1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/TarWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::sys;
37 using namespace llvm::sys::fs;
38 using namespace llvm::support::endian;
39 
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::IsInGroup;
44 uint32_t InputFile::NextGroupId;
45 std::vector<BinaryFile *> elf::BinaryFiles;
46 std::vector<BitcodeFile *> elf::BitcodeFiles;
47 std::vector<LazyObjFile *> elf::LazyObjFiles;
48 std::vector<InputFile *> elf::ObjectFiles;
49 std::vector<SharedFile *> elf::SharedFiles;
50 
51 std::unique_ptr<TarWriter> elf::Tar;
52 
53 static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) {
54   unsigned char Size;
55   unsigned char Endian;
56   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
57 
58   auto Fatal = [&](StringRef Msg) {
59     StringRef Filename = MB.getBufferIdentifier();
60     if (ArchiveName.empty())
61       fatal(Filename + ": " + Msg);
62     else
63       fatal(ArchiveName + "(" + Filename + "): " + Msg);
64   };
65 
66   if (!MB.getBuffer().startswith(ElfMagic))
67     Fatal("not an ELF file");
68   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
69     Fatal("corrupted ELF file: invalid data encoding");
70   if (Size != ELFCLASS32 && Size != ELFCLASS64)
71     Fatal("corrupted ELF file: invalid file class");
72 
73   size_t BufSize = MB.getBuffer().size();
74   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
75       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
76     Fatal("corrupted ELF file: file is too short");
77 
78   if (Size == ELFCLASS32)
79     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
80   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
81 }
82 
83 InputFile::InputFile(Kind K, MemoryBufferRef M)
84     : MB(M), GroupId(NextGroupId), FileKind(K) {
85   // All files within the same --{start,end}-group get the same group ID.
86   // Otherwise, a new file will get a new group ID.
87   if (!IsInGroup)
88     ++NextGroupId;
89 }
90 
91 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
92   // The --chroot option changes our virtual root directory.
93   // This is useful when you are dealing with files created by --reproduce.
94   if (!Config->Chroot.empty() && Path.startswith("/"))
95     Path = Saver.save(Config->Chroot + Path);
96 
97   log(Path);
98 
99   auto MBOrErr = MemoryBuffer::getFile(Path, -1, false);
100   if (auto EC = MBOrErr.getError()) {
101     error("cannot open " + Path + ": " + EC.message());
102     return None;
103   }
104 
105   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
106   MemoryBufferRef MBRef = MB->getMemBufferRef();
107   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
108 
109   if (Tar)
110     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
111   return MBRef;
112 }
113 
114 // All input object files must be for the same architecture
115 // (e.g. it does not make sense to link x86 object files with
116 // MIPS object files.) This function checks for that error.
117 static bool isCompatible(InputFile *File) {
118   if (!File->isElf() && !isa<BitcodeFile>(File))
119     return true;
120 
121   if (File->EKind == Config->EKind && File->EMachine == Config->EMachine) {
122     if (Config->EMachine != EM_MIPS)
123       return true;
124     if (isMipsN32Abi(File) == Config->MipsN32Abi)
125       return true;
126   }
127 
128   if (!Config->Emulation.empty()) {
129     error(toString(File) + " is incompatible with " + Config->Emulation);
130   } else {
131     InputFile *Existing;
132     if (!ObjectFiles.empty())
133       Existing = ObjectFiles[0];
134     else if (!SharedFiles.empty())
135       Existing = SharedFiles[0];
136     else
137       Existing = BitcodeFiles[0];
138 
139     error(toString(File) + " is incompatible with " + toString(Existing));
140   }
141 
142   return false;
143 }
144 
145 template <class ELFT> static void doParseFile(InputFile *File) {
146   if (!isCompatible(File))
147     return;
148 
149   // Binary file
150   if (auto *F = dyn_cast<BinaryFile>(File)) {
151     BinaryFiles.push_back(F);
152     F->parse();
153     return;
154   }
155 
156   // .a file
157   if (auto *F = dyn_cast<ArchiveFile>(File)) {
158     F->parse();
159     return;
160   }
161 
162   // Lazy object file
163   if (auto *F = dyn_cast<LazyObjFile>(File)) {
164     LazyObjFiles.push_back(F);
165     F->parse<ELFT>();
166     return;
167   }
168 
169   if (Config->Trace)
170     message(toString(File));
171 
172   // .so file
173   if (auto *F = dyn_cast<SharedFile>(File)) {
174     F->parse<ELFT>();
175     return;
176   }
177 
178   // LLVM bitcode file
179   if (auto *F = dyn_cast<BitcodeFile>(File)) {
180     BitcodeFiles.push_back(F);
181     F->parse<ELFT>();
182     return;
183   }
184 
185   // Regular object file
186   ObjectFiles.push_back(File);
187   cast<ObjFile<ELFT>>(File)->parse();
188 }
189 
190 // Add symbols in File to the symbol table.
191 void elf::parseFile(InputFile *File) {
192   switch (Config->EKind) {
193   case ELF32LEKind:
194     doParseFile<ELF32LE>(File);
195     return;
196   case ELF32BEKind:
197     doParseFile<ELF32BE>(File);
198     return;
199   case ELF64LEKind:
200     doParseFile<ELF64LE>(File);
201     return;
202   case ELF64BEKind:
203     doParseFile<ELF64BE>(File);
204     return;
205   default:
206     llvm_unreachable("unknown ELFT");
207   }
208 }
209 
210 // Concatenates arguments to construct a string representing an error location.
211 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
212   std::string Filename = path::filename(Path);
213   std::string Lineno = ":" + std::to_string(Line);
214   if (Filename == Path)
215     return Filename + Lineno;
216   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
217 }
218 
219 template <class ELFT>
220 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
221                                 InputSectionBase &Sec, uint64_t Offset) {
222   // In DWARF, functions and variables are stored to different places.
223   // First, lookup a function for a given offset.
224   if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
225     return createFileLineMsg(Info->FileName, Info->Line);
226 
227   // If it failed, lookup again as a variable.
228   if (Optional<std::pair<std::string, unsigned>> FileLine =
229           File.getVariableLoc(Sym.getName()))
230     return createFileLineMsg(FileLine->first, FileLine->second);
231 
232   // File.SourceFile contains STT_FILE symbol, and that is a last resort.
233   return File.SourceFile;
234 }
235 
236 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
237                                  uint64_t Offset) {
238   if (kind() != ObjKind)
239     return "";
240   switch (Config->EKind) {
241   default:
242     llvm_unreachable("Invalid kind");
243   case ELF32LEKind:
244     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
245   case ELF32BEKind:
246     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
247   case ELF64LEKind:
248     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
249   case ELF64BEKind:
250     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
251   }
252 }
253 
254 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
255   Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this));
256   for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) {
257     auto Report = [](Error Err) {
258       handleAllErrors(std::move(Err),
259                       [](ErrorInfoBase &Info) { warn(Info.message()); });
260     };
261     Expected<const DWARFDebugLine::LineTable *> ExpectedLT =
262         Dwarf->getLineTableForUnit(CU.get(), Report);
263     const DWARFDebugLine::LineTable *LT = nullptr;
264     if (ExpectedLT)
265       LT = *ExpectedLT;
266     else
267       Report(ExpectedLT.takeError());
268     if (!LT)
269       continue;
270     LineTables.push_back(LT);
271 
272     // Loop over variable records and insert them to VariableLoc.
273     for (const auto &Entry : CU->dies()) {
274       DWARFDie Die(CU.get(), &Entry);
275       // Skip all tags that are not variables.
276       if (Die.getTag() != dwarf::DW_TAG_variable)
277         continue;
278 
279       // Skip if a local variable because we don't need them for generating
280       // error messages. In general, only non-local symbols can fail to be
281       // linked.
282       if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
283         continue;
284 
285       // Get the source filename index for the variable.
286       unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
287       if (!LT->hasFileAtIndex(File))
288         continue;
289 
290       // Get the line number on which the variable is declared.
291       unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
292 
293       // Here we want to take the variable name to add it into VariableLoc.
294       // Variable can have regular and linkage name associated. At first, we try
295       // to get linkage name as it can be different, for example when we have
296       // two variables in different namespaces of the same object. Use common
297       // name otherwise, but handle the case when it also absent in case if the
298       // input object file lacks some debug info.
299       StringRef Name =
300           dwarf::toString(Die.find(dwarf::DW_AT_linkage_name),
301                           dwarf::toString(Die.find(dwarf::DW_AT_name), ""));
302       if (!Name.empty())
303         VariableLoc.insert({Name, {LT, File, Line}});
304     }
305   }
306 }
307 
308 // Returns the pair of file name and line number describing location of data
309 // object (variable, array, etc) definition.
310 template <class ELFT>
311 Optional<std::pair<std::string, unsigned>>
312 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
313   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
314 
315   // Return if we have no debug information about data object.
316   auto It = VariableLoc.find(Name);
317   if (It == VariableLoc.end())
318     return None;
319 
320   // Take file name string from line table.
321   std::string FileName;
322   if (!It->second.LT->getFileNameByIndex(
323           It->second.File, nullptr,
324           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
325     return None;
326 
327   return std::make_pair(FileName, It->second.Line);
328 }
329 
330 // Returns source line information for a given offset
331 // using DWARF debug info.
332 template <class ELFT>
333 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
334                                                   uint64_t Offset) {
335   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
336 
337   // Detect SectionIndex for specified section.
338   uint64_t SectionIndex = object::SectionedAddress::UndefSection;
339   ArrayRef<InputSectionBase *> Sections = S->File->getSections();
340   for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) {
341     if (S == Sections[CurIndex]) {
342       SectionIndex = CurIndex;
343       break;
344     }
345   }
346 
347   // Use fake address calcuated by adding section file offset and offset in
348   // section. See comments for ObjectInfo class.
349   DILineInfo Info;
350   for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) {
351     if (LT->getFileLineInfoForAddress(
352             {S->getOffsetInFile() + Offset, SectionIndex}, nullptr,
353             DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info))
354       return Info;
355   }
356   return None;
357 }
358 
359 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
360 std::string lld::toString(const InputFile *F) {
361   if (!F)
362     return "<internal>";
363 
364   if (F->ToStringCache.empty()) {
365     if (F->ArchiveName.empty())
366       F->ToStringCache = F->getName();
367     else
368       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
369   }
370   return F->ToStringCache;
371 }
372 
373 ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
374   EKind = getELFKind(MB, "");
375 
376   switch (EKind) {
377   case ELF32LEKind:
378     init<ELF32LE>();
379     break;
380   case ELF32BEKind:
381     init<ELF32BE>();
382     break;
383   case ELF64LEKind:
384     init<ELF64LE>();
385     break;
386   case ELF64BEKind:
387     init<ELF64BE>();
388     break;
389   default:
390     llvm_unreachable("getELFKind");
391   }
392 }
393 
394 template <typename Elf_Shdr>
395 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> Sections, uint32_t Type) {
396   for (const Elf_Shdr &Sec : Sections)
397     if (Sec.sh_type == Type)
398       return &Sec;
399   return nullptr;
400 }
401 
402 template <class ELFT> void ELFFileBase::init() {
403   using Elf_Shdr = typename ELFT::Shdr;
404   using Elf_Sym = typename ELFT::Sym;
405 
406   // Initialize trivial attributes.
407   const ELFFile<ELFT> &Obj = getObj<ELFT>();
408   EMachine = Obj.getHeader()->e_machine;
409   OSABI = Obj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
410   ABIVersion = Obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
411 
412   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
413 
414   // Find a symbol table.
415   bool IsDSO =
416       (identify_magic(MB.getBuffer()) == file_magic::elf_shared_object);
417   const Elf_Shdr *SymtabSec =
418       findSection(Sections, IsDSO ? SHT_DYNSYM : SHT_SYMTAB);
419 
420   if (!SymtabSec)
421     return;
422 
423   // Initialize members corresponding to a symbol table.
424   FirstGlobal = SymtabSec->sh_info;
425 
426   ArrayRef<Elf_Sym> ESyms = CHECK(Obj.symbols(SymtabSec), this);
427   if (FirstGlobal == 0 || FirstGlobal > ESyms.size())
428     fatal(toString(this) + ": invalid sh_info in symbol table");
429 
430   ELFSyms = reinterpret_cast<const void *>(ESyms.data());
431   NumELFSyms = ESyms.size();
432   StringTable = CHECK(Obj.getStringTableForSymtab(*SymtabSec, Sections), this);
433 }
434 
435 template <class ELFT>
436 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
437   return CHECK(
438       this->getObj().getSectionIndex(&Sym, getELFSyms<ELFT>(), ShndxTable),
439       this);
440 }
441 
442 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
443   if (this->Symbols.empty())
444     return {};
445   return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1);
446 }
447 
448 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
449   return makeArrayRef(this->Symbols).slice(this->FirstGlobal);
450 }
451 
452 template <class ELFT> void ObjFile<ELFT>::parse(bool IgnoreComdats) {
453   // Read a section table. JustSymbols is usually false.
454   if (this->JustSymbols)
455     initializeJustSymbols();
456   else
457     initializeSections(IgnoreComdats);
458 
459   // Read a symbol table.
460   initializeSymbols();
461 }
462 
463 // Sections with SHT_GROUP and comdat bits define comdat section groups.
464 // They are identified and deduplicated by group name. This function
465 // returns a group name.
466 template <class ELFT>
467 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
468                                               const Elf_Shdr &Sec) {
469   const Elf_Sym *Sym =
470       CHECK(object::getSymbol<ELFT>(this->getELFSyms<ELFT>(), Sec.sh_info), this);
471   StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
472 
473   // As a special case, if a symbol is a section symbol and has no name,
474   // we use a section name as a signature.
475   //
476   // Such SHT_GROUP sections are invalid from the perspective of the ELF
477   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
478   // older produce such sections as outputs for the -r option, so we need
479   // a bug-compatibility.
480   if (Signature.empty() && Sym->getType() == STT_SECTION)
481     return getSectionName(Sec);
482   return Signature;
483 }
484 
485 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
486   // On a regular link we don't merge sections if -O0 (default is -O1). This
487   // sometimes makes the linker significantly faster, although the output will
488   // be bigger.
489   //
490   // Doing the same for -r would create a problem as it would combine sections
491   // with different sh_entsize. One option would be to just copy every SHF_MERGE
492   // section as is to the output. While this would produce a valid ELF file with
493   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
494   // they see two .debug_str. We could have separate logic for combining
495   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
496   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
497   // logic for -r.
498   if (Config->Optimize == 0 && !Config->Relocatable)
499     return false;
500 
501   // A mergeable section with size 0 is useless because they don't have
502   // any data to merge. A mergeable string section with size 0 can be
503   // argued as invalid because it doesn't end with a null character.
504   // We'll avoid a mess by handling them as if they were non-mergeable.
505   if (Sec.sh_size == 0)
506     return false;
507 
508   // Check for sh_entsize. The ELF spec is not clear about the zero
509   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
510   // the section does not hold a table of fixed-size entries". We know
511   // that Rust 1.13 produces a string mergeable section with a zero
512   // sh_entsize. Here we just accept it rather than being picky about it.
513   uint64_t EntSize = Sec.sh_entsize;
514   if (EntSize == 0)
515     return false;
516   if (Sec.sh_size % EntSize)
517     fatal(toString(this) +
518           ": SHF_MERGE section size must be a multiple of sh_entsize");
519 
520   uint64_t Flags = Sec.sh_flags;
521   if (!(Flags & SHF_MERGE))
522     return false;
523   if (Flags & SHF_WRITE)
524     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
525 
526   return true;
527 }
528 
529 // This is for --just-symbols.
530 //
531 // --just-symbols is a very minor feature that allows you to link your
532 // output against other existing program, so that if you load both your
533 // program and the other program into memory, your output can refer the
534 // other program's symbols.
535 //
536 // When the option is given, we link "just symbols". The section table is
537 // initialized with null pointers.
538 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
539   ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this);
540   this->Sections.resize(Sections.size());
541 }
542 
543 // An ELF object file may contain a `.deplibs` section. If it exists, the
544 // section contains a list of library specifiers such as `m` for libm. This
545 // function resolves a given name by finding the first matching library checking
546 // the various ways that a library can be specified to LLD. This ELF extension
547 // is a form of autolinking and is called `dependent libraries`. It is currently
548 // unique to LLVM and lld.
549 static void addDependentLibrary(StringRef Specifier, const InputFile *F) {
550   if (!Config->DependentLibraries)
551     return;
552   if (fs::exists(Specifier))
553     Driver->addFile(Specifier, /*WithLOption=*/false);
554   else if (Optional<std::string> S = findFromSearchPaths(Specifier))
555     Driver->addFile(*S, /*WithLOption=*/true);
556   else if (Optional<std::string> S = searchLibraryBaseName(Specifier))
557     Driver->addFile(*S, /*WithLOption=*/true);
558   else
559     error(toString(F) +
560           ": unable to find library from dependent library specifier: " +
561           Specifier);
562 }
563 
564 template <class ELFT>
565 void ObjFile<ELFT>::initializeSections(bool IgnoreComdats) {
566   const ELFFile<ELFT> &Obj = this->getObj();
567 
568   ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this);
569   uint64_t Size = ObjSections.size();
570   this->Sections.resize(Size);
571   this->SectionStringTable =
572       CHECK(Obj.getSectionStringTable(ObjSections), this);
573 
574   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
575     if (this->Sections[I] == &InputSection::Discarded)
576       continue;
577     const Elf_Shdr &Sec = ObjSections[I];
578 
579     if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
580       CGProfile =
581           check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec));
582 
583     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
584     // if -r is given, we'll let the final link discard such sections.
585     // This is compatible with GNU.
586     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
587       if (Sec.sh_type == SHT_LLVM_ADDRSIG) {
588         // We ignore the address-significance table if we know that the object
589         // file was created by objcopy or ld -r. This is because these tools
590         // will reorder the symbols in the symbol table, invalidating the data
591         // in the address-significance table, which refers to symbols by index.
592         if (Sec.sh_link != 0)
593           this->AddrsigSec = &Sec;
594         else if (Config->ICF == ICFLevel::Safe)
595           warn(toString(this) + ": --icf=safe is incompatible with object "
596                                 "files created using objcopy or ld -r");
597       }
598       this->Sections[I] = &InputSection::Discarded;
599       continue;
600     }
601 
602     switch (Sec.sh_type) {
603     case SHT_GROUP: {
604       // De-duplicate section groups by their signatures.
605       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
606       this->Sections[I] = &InputSection::Discarded;
607 
608 
609       ArrayRef<Elf_Word> Entries =
610           CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
611       if (Entries.empty())
612         fatal(toString(this) + ": empty SHT_GROUP");
613 
614       // The first word of a SHT_GROUP section contains flags. Currently,
615       // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
616       // An group with the empty flag doesn't define anything; such sections
617       // are just skipped.
618       if (Entries[0] == 0)
619         continue;
620 
621       if (Entries[0] != GRP_COMDAT)
622         fatal(toString(this) + ": unsupported SHT_GROUP format");
623 
624       bool IsNew =
625           IgnoreComdats ||
626           Symtab->ComdatGroups.try_emplace(CachedHashStringRef(Signature), this)
627               .second;
628       if (IsNew) {
629         if (Config->Relocatable)
630           this->Sections[I] = createInputSection(Sec);
631         continue;
632       }
633 
634       // Otherwise, discard group members.
635       for (uint32_t SecIndex : Entries.slice(1)) {
636         if (SecIndex >= Size)
637           fatal(toString(this) +
638                 ": invalid section index in group: " + Twine(SecIndex));
639         this->Sections[SecIndex] = &InputSection::Discarded;
640       }
641       break;
642     }
643     case SHT_SYMTAB_SHNDX:
644       ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
645       break;
646     case SHT_SYMTAB:
647     case SHT_STRTAB:
648     case SHT_NULL:
649       break;
650     default:
651       this->Sections[I] = createInputSection(Sec);
652     }
653 
654     // .ARM.exidx sections have a reverse dependency on the InputSection they
655     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
656     if (Sec.sh_flags & SHF_LINK_ORDER) {
657       InputSectionBase *LinkSec = nullptr;
658       if (Sec.sh_link < this->Sections.size())
659         LinkSec = this->Sections[Sec.sh_link];
660       if (!LinkSec)
661         fatal(toString(this) +
662               ": invalid sh_link index: " + Twine(Sec.sh_link));
663 
664       InputSection *IS = cast<InputSection>(this->Sections[I]);
665       LinkSec->DependentSections.push_back(IS);
666       if (!isa<InputSection>(LinkSec))
667         error("a section " + IS->Name +
668               " with SHF_LINK_ORDER should not refer a non-regular "
669               "section: " +
670               toString(LinkSec));
671     }
672   }
673 }
674 
675 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
676 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
677 // the input objects have been compiled.
678 static void updateARMVFPArgs(const ARMAttributeParser &Attributes,
679                              const InputFile *F) {
680   if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
681     // If an ABI tag isn't present then it is implicitly given the value of 0
682     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
683     // including some in glibc that don't use FP args (and should have value 3)
684     // don't have the attribute so we do not consider an implicit value of 0
685     // as a clash.
686     return;
687 
688   unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
689   ARMVFPArgKind Arg;
690   switch (VFPArgs) {
691   case ARMBuildAttrs::BaseAAPCS:
692     Arg = ARMVFPArgKind::Base;
693     break;
694   case ARMBuildAttrs::HardFPAAPCS:
695     Arg = ARMVFPArgKind::VFP;
696     break;
697   case ARMBuildAttrs::ToolChainFPPCS:
698     // Tool chain specific convention that conforms to neither AAPCS variant.
699     Arg = ARMVFPArgKind::ToolChain;
700     break;
701   case ARMBuildAttrs::CompatibleFPAAPCS:
702     // Object compatible with all conventions.
703     return;
704   default:
705     error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs));
706     return;
707   }
708   // Follow ld.bfd and error if there is a mix of calling conventions.
709   if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default)
710     error(toString(F) + ": incompatible Tag_ABI_VFP_args");
711   else
712     Config->ARMVFPArgs = Arg;
713 }
714 
715 // The ARM support in lld makes some use of instructions that are not available
716 // on all ARM architectures. Namely:
717 // - Use of BLX instruction for interworking between ARM and Thumb state.
718 // - Use of the extended Thumb branch encoding in relocation.
719 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
720 // The ARM Attributes section contains information about the architecture chosen
721 // at compile time. We follow the convention that if at least one input object
722 // is compiled with an architecture that supports these features then lld is
723 // permitted to use them.
724 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
725   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
726     return;
727   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
728   switch (Arch) {
729   case ARMBuildAttrs::Pre_v4:
730   case ARMBuildAttrs::v4:
731   case ARMBuildAttrs::v4T:
732     // Architectures prior to v5 do not support BLX instruction
733     break;
734   case ARMBuildAttrs::v5T:
735   case ARMBuildAttrs::v5TE:
736   case ARMBuildAttrs::v5TEJ:
737   case ARMBuildAttrs::v6:
738   case ARMBuildAttrs::v6KZ:
739   case ARMBuildAttrs::v6K:
740     Config->ARMHasBlx = true;
741     // Architectures used in pre-Cortex processors do not support
742     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
743     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
744     break;
745   default:
746     // All other Architectures have BLX and extended branch encoding
747     Config->ARMHasBlx = true;
748     Config->ARMJ1J2BranchEncoding = true;
749     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
750       // All Architectures used in Cortex processors with the exception
751       // of v6-M and v6S-M have the MOVT and MOVW instructions.
752       Config->ARMHasMovtMovw = true;
753     break;
754   }
755 }
756 
757 // If a source file is compiled with x86 hardware-assisted call flow control
758 // enabled, the generated object file contains feature flags indicating that
759 // fact. This function reads the feature flags and returns it.
760 //
761 // Essentially we want to read a single 32-bit value in this function, but this
762 // function is rather complicated because the value is buried deep inside a
763 // .note.gnu.property section.
764 //
765 // The section consists of one or more NOTE records. Each NOTE record consists
766 // of zero or more type-length-value fields. We want to find a field of a
767 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
768 // the ABI is unnecessarily complicated.
769 template <class ELFT>
770 static uint32_t readAndFeatures(ObjFile<ELFT> *Obj, ArrayRef<uint8_t> Data) {
771   using Elf_Nhdr = typename ELFT::Nhdr;
772   using Elf_Note = typename ELFT::Note;
773 
774   uint32_t FeaturesSet = 0;
775   while (!Data.empty()) {
776     // Read one NOTE record.
777     if (Data.size() < sizeof(Elf_Nhdr))
778       fatal(toString(Obj) + ": .note.gnu.property: section too short");
779 
780     auto *Nhdr = reinterpret_cast<const Elf_Nhdr *>(Data.data());
781     if (Data.size() < Nhdr->getSize())
782       fatal(toString(Obj) + ": .note.gnu.property: section too short");
783 
784     Elf_Note Note(*Nhdr);
785     if (Nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || Note.getName() != "GNU") {
786       Data = Data.slice(Nhdr->getSize());
787       continue;
788     }
789 
790     uint32_t FeatureAndType = Config->EMachine == EM_AARCH64
791                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
792                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
793 
794     // Read a body of a NOTE record, which consists of type-length-value fields.
795     ArrayRef<uint8_t> Desc = Note.getDesc();
796     while (!Desc.empty()) {
797       if (Desc.size() < 8)
798         fatal(toString(Obj) + ": .note.gnu.property: section too short");
799 
800       uint32_t Type = read32le(Desc.data());
801       uint32_t Size = read32le(Desc.data() + 4);
802 
803       if (Type == FeatureAndType) {
804         // We found a FEATURE_1_AND field. There may be more than one of these
805         // in a .note.gnu.propery section, for a relocatable object we
806         // accumulate the bits set.
807         FeaturesSet |= read32le(Desc.data() + 8);
808       }
809 
810       // On 64-bit, a payload may be followed by a 4-byte padding to make its
811       // size a multiple of 8.
812       if (ELFT::Is64Bits)
813         Size = alignTo(Size, 8);
814 
815       Desc = Desc.slice(Size + 8); // +8 for Type and Size
816     }
817 
818     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
819     Data = Data.slice(Nhdr->getSize());
820   }
821 
822   return FeaturesSet;
823 }
824 
825 template <class ELFT>
826 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
827   uint32_t Idx = Sec.sh_info;
828   if (Idx >= this->Sections.size())
829     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
830   InputSectionBase *Target = this->Sections[Idx];
831 
832   // Strictly speaking, a relocation section must be included in the
833   // group of the section it relocates. However, LLVM 3.3 and earlier
834   // would fail to do so, so we gracefully handle that case.
835   if (Target == &InputSection::Discarded)
836     return nullptr;
837 
838   if (!Target)
839     fatal(toString(this) + ": unsupported relocation reference");
840   return Target;
841 }
842 
843 // Create a regular InputSection class that has the same contents
844 // as a given section.
845 static InputSection *toRegularSection(MergeInputSection *Sec) {
846   return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
847                             Sec->data(), Sec->Name);
848 }
849 
850 template <class ELFT>
851 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
852   StringRef Name = getSectionName(Sec);
853 
854   switch (Sec.sh_type) {
855   case SHT_ARM_ATTRIBUTES: {
856     if (Config->EMachine != EM_ARM)
857       break;
858     ARMAttributeParser Attributes;
859     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
860     Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
861     updateSupportedARMFeatures(Attributes);
862     updateARMVFPArgs(Attributes, this);
863 
864     // FIXME: Retain the first attribute section we see. The eglibc ARM
865     // dynamic loaders require the presence of an attribute section for dlopen
866     // to work. In a full implementation we would merge all attribute sections.
867     if (In.ARMAttributes == nullptr) {
868       In.ARMAttributes = make<InputSection>(*this, Sec, Name);
869       return In.ARMAttributes;
870     }
871     return &InputSection::Discarded;
872   }
873   case SHT_LLVM_DEPENDENT_LIBRARIES: {
874     if (Config->Relocatable)
875       break;
876     ArrayRef<char> Data =
877         CHECK(this->getObj().template getSectionContentsAsArray<char>(&Sec), this);
878     if (!Data.empty() && Data.back() != '\0') {
879       error(toString(this) +
880             ": corrupted dependent libraries section (unterminated string): " +
881             Name);
882       return &InputSection::Discarded;
883     }
884     for (const char *D = Data.begin(), *E = Data.end(); D < E;) {
885       StringRef S(D);
886       addDependentLibrary(S, this);
887       D += S.size() + 1;
888     }
889     return &InputSection::Discarded;
890   }
891   case SHT_RELA:
892   case SHT_REL: {
893     // Find a relocation target section and associate this section with that.
894     // Target may have been discarded if it is in a different section group
895     // and the group is discarded, even though it's a violation of the
896     // spec. We handle that situation gracefully by discarding dangling
897     // relocation sections.
898     InputSectionBase *Target = getRelocTarget(Sec);
899     if (!Target)
900       return nullptr;
901 
902     // This section contains relocation information.
903     // If -r is given, we do not interpret or apply relocation
904     // but just copy relocation sections to output.
905     if (Config->Relocatable) {
906       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
907       // We want to add a dependency to target, similar like we do for
908       // -emit-relocs below. This is useful for the case when linker script
909       // contains the "/DISCARD/". It is perhaps uncommon to use a script with
910       // -r, but we faced it in the Linux kernel and have to handle such case
911       // and not to crash.
912       Target->DependentSections.push_back(RelocSec);
913       return RelocSec;
914     }
915 
916     if (Target->FirstRelocation)
917       fatal(toString(this) +
918             ": multiple relocation sections to one section are not supported");
919 
920     // ELF spec allows mergeable sections with relocations, but they are
921     // rare, and it is in practice hard to merge such sections by contents,
922     // because applying relocations at end of linking changes section
923     // contents. So, we simply handle such sections as non-mergeable ones.
924     // Degrading like this is acceptable because section merging is optional.
925     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
926       Target = toRegularSection(MS);
927       this->Sections[Sec.sh_info] = Target;
928     }
929 
930     if (Sec.sh_type == SHT_RELA) {
931       ArrayRef<Elf_Rela> Rels = CHECK(getObj().relas(&Sec), this);
932       Target->FirstRelocation = Rels.begin();
933       Target->NumRelocations = Rels.size();
934       Target->AreRelocsRela = true;
935     } else {
936       ArrayRef<Elf_Rel> Rels = CHECK(getObj().rels(&Sec), this);
937       Target->FirstRelocation = Rels.begin();
938       Target->NumRelocations = Rels.size();
939       Target->AreRelocsRela = false;
940     }
941     assert(isUInt<31>(Target->NumRelocations));
942 
943     // Relocation sections processed by the linker are usually removed
944     // from the output, so returning `nullptr` for the normal case.
945     // However, if -emit-relocs is given, we need to leave them in the output.
946     // (Some post link analysis tools need this information.)
947     if (Config->EmitRelocs) {
948       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
949       // We will not emit relocation section if target was discarded.
950       Target->DependentSections.push_back(RelocSec);
951       return RelocSec;
952     }
953     return nullptr;
954   }
955   }
956 
957   // The GNU linker uses .note.GNU-stack section as a marker indicating
958   // that the code in the object file does not expect that the stack is
959   // executable (in terms of NX bit). If all input files have the marker,
960   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
961   // make the stack non-executable. Most object files have this section as
962   // of 2017.
963   //
964   // But making the stack non-executable is a norm today for security
965   // reasons. Failure to do so may result in a serious security issue.
966   // Therefore, we make LLD always add PT_GNU_STACK unless it is
967   // explicitly told to do otherwise (by -z execstack). Because the stack
968   // executable-ness is controlled solely by command line options,
969   // .note.GNU-stack sections are simply ignored.
970   if (Name == ".note.GNU-stack")
971     return &InputSection::Discarded;
972 
973   // Object files that use processor features such as Intel Control-Flow
974   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
975   // .note.gnu.property section containing a bitfield of feature bits like the
976   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
977   //
978   // Since we merge bitmaps from multiple object files to create a new
979   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
980   // file's .note.gnu.property section.
981   if (Name == ".note.gnu.property") {
982     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
983     this->AndFeatures = readAndFeatures(this, Contents);
984     return &InputSection::Discarded;
985   }
986 
987   // Split stacks is a feature to support a discontiguous stack,
988   // commonly used in the programming language Go. For the details,
989   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
990   // for split stack will include a .note.GNU-split-stack section.
991   if (Name == ".note.GNU-split-stack") {
992     if (Config->Relocatable) {
993       error("cannot mix split-stack and non-split-stack in a relocatable link");
994       return &InputSection::Discarded;
995     }
996     this->SplitStack = true;
997     return &InputSection::Discarded;
998   }
999 
1000   // An object file cmpiled for split stack, but where some of the
1001   // functions were compiled with the no_split_stack_attribute will
1002   // include a .note.GNU-no-split-stack section.
1003   if (Name == ".note.GNU-no-split-stack") {
1004     this->SomeNoSplitStack = true;
1005     return &InputSection::Discarded;
1006   }
1007 
1008   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1009   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1010   // sections. Drop those sections to avoid duplicate symbol errors.
1011   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1012   // fixed for a while.
1013   if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1014       Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1015     return &InputSection::Discarded;
1016 
1017   // If we are creating a new .build-id section, strip existing .build-id
1018   // sections so that the output won't have more than one .build-id.
1019   // This is not usually a problem because input object files normally don't
1020   // have .build-id sections, but you can create such files by
1021   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1022   if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
1023     return &InputSection::Discarded;
1024 
1025   // The linker merges EH (exception handling) frames and creates a
1026   // .eh_frame_hdr section for runtime. So we handle them with a special
1027   // class. For relocatable outputs, they are just passed through.
1028   if (Name == ".eh_frame" && !Config->Relocatable)
1029     return make<EhInputSection>(*this, Sec, Name);
1030 
1031   if (shouldMerge(Sec))
1032     return make<MergeInputSection>(*this, Sec, Name);
1033   return make<InputSection>(*this, Sec, Name);
1034 }
1035 
1036 template <class ELFT>
1037 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
1038   return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this);
1039 }
1040 
1041 // Initialize this->Symbols. this->Symbols is a parallel array as
1042 // its corresponding ELF symbol table.
1043 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1044   ArrayRef<Elf_Sym> ESyms = this->getELFSyms<ELFT>();
1045   this->Symbols.resize(ESyms.size());
1046 
1047   // Our symbol table may have already been partially initialized
1048   // because of LazyObjFile.
1049   for (size_t I = 0, End = ESyms.size(); I != End; ++I)
1050     if (!this->Symbols[I] && ESyms[I].getBinding() != STB_LOCAL)
1051       this->Symbols[I] =
1052           Symtab->insert(CHECK(ESyms[I].getName(this->StringTable), this));
1053 
1054   // Fill this->Symbols. A symbol is either local or global.
1055   for (size_t I = 0, End = ESyms.size(); I != End; ++I) {
1056     const Elf_Sym &ESym = ESyms[I];
1057 
1058     // Read symbol attributes.
1059     uint32_t SecIdx = getSectionIndex(ESym);
1060     if (SecIdx >= this->Sections.size())
1061       fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
1062 
1063     InputSectionBase *Sec = this->Sections[SecIdx];
1064     uint8_t Binding = ESym.getBinding();
1065     uint8_t StOther = ESym.st_other;
1066     uint8_t Type = ESym.getType();
1067     uint64_t Value = ESym.st_value;
1068     uint64_t Size = ESym.st_size;
1069     StringRefZ Name = this->StringTable.data() + ESym.st_name;
1070 
1071     // Handle local symbols. Local symbols are not added to the symbol
1072     // table because they are not visible from other object files. We
1073     // allocate symbol instances and add their pointers to Symbols.
1074     if (Binding == STB_LOCAL) {
1075       if (ESym.getType() == STT_FILE)
1076         SourceFile = CHECK(ESym.getName(this->StringTable), this);
1077 
1078       if (this->StringTable.size() <= ESym.st_name)
1079         fatal(toString(this) + ": invalid symbol name offset");
1080 
1081       if (ESym.st_shndx == SHN_UNDEF)
1082         this->Symbols[I] = make<Undefined>(this, Name, Binding, StOther, Type);
1083       else if (Sec == &InputSection::Discarded)
1084         this->Symbols[I] = make<Undefined>(this, Name, Binding, StOther, Type,
1085                                            /*DiscardedSecIdx=*/SecIdx);
1086       else
1087         this->Symbols[I] =
1088             make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
1089       continue;
1090     }
1091 
1092     // Handle global undefined symbols.
1093     if (ESym.st_shndx == SHN_UNDEF) {
1094       this->Symbols[I]->resolve(Undefined{this, Name, Binding, StOther, Type});
1095       continue;
1096     }
1097 
1098     // Handle global common symbols.
1099     if (ESym.st_shndx == SHN_COMMON) {
1100       if (Value == 0 || Value >= UINT32_MAX)
1101         fatal(toString(this) + ": common symbol '" + StringRef(Name.Data) +
1102               "' has invalid alignment: " + Twine(Value));
1103       this->Symbols[I]->resolve(
1104           CommonSymbol{this, Name, Binding, StOther, Type, Value, Size});
1105       continue;
1106     }
1107 
1108     // If a defined symbol is in a discarded section, handle it as if it
1109     // were an undefined symbol. Such symbol doesn't comply with the
1110     // standard, but in practice, a .eh_frame often directly refer
1111     // COMDAT member sections, and if a comdat group is discarded, some
1112     // defined symbol in a .eh_frame becomes dangling symbols.
1113     if (Sec == &InputSection::Discarded) {
1114       this->Symbols[I]->resolve(
1115           Undefined{this, Name, Binding, StOther, Type, SecIdx});
1116       continue;
1117     }
1118 
1119     // Handle global defined symbols.
1120     if (Binding == STB_GLOBAL || Binding == STB_WEAK ||
1121         Binding == STB_GNU_UNIQUE) {
1122       this->Symbols[I]->resolve(
1123           Defined{this, Name, Binding, StOther, Type, Value, Size, Sec});
1124       continue;
1125     }
1126 
1127     fatal(toString(this) + ": unexpected binding: " + Twine((int)Binding));
1128   }
1129 }
1130 
1131 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
1132     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
1133       File(std::move(File)) {}
1134 
1135 void ArchiveFile::parse() {
1136   for (const Archive::Symbol &Sym : File->symbols())
1137     Symtab->addSymbol(LazyArchive{*this, Sym});
1138 }
1139 
1140 // Returns a buffer pointing to a member file containing a given symbol.
1141 void ArchiveFile::fetch(const Archive::Symbol &Sym) {
1142   Archive::Child C =
1143       CHECK(Sym.getMember(), toString(this) +
1144                                  ": could not get the member for symbol " +
1145                                  Sym.getName());
1146 
1147   if (!Seen.insert(C.getChildOffset()).second)
1148     return;
1149 
1150   MemoryBufferRef MB =
1151       CHECK(C.getMemoryBufferRef(),
1152             toString(this) +
1153                 ": could not get the buffer for the member defining symbol " +
1154                 Sym.getName());
1155 
1156   if (Tar && C.getParent()->isThin())
1157     Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer());
1158 
1159   InputFile *File = createObjectFile(
1160       MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset());
1161   File->GroupId = GroupId;
1162   parseFile(File);
1163 }
1164 
1165 unsigned SharedFile::VernauxNum;
1166 
1167 // Parse the version definitions in the object file if present, and return a
1168 // vector whose nth element contains a pointer to the Elf_Verdef for version
1169 // identifier n. Version identifiers that are not definitions map to nullptr.
1170 template <typename ELFT>
1171 static std::vector<const void *> parseVerdefs(const uint8_t *Base,
1172                                               const typename ELFT::Shdr *Sec) {
1173   if (!Sec)
1174     return {};
1175 
1176   // We cannot determine the largest verdef identifier without inspecting
1177   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1178   // sequentially starting from 1, so we predict that the largest identifier
1179   // will be VerdefCount.
1180   unsigned VerdefCount = Sec->sh_info;
1181   std::vector<const void *> Verdefs(VerdefCount + 1);
1182 
1183   // Build the Verdefs array by following the chain of Elf_Verdef objects
1184   // from the start of the .gnu.version_d section.
1185   const uint8_t *Verdef = Base + Sec->sh_offset;
1186   for (unsigned I = 0; I != VerdefCount; ++I) {
1187     auto *CurVerdef = reinterpret_cast<const typename ELFT::Verdef *>(Verdef);
1188     Verdef += CurVerdef->vd_next;
1189     unsigned VerdefIndex = CurVerdef->vd_ndx;
1190     Verdefs.resize(VerdefIndex + 1);
1191     Verdefs[VerdefIndex] = CurVerdef;
1192   }
1193   return Verdefs;
1194 }
1195 
1196 // We do not usually care about alignments of data in shared object
1197 // files because the loader takes care of it. However, if we promote a
1198 // DSO symbol to point to .bss due to copy relocation, we need to keep
1199 // the original alignment requirements. We infer it in this function.
1200 template <typename ELFT>
1201 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> Sections,
1202                              const typename ELFT::Sym &Sym) {
1203   uint64_t Ret = UINT64_MAX;
1204   if (Sym.st_value)
1205     Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
1206   if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size())
1207     Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign);
1208   return (Ret > UINT32_MAX) ? 0 : Ret;
1209 }
1210 
1211 // Fully parse the shared object file.
1212 //
1213 // This function parses symbol versions. If a DSO has version information,
1214 // the file has a ".gnu.version_d" section which contains symbol version
1215 // definitions. Each symbol is associated to one version through a table in
1216 // ".gnu.version" section. That table is a parallel array for the symbol
1217 // table, and each table entry contains an index in ".gnu.version_d".
1218 //
1219 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1220 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1221 // ".gnu.version_d".
1222 //
1223 // The file format for symbol versioning is perhaps a bit more complicated
1224 // than necessary, but you can easily understand the code if you wrap your
1225 // head around the data structure described above.
1226 template <class ELFT> void SharedFile::parse() {
1227   using Elf_Dyn = typename ELFT::Dyn;
1228   using Elf_Shdr = typename ELFT::Shdr;
1229   using Elf_Sym = typename ELFT::Sym;
1230   using Elf_Verdef = typename ELFT::Verdef;
1231   using Elf_Versym = typename ELFT::Versym;
1232 
1233   ArrayRef<Elf_Dyn> DynamicTags;
1234   const ELFFile<ELFT> Obj = this->getObj<ELFT>();
1235   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
1236 
1237   const Elf_Shdr *VersymSec = nullptr;
1238   const Elf_Shdr *VerdefSec = nullptr;
1239 
1240   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1241   for (const Elf_Shdr &Sec : Sections) {
1242     switch (Sec.sh_type) {
1243     default:
1244       continue;
1245     case SHT_DYNAMIC:
1246       DynamicTags =
1247           CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(&Sec), this);
1248       break;
1249     case SHT_GNU_versym:
1250       VersymSec = &Sec;
1251       break;
1252     case SHT_GNU_verdef:
1253       VerdefSec = &Sec;
1254       break;
1255     }
1256   }
1257 
1258   if (VersymSec && NumELFSyms == 0) {
1259     error("SHT_GNU_versym should be associated with symbol table");
1260     return;
1261   }
1262 
1263   // Search for a DT_SONAME tag to initialize this->SoName.
1264   for (const Elf_Dyn &Dyn : DynamicTags) {
1265     if (Dyn.d_tag == DT_NEEDED) {
1266       uint64_t Val = Dyn.getVal();
1267       if (Val >= this->StringTable.size())
1268         fatal(toString(this) + ": invalid DT_NEEDED entry");
1269       DtNeeded.push_back(this->StringTable.data() + Val);
1270     } else if (Dyn.d_tag == DT_SONAME) {
1271       uint64_t Val = Dyn.getVal();
1272       if (Val >= this->StringTable.size())
1273         fatal(toString(this) + ": invalid DT_SONAME entry");
1274       SoName = this->StringTable.data() + Val;
1275     }
1276   }
1277 
1278   // DSOs are uniquified not by filename but by soname.
1279   DenseMap<StringRef, SharedFile *>::iterator It;
1280   bool WasInserted;
1281   std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this);
1282 
1283   // If a DSO appears more than once on the command line with and without
1284   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1285   // user can add an extra DSO with --no-as-needed to force it to be added to
1286   // the dependency list.
1287   It->second->IsNeeded |= IsNeeded;
1288   if (!WasInserted)
1289     return;
1290 
1291   SharedFiles.push_back(this);
1292 
1293   Verdefs = parseVerdefs<ELFT>(Obj.base(), VerdefSec);
1294 
1295   // Parse ".gnu.version" section which is a parallel array for the symbol
1296   // table. If a given file doesn't have a ".gnu.version" section, we use
1297   // VER_NDX_GLOBAL.
1298   size_t Size = NumELFSyms - FirstGlobal;
1299   std::vector<uint32_t> Versyms(Size, VER_NDX_GLOBAL);
1300   if (VersymSec) {
1301     ArrayRef<Elf_Versym> Versym =
1302         CHECK(Obj.template getSectionContentsAsArray<Elf_Versym>(VersymSec),
1303               this)
1304             .slice(FirstGlobal);
1305     for (size_t I = 0; I < Size; ++I)
1306       Versyms[I] = Versym[I].vs_index;
1307   }
1308 
1309   // System libraries can have a lot of symbols with versions. Using a
1310   // fixed buffer for computing the versions name (foo@ver) can save a
1311   // lot of allocations.
1312   SmallString<0> VersionedNameBuffer;
1313 
1314   // Add symbols to the symbol table.
1315   ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms<ELFT>();
1316   for (size_t I = 0; I < Syms.size(); ++I) {
1317     const Elf_Sym &Sym = Syms[I];
1318 
1319     // ELF spec requires that all local symbols precede weak or global
1320     // symbols in each symbol table, and the index of first non-local symbol
1321     // is stored to sh_info. If a local symbol appears after some non-local
1322     // symbol, that's a violation of the spec.
1323     StringRef Name = CHECK(Sym.getName(this->StringTable), this);
1324     if (Sym.getBinding() == STB_LOCAL) {
1325       warn("found local symbol '" + Name +
1326            "' in global part of symbol table in file " + toString(this));
1327       continue;
1328     }
1329 
1330     if (Sym.isUndefined()) {
1331       Symbol *S = Symtab->addSymbol(
1332           Undefined{this, Name, Sym.getBinding(), Sym.st_other, Sym.getType()});
1333       S->ExportDynamic = true;
1334       continue;
1335     }
1336 
1337     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1338     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1339     // workaround for this bug.
1340     uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN;
1341     if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL &&
1342         Name == "_gp_disp")
1343       continue;
1344 
1345     uint32_t Alignment = getAlignment<ELFT>(Sections, Sym);
1346     if (!(Versyms[I] & VERSYM_HIDDEN)) {
1347       Symtab->addSymbol(SharedSymbol{*this, Name, Sym.getBinding(),
1348                                      Sym.st_other, Sym.getType(), Sym.st_value,
1349                                      Sym.st_size, Alignment, Idx});
1350     }
1351 
1352     // Also add the symbol with the versioned name to handle undefined symbols
1353     // with explicit versions.
1354     if (Idx == VER_NDX_GLOBAL)
1355       continue;
1356 
1357     if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) {
1358       error("corrupt input file: version definition index " + Twine(Idx) +
1359             " for symbol " + Name + " is out of bounds\n>>> defined in " +
1360             toString(this));
1361       continue;
1362     }
1363 
1364     StringRef VerName =
1365         this->StringTable.data() +
1366         reinterpret_cast<const Elf_Verdef *>(Verdefs[Idx])->getAux()->vda_name;
1367     VersionedNameBuffer.clear();
1368     Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer);
1369     Symtab->addSymbol(SharedSymbol{*this, Saver.save(Name), Sym.getBinding(),
1370                                    Sym.st_other, Sym.getType(), Sym.st_value,
1371                                    Sym.st_size, Alignment, Idx});
1372   }
1373 }
1374 
1375 static ELFKind getBitcodeELFKind(const Triple &T) {
1376   if (T.isLittleEndian())
1377     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1378   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1379 }
1380 
1381 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
1382   switch (T.getArch()) {
1383   case Triple::aarch64:
1384     return EM_AARCH64;
1385   case Triple::amdgcn:
1386   case Triple::r600:
1387     return EM_AMDGPU;
1388   case Triple::arm:
1389   case Triple::thumb:
1390     return EM_ARM;
1391   case Triple::avr:
1392     return EM_AVR;
1393   case Triple::mips:
1394   case Triple::mipsel:
1395   case Triple::mips64:
1396   case Triple::mips64el:
1397     return EM_MIPS;
1398   case Triple::msp430:
1399     return EM_MSP430;
1400   case Triple::ppc:
1401     return EM_PPC;
1402   case Triple::ppc64:
1403   case Triple::ppc64le:
1404     return EM_PPC64;
1405   case Triple::x86:
1406     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
1407   case Triple::x86_64:
1408     return EM_X86_64;
1409   default:
1410     error(Path + ": could not infer e_machine from bitcode target triple " +
1411           T.str());
1412     return EM_NONE;
1413   }
1414 }
1415 
1416 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
1417                          uint64_t OffsetInArchive)
1418     : InputFile(BitcodeKind, MB) {
1419   this->ArchiveName = ArchiveName;
1420 
1421   std::string Path = MB.getBufferIdentifier().str();
1422   if (Config->ThinLTOIndexOnly)
1423     Path = replaceThinLTOSuffix(MB.getBufferIdentifier());
1424 
1425   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1426   // name. If two archives define two members with the same name, this
1427   // causes a collision which result in only one of the objects being taken
1428   // into consideration at LTO time (which very likely causes undefined
1429   // symbols later in the link stage). So we append file offset to make
1430   // filename unique.
1431   StringRef Name = ArchiveName.empty()
1432                        ? Saver.save(Path)
1433                        : Saver.save(ArchiveName + "(" + Path + " at " +
1434                                     utostr(OffsetInArchive) + ")");
1435   MemoryBufferRef MBRef(MB.getBuffer(), Name);
1436 
1437   Obj = CHECK(lto::InputFile::create(MBRef), this);
1438 
1439   Triple T(Obj->getTargetTriple());
1440   EKind = getBitcodeELFKind(T);
1441   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
1442 }
1443 
1444 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
1445   switch (GvVisibility) {
1446   case GlobalValue::DefaultVisibility:
1447     return STV_DEFAULT;
1448   case GlobalValue::HiddenVisibility:
1449     return STV_HIDDEN;
1450   case GlobalValue::ProtectedVisibility:
1451     return STV_PROTECTED;
1452   }
1453   llvm_unreachable("unknown visibility");
1454 }
1455 
1456 template <class ELFT>
1457 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
1458                                    const lto::InputFile::Symbol &ObjSym,
1459                                    BitcodeFile &F) {
1460   StringRef Name = Saver.save(ObjSym.getName());
1461   uint8_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1462   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
1463   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
1464   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
1465 
1466   int C = ObjSym.getComdatIndex();
1467   if (ObjSym.isUndefined() || (C != -1 && !KeptComdats[C])) {
1468     Undefined New(&F, Name, Binding, Visibility, Type);
1469     if (CanOmitFromDynSym)
1470       New.ExportDynamic = false;
1471     return Symtab->addSymbol(New);
1472   }
1473 
1474   if (ObjSym.isCommon())
1475     return Symtab->addSymbol(
1476         CommonSymbol{&F, Name, Binding, Visibility, STT_OBJECT,
1477                      ObjSym.getCommonAlignment(), ObjSym.getCommonSize()});
1478 
1479   Defined New(&F, Name, Binding, Visibility, Type, 0, 0, nullptr);
1480   if (CanOmitFromDynSym)
1481     New.ExportDynamic = false;
1482   return Symtab->addSymbol(New);
1483 }
1484 
1485 template <class ELFT> void BitcodeFile::parse() {
1486   std::vector<bool> KeptComdats;
1487   for (StringRef S : Obj->getComdatTable())
1488     KeptComdats.push_back(
1489         Symtab->ComdatGroups.try_emplace(CachedHashStringRef(S), this).second);
1490 
1491   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
1492     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
1493 
1494   for (auto L : Obj->getDependentLibraries())
1495     addDependentLibrary(L, this);
1496 }
1497 
1498 void BinaryFile::parse() {
1499   ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer());
1500   auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1501                                      8, Data, ".data");
1502   Sections.push_back(Section);
1503 
1504   // For each input file foo that is embedded to a result as a binary
1505   // blob, we define _binary_foo_{start,end,size} symbols, so that
1506   // user programs can access blobs by name. Non-alphanumeric
1507   // characters in a filename are replaced with underscore.
1508   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1509   for (size_t I = 0; I < S.size(); ++I)
1510     if (!isAlnum(S[I]))
1511       S[I] = '_';
1512 
1513   Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_start"), STB_GLOBAL,
1514                             STV_DEFAULT, STT_OBJECT, 0, 0, Section});
1515   Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_end"), STB_GLOBAL,
1516                             STV_DEFAULT, STT_OBJECT, Data.size(), 0, Section});
1517   Symtab->addSymbol(Defined{nullptr, Saver.save(S + "_size"), STB_GLOBAL,
1518                             STV_DEFAULT, STT_OBJECT, Data.size(), 0, nullptr});
1519 }
1520 
1521 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1522                                  uint64_t OffsetInArchive) {
1523   if (isBitcode(MB))
1524     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1525 
1526   switch (getELFKind(MB, ArchiveName)) {
1527   case ELF32LEKind:
1528     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1529   case ELF32BEKind:
1530     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1531   case ELF64LEKind:
1532     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1533   case ELF64BEKind:
1534     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1535   default:
1536     llvm_unreachable("getELFKind");
1537   }
1538 }
1539 
1540 void LazyObjFile::fetch() {
1541   if (MB.getBuffer().empty())
1542     return;
1543 
1544   InputFile *File = createObjectFile(MB, ArchiveName, OffsetInArchive);
1545   File->GroupId = GroupId;
1546 
1547   MB = {};
1548 
1549   // Copy symbol vector so that the new InputFile doesn't have to
1550   // insert the same defined symbols to the symbol table again.
1551   File->Symbols = std::move(Symbols);
1552 
1553   parseFile(File);
1554 }
1555 
1556 template <class ELFT> void LazyObjFile::parse() {
1557   using Elf_Sym = typename ELFT::Sym;
1558 
1559   // A lazy object file wraps either a bitcode file or an ELF file.
1560   if (isBitcode(this->MB)) {
1561     std::unique_ptr<lto::InputFile> Obj =
1562         CHECK(lto::InputFile::create(this->MB), this);
1563     for (const lto::InputFile::Symbol &Sym : Obj->symbols()) {
1564       if (Sym.isUndefined())
1565         continue;
1566       Symtab->addSymbol(LazyObject{*this, Saver.save(Sym.getName())});
1567     }
1568     return;
1569   }
1570 
1571   if (getELFKind(this->MB, ArchiveName) != Config->EKind) {
1572     error("incompatible file: " + this->MB.getBufferIdentifier());
1573     return;
1574   }
1575 
1576   // Find a symbol table.
1577   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1578   ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
1579 
1580   for (const typename ELFT::Shdr &Sec : Sections) {
1581     if (Sec.sh_type != SHT_SYMTAB)
1582       continue;
1583 
1584     // A symbol table is found.
1585     ArrayRef<Elf_Sym> ESyms = CHECK(Obj.symbols(&Sec), this);
1586     uint32_t FirstGlobal = Sec.sh_info;
1587     StringRef Strtab = CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
1588     this->Symbols.resize(ESyms.size());
1589 
1590     // Get existing symbols or insert placeholder symbols.
1591     for (size_t I = FirstGlobal, End = ESyms.size(); I != End; ++I)
1592       if (ESyms[I].st_shndx != SHN_UNDEF)
1593         this->Symbols[I] = Symtab->insert(CHECK(ESyms[I].getName(Strtab), this));
1594 
1595     // Replace existing symbols with LazyObject symbols.
1596     //
1597     // resolve() may trigger this->fetch() if an existing symbol is an
1598     // undefined symbol. If that happens, this LazyObjFile has served
1599     // its purpose, and we can exit from the loop early.
1600     for (Symbol *Sym : this->Symbols) {
1601       if (!Sym)
1602         continue;
1603       Sym->resolve(LazyObject{*this, Sym->getName()});
1604 
1605       // MemoryBuffer is emptied if this file is instantiated as ObjFile.
1606       if (MB.getBuffer().empty())
1607         return;
1608     }
1609     return;
1610   }
1611 }
1612 
1613 std::string elf::replaceThinLTOSuffix(StringRef Path) {
1614   StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first;
1615   StringRef Repl = Config->ThinLTOObjectSuffixReplace.second;
1616 
1617   if (Path.consume_back(Suffix))
1618     return (Path + Repl).str();
1619   return Path;
1620 }
1621 
1622 template void BitcodeFile::parse<ELF32LE>();
1623 template void BitcodeFile::parse<ELF32BE>();
1624 template void BitcodeFile::parse<ELF64LE>();
1625 template void BitcodeFile::parse<ELF64BE>();
1626 
1627 template void LazyObjFile::parse<ELF32LE>();
1628 template void LazyObjFile::parse<ELF32BE>();
1629 template void LazyObjFile::parse<ELF64LE>();
1630 template void LazyObjFile::parse<ELF64BE>();
1631 
1632 template class elf::ObjFile<ELF32LE>;
1633 template class elf::ObjFile<ELF32BE>;
1634 template class elf::ObjFile<ELF64LE>;
1635 template class elf::ObjFile<ELF64BE>;
1636 
1637 template void SharedFile::parse<ELF32LE>();
1638 template void SharedFile::parse<ELF32BE>();
1639 template void SharedFile::parse<ELF64LE>();
1640 template void SharedFile::parse<ELF64BE>();
1641