {
772   // Create mapping from version identifiers to Elf_Verdef entries.
773   const Elf_Versym *Versym = nullptr;
774   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
775 
776   ArrayRef<Elf_Shdr> Sections =
777       check(this->getObj().sections(), toString(this));
778 
779   // Add symbols to the symbol table.
780   Elf_Sym_Range Syms = this->getGlobalELFSyms();
781   for (const Elf_Sym &Sym : Syms) {
782     unsigned VersymIndex = 0;
783     if (Versym) {
784       VersymIndex = Versym->vs_index;
785       ++Versym;
786     }
787     bool Hidden = VersymIndex & VERSYM_HIDDEN;
788     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
789 
790     StringRef Name = check(Sym.getName(this->StringTable), toString(this));
791     if (Sym.isUndefined()) {
792       Undefs.push_back(Name);
793       continue;
794     }
795 
796     // Ignore local symbols.
797     if (Versym && VersymIndex == VER_NDX_LOCAL)
798       continue;
799     const Elf_Verdef *Ver = nullptr;
800     if (VersymIndex != VER_NDX_GLOBAL) {
801       if (VersymIndex >= Verdefs.size()) {
802         error("corrupt input file: version definition index " +
803               Twine(VersymIndex) + " for symbol " + Name +
804               " is out of bounds\n>>> defined in " + toString(this));
805         continue;
806       }
807       Ver = Verdefs[VersymIndex];
808     }
809 
810     // We do not usually care about alignments of data in shared object
811     // files because the loader takes care of it. However, if we promote a
812     // DSO symbol to point to .bss due to copy relocation, we need to keep
813     // the original alignment requirements. We infer it here.
814     uint64_t Alignment = 1;
815     if (Sym.st_value)
816       Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
817     if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) {
818       uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign;
819       Alignment = std::min(Alignment, SecAlign);
820     }
821     if (Alignment > UINT32_MAX)
822       error(toString(this) + ": alignment too large: " + Name);
823 
824     if (!Hidden)
825       Symtab->addShared(Name, this, Sym, Alignment, Ver);
826 
827     // Also add the symbol with the versioned name to handle undefined symbols
828     // with explicit versions.
829     if (Ver) {
830       StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name;
831       Name = Saver.save(Name + "@" + VerName);
832       Symtab->addShared(Name, this, Sym, Alignment, Ver);
833     }
834   }
835 }
836 
837 static ELFKind getBitcodeELFKind(const Triple &T) {
838   if (T.isLittleEndian())
839     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
840   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
841 }
842 
843 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
844   switch (T.getArch()) {
845   case Triple::aarch64:
846     return EM_AARCH64;
847   case Triple::arm:
848   case Triple::thumb:
849     return EM_ARM;
850   case Triple::avr:
851     return EM_AVR;
852   case Triple::mips:
853   case Triple::mipsel:
854   case Triple::mips64:
855   case Triple::mips64el:
856     return EM_MIPS;
857   case Triple::ppc:
858     return EM_PPC;
859   case Triple::ppc64:
860     return EM_PPC64;
861   case Triple::x86:
862     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
863   case Triple::x86_64:
864     return EM_X86_64;
865   default:
866     fatal(Path + ": could not infer e_machine from bitcode target triple " +
867           T.str());
868   }
869 }
870 
871 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
872                          uint64_t OffsetInArchive)
873     : InputFile(BitcodeKind, MB) {
874   this->ArchiveName = ArchiveName;
875 
876   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
877   // (the fully resolved path of the archive) + member name + offset of the
878   // member in the archive.
879   // ThinLTO uses the MemoryBufferRef identifier to access its internal
880   // data structures and if two archives define two members with the same name,
881   // this causes a collision which result in only one of the objects being
882   // taken into consideration at LTO time (which very likely causes undefined
883   // symbols later in the link stage).
884   MemoryBufferRef MBRef(MB.getBuffer(),
885                         Saver.save(ArchiveName + MB.getBufferIdentifier() +
886                                    utostr(OffsetInArchive)));
887   Obj = check(lto::InputFile::create(MBRef), toString(this));
888 
889   Triple T(Obj->getTargetTriple());
890   EKind = getBitcodeELFKind(T);
891   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
892 }
893 
894 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
895   switch (GvVisibility) {
896   case GlobalValue::DefaultVisibility:
897     return STV_DEFAULT;
898   case GlobalValue::HiddenVisibility:
899     return STV_HIDDEN;
900   case GlobalValue::ProtectedVisibility:
901     return STV_PROTECTED;
902   }
903   llvm_unreachable("unknown visibility");
904 }
905 
906 template <class ELFT>
907 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
908                                    const lto::InputFile::Symbol &ObjSym,
909                                    BitcodeFile *F) {
910   StringRef NameRef = Saver.save(ObjSym.getName());
911   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
912 
913   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
914   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
915   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
916 
917   int C = ObjSym.getComdatIndex();
918   if (C != -1 && !KeptComdats[C])
919     return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding,
920                                       Visibility, Type, CanOmitFromDynSym, F);
921 
922   if (ObjSym.isUndefined())
923     return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding,
924                                       Visibility, Type, CanOmitFromDynSym, F);
925 
926   if (ObjSym.isCommon())
927     return Symtab->addCommon(NameRef, ObjSym.getCommonSize(),
928                              ObjSym.getCommonAlignment(), Binding, Visibility,
929                              STT_OBJECT, F);
930 
931   return Symtab->addBitcode(NameRef, Binding, Visibility, Type,
932                             CanOmitFromDynSym, F);
933 }
934 
935 template <class ELFT>
936 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
937   std::vector<bool> KeptComdats;
938   for (StringRef S : Obj->getComdatTable())
939     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
940 
941   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
942     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
943 }
944 
945 static ELFKind getELFKind(MemoryBufferRef MB) {
946   unsigned char Size;
947   unsigned char Endian;
948   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
949 
950   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
951     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
952   if (Size != ELFCLASS32 && Size != ELFCLASS64)
953     fatal(MB.getBufferIdentifier() + ": invalid file class");
954 
955   size_t BufSize = MB.getBuffer().size();
956   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
957       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
958     fatal(MB.getBufferIdentifier() + ": file is too short");
959 
960   if (Size == ELFCLASS32)
961     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
962   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
963 }
964 
965 template <class ELFT> void BinaryFile::parse() {
966   ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer());
967   auto *Section =
968       make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data");
969   Sections.push_back(Section);
970 
971   // For each input file foo that is embedded to a result as a binary
972   // blob, we define _binary_foo_{start,end,size} symbols, so that
973   // user programs can access blobs by name. Non-alphanumeric
974   // characters in a filename are replaced with underscore.
975   std::string S = "_binary_" + MB.getBufferIdentifier().str();
976   for (size_t I = 0; I < S.size(); ++I)
977     if (!isAlnum(S[I]))
978       S[I] = '_';
979 
980   Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT,
981                            0, 0, STB_GLOBAL, Section, nullptr);
982   Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
983                            Data.size(), 0, STB_GLOBAL, Section, nullptr);
984   Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
985                            Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
986 }
987 
988 static bool isBitcode(MemoryBufferRef MB) {
989   using namespace sys::fs;
990   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
991 }
992 
993 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
994                                  uint64_t OffsetInArchive) {
995   if (isBitcode(MB))
996     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
997 
998   switch (getELFKind(MB)) {
999   case ELF32LEKind:
1000     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1001   case ELF32BEKind:
1002     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1003   case ELF64LEKind:
1004     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1005   case ELF64BEKind:
1006     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1007   default:
1008     llvm_unreachable("getELFKind");
1009   }
1010 }
1011 
1012 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1013   switch (getELFKind(MB)) {
1014   case ELF32LEKind:
1015     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1016   case ELF32BEKind:
1017     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1018   case ELF64LEKind:
1019     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1020   case ELF64BEKind:
1021     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1022   default:
1023     llvm_unreachable("getELFKind");
1024   }
1025 }
1026 
1027 MemoryBufferRef LazyObjFile::getBuffer() {
1028   if (Seen)
1029     return MemoryBufferRef();
1030   Seen = true;
1031   return MB;
1032 }
1033 
1034 InputFile *LazyObjFile::fetch() {
1035   MemoryBufferRef MBRef = getBuffer();
1036   if (MBRef.getBuffer().empty())
1037     return nullptr;
1038   return createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1039 }
1040 
1041 template <class ELFT> void LazyObjFile::parse() {
1042   for (StringRef Sym : getSymbolNames())
1043     Symtab->addLazyObject<ELFT>(Sym, *this);
1044 }
1045 
1046 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() {
1047   typedef typename ELFT::Shdr Elf_Shdr;
1048   typedef typename ELFT::Sym Elf_Sym;
1049   typedef typename ELFT::SymRange Elf_Sym_Range;
1050 
1051   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer()));
1052   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
1053   for (const Elf_Shdr &Sec : Sections) {
1054     if (Sec.sh_type != SHT_SYMTAB)
1055       continue;
1056 
1057     Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this));
1058     uint32_t FirstNonLocal = Sec.sh_info;
1059     StringRef StringTable =
1060         check(Obj.getStringTableForSymtab(Sec, Sections), toString(this));
1061     std::vector<StringRef> V;
1062 
1063     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
1064       if (Sym.st_shndx != SHN_UNDEF)
1065         V.push_back(check(Sym.getName(StringTable), toString(this)));
1066     return V;
1067   }
1068   return {};
1069 }
1070 
1071 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() {
1072   std::unique_ptr<lto::InputFile> Obj =
1073       check(lto::InputFile::create(this->MB), toString(this));
1074   std::vector<StringRef> V;
1075   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1076     if (!Sym.isUndefined())
1077       V.push_back(Saver.save(Sym.getName()));
1078   return V;
1079 }
1080 
1081 // Returns a vector of globally-visible defined symbol names.
1082 std::vector<StringRef> LazyObjFile::getSymbolNames() {
1083   if (isBitcode(this->MB))
1084     return getBitcodeSymbols();
1085 
1086   switch (getELFKind(this->MB)) {
1087   case ELF32LEKind:
1088     return getElfSymbols<ELF32LE>();
1089   case ELF32BEKind:
1090     return getElfSymbols<ELF32BE>();
1091   case ELF64LEKind:
1092     return getElfSymbols<ELF64LE>();
1093   case ELF64BEKind:
1094     return getElfSymbols<ELF64BE>();
1095   default:
1096     llvm_unreachable("getELFKind");
1097   }
1098 }
1099 
1100 template void ArchiveFile::parse<ELF32LE>();
1101 template void ArchiveFile::parse<ELF32BE>();
1102 template void ArchiveFile::parse<ELF64LE>();
1103 template void ArchiveFile::parse<ELF64BE>();
1104 
1105 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1106 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1107 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1108 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1109 
1110 template void LazyObjFile::parse<ELF32LE>();
1111 template void LazyObjFile::parse<ELF32BE>();
1112 template void LazyObjFile::parse<ELF64LE>();
1113 template void LazyObjFile::parse<ELF64BE>();
1114 
1115 template class elf::ELFFileBase<ELF32LE>;
1116 template class elf::ELFFileBase<ELF32BE>;
1117 template class elf::ELFFileBase<ELF64LE>;
1118 template class elf::ELFFileBase<ELF64BE>;
1119 
1120 template class elf::ObjFile<ELF32LE>;
1121 template class elf::ObjFile<ELF32BE>;
1122 template class elf::ObjFile<ELF64LE>;
1123 template class elf::ObjFile<ELF64BE>;
1124 
1125 template class elf::SharedFile<ELF32LE>;
1126 template class elf::SharedFile<ELF32BE>;
1127 template class elf::SharedFile<ELF64LE>;
1128 template class elf::SharedFile<ELF64BE>;
1129 
1130 template void BinaryFile::parse<ELF32LE>();
1131 template void BinaryFile::parse<ELF32BE>();
1132 template void BinaryFile::parse<ELF64LE>();
1133 template void BinaryFile::parse<ELF64BE>();
1134