1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys::fs; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 std::vector<BinaryFile *> elf::BinaryFiles; 41 std::vector<BitcodeFile *> elf::BitcodeFiles; 42 std::vector<InputFile *> elf::ObjectFiles; 43 std::vector<InputFile *> elf::SharedFiles; 44 45 TarWriter *elf::Tar; 46 47 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 48 49 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 50 // The --chroot option changes our virtual root directory. 51 // This is useful when you are dealing with files created by --reproduce. 52 if (!Config->Chroot.empty() && Path.startswith("/")) 53 Path = Saver.save(Config->Chroot + Path); 54 55 log(Path); 56 57 auto MBOrErr = MemoryBuffer::getFile(Path); 58 if (auto EC = MBOrErr.getError()) { 59 error("cannot open " + Path + ": " + EC.message()); 60 return None; 61 } 62 63 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 64 MemoryBufferRef MBRef = MB->getMemBufferRef(); 65 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 66 67 if (Tar) 68 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 69 return MBRef; 70 } 71 72 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 73 DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this)); 74 const DWARFObject &Obj = Dwarf.getDWARFObj(); 75 DwarfLine.reset(new DWARFDebugLine); 76 DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, 77 Config->Wordsize); 78 79 // The second parameter is offset in .debug_line section 80 // for compilation unit (CU) of interest. We have only one 81 // CU (object file), so offset is always 0. 82 // FIXME: Provide the associated DWARFUnit if there is one. DWARF v5 83 // needs it in order to find indirect strings. 84 const DWARFDebugLine::LineTable *LT = 85 DwarfLine->getOrParseLineTable(LineData, 0, nullptr); 86 87 // Return if there is no debug information about CU available. 88 if (!Dwarf.getNumCompileUnits()) 89 return; 90 91 // Loop over variable records and insert them to VariableLoc. 92 DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0); 93 for (const auto &Entry : CU->dies()) { 94 DWARFDie Die(CU, &Entry); 95 // Skip all tags that are not variables. 96 if (Die.getTag() != dwarf::DW_TAG_variable) 97 continue; 98 99 // Skip if a local variable because we don't need them for generating error 100 // messages. In general, only non-local symbols can fail to be linked. 101 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 102 continue; 103 104 // Get the source filename index for the variable. 105 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 106 if (!LT->hasFileAtIndex(File)) 107 continue; 108 109 // Get the line number on which the variable is declared. 110 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 111 112 // Get the name of the variable and add the collected information to 113 // VariableLoc. Usually Name is non-empty, but it can be empty if the input 114 // object file lacks some debug info. 115 StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), ""); 116 if (!Name.empty()) 117 VariableLoc.insert({Name, {File, Line}}); 118 } 119 } 120 121 // Returns the pair of file name and line number describing location of data 122 // object (variable, array, etc) definition. 123 template <class ELFT> 124 Optional<std::pair<std::string, unsigned>> 125 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 126 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 127 128 // There is always only one CU so it's offset is 0. 129 const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0); 130 if (!LT) 131 return None; 132 133 // Return if we have no debug information about data object. 134 auto It = VariableLoc.find(Name); 135 if (It == VariableLoc.end()) 136 return None; 137 138 // Take file name string from line table. 139 std::string FileName; 140 if (!LT->getFileNameByIndex( 141 It->second.first /* File */, nullptr, 142 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 143 return None; 144 145 return std::make_pair(FileName, It->second.second /*Line*/); 146 } 147 148 // Returns source line information for a given offset 149 // using DWARF debug info. 150 template <class ELFT> 151 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 152 uint64_t Offset) { 153 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 154 155 // The offset to CU is 0. 156 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 157 if (!Tbl) 158 return None; 159 160 // Use fake address calcuated by adding section file offset and offset in 161 // section. See comments for ObjectInfo class. 162 DILineInfo Info; 163 Tbl->getFileLineInfoForAddress( 164 S->getOffsetInFile() + Offset, nullptr, 165 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 166 if (Info.Line == 0) 167 return None; 168 return Info; 169 } 170 171 // Returns source line information for a given offset 172 // using DWARF debug info. 173 template <class ELFT> 174 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) { 175 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 176 return Info->FileName + ":" + std::to_string(Info->Line); 177 return ""; 178 } 179 180 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 181 std::string lld::toString(const InputFile *F) { 182 if (!F) 183 return "<internal>"; 184 185 if (F->ToStringCache.empty()) { 186 if (F->ArchiveName.empty()) 187 F->ToStringCache = F->getName(); 188 else 189 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 190 } 191 return F->ToStringCache; 192 } 193 194 template <class ELFT> 195 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 196 if (ELFT::TargetEndianness == support::little) 197 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 198 else 199 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 200 201 EMachine = getObj().getHeader()->e_machine; 202 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 203 } 204 205 template <class ELFT> 206 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 207 return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end()); 208 } 209 210 template <class ELFT> 211 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 212 return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this); 213 } 214 215 template <class ELFT> 216 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 217 const Elf_Shdr *Symtab) { 218 FirstNonLocal = Symtab->sh_info; 219 ELFSyms = CHECK(getObj().symbols(Symtab), this); 220 if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size()) 221 fatal(toString(this) + ": invalid sh_info in symbol table"); 222 223 StringTable = 224 CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this); 225 } 226 227 template <class ELFT> 228 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 229 : ELFFileBase<ELFT>(Base::ObjKind, M) { 230 this->ArchiveName = ArchiveName; 231 } 232 233 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 234 if (this->Symbols.empty()) 235 return {}; 236 return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1); 237 } 238 239 template <class ELFT> 240 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 241 // Read section and symbol tables. 242 initializeSections(ComdatGroups); 243 initializeSymbols(); 244 } 245 246 // Sections with SHT_GROUP and comdat bits define comdat section groups. 247 // They are identified and deduplicated by group name. This function 248 // returns a group name. 249 template <class ELFT> 250 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 251 const Elf_Shdr &Sec) { 252 // Group signatures are stored as symbol names in object files. 253 // sh_info contains a symbol index, so we fetch a symbol and read its name. 254 if (this->ELFSyms.empty()) 255 this->initSymtab( 256 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 257 258 const Elf_Sym *Sym = 259 CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this); 260 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 261 262 // As a special case, if a symbol is a section symbol and has no name, 263 // we use a section name as a signature. 264 // 265 // Such SHT_GROUP sections are invalid from the perspective of the ELF 266 // standard, but GNU gold 1.14 (the neweset version as of July 2017) or 267 // older produce such sections as outputs for the -r option, so we need 268 // a bug-compatibility. 269 if (Signature.empty() && Sym->getType() == STT_SECTION) 270 return getSectionName(Sec); 271 return Signature; 272 } 273 274 template <class ELFT> 275 ArrayRef<typename ObjFile<ELFT>::Elf_Word> 276 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 277 const ELFFile<ELFT> &Obj = this->getObj(); 278 ArrayRef<Elf_Word> Entries = 279 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 280 if (Entries.empty() || Entries[0] != GRP_COMDAT) 281 fatal(toString(this) + ": unsupported SHT_GROUP format"); 282 return Entries.slice(1); 283 } 284 285 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 286 // We don't merge sections if -O0 (default is -O1). This makes sometimes 287 // the linker significantly faster, although the output will be bigger. 288 if (Config->Optimize == 0) 289 return false; 290 291 // A mergeable section with size 0 is useless because they don't have 292 // any data to merge. A mergeable string section with size 0 can be 293 // argued as invalid because it doesn't end with a null character. 294 // We'll avoid a mess by handling them as if they were non-mergeable. 295 if (Sec.sh_size == 0) 296 return false; 297 298 // Check for sh_entsize. The ELF spec is not clear about the zero 299 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 300 // the section does not hold a table of fixed-size entries". We know 301 // that Rust 1.13 produces a string mergeable section with a zero 302 // sh_entsize. Here we just accept it rather than being picky about it. 303 uint64_t EntSize = Sec.sh_entsize; 304 if (EntSize == 0) 305 return false; 306 if (Sec.sh_size % EntSize) 307 fatal(toString(this) + 308 ": SHF_MERGE section size must be a multiple of sh_entsize"); 309 310 uint64_t Flags = Sec.sh_flags; 311 if (!(Flags & SHF_MERGE)) 312 return false; 313 if (Flags & SHF_WRITE) 314 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 315 316 return true; 317 } 318 319 template <class ELFT> 320 void ObjFile<ELFT>::initializeSections( 321 DenseSet<CachedHashStringRef> &ComdatGroups) { 322 const ELFFile<ELFT> &Obj = this->getObj(); 323 324 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 325 uint64_t Size = ObjSections.size(); 326 this->Sections.resize(Size); 327 this->SectionStringTable = 328 CHECK(Obj.getSectionStringTable(ObjSections), this); 329 330 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 331 if (this->Sections[I] == &InputSection::Discarded) 332 continue; 333 const Elf_Shdr &Sec = ObjSections[I]; 334 335 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 336 // if -r is given, we'll let the final link discard such sections. 337 // This is compatible with GNU. 338 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 339 this->Sections[I] = &InputSection::Discarded; 340 continue; 341 } 342 343 switch (Sec.sh_type) { 344 case SHT_GROUP: { 345 // De-duplicate section groups by their signatures. 346 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 347 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 348 this->Sections[I] = &InputSection::Discarded; 349 350 // If it is a new section group, we want to keep group members. 351 // Group leader sections, which contain indices of group members, are 352 // discarded because they are useless beyond this point. The only 353 // exception is the -r option because in order to produce re-linkable 354 // object files, we want to pass through basically everything. 355 if (IsNew) { 356 if (Config->Relocatable) 357 this->Sections[I] = createInputSection(Sec); 358 continue; 359 } 360 361 // Otherwise, discard group members. 362 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 363 if (SecIndex >= Size) 364 fatal(toString(this) + 365 ": invalid section index in group: " + Twine(SecIndex)); 366 this->Sections[SecIndex] = &InputSection::Discarded; 367 } 368 break; 369 } 370 case SHT_SYMTAB: 371 this->initSymtab(ObjSections, &Sec); 372 break; 373 case SHT_SYMTAB_SHNDX: 374 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 375 break; 376 case SHT_STRTAB: 377 case SHT_NULL: 378 break; 379 default: 380 this->Sections[I] = createInputSection(Sec); 381 } 382 383 // .ARM.exidx sections have a reverse dependency on the InputSection they 384 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 385 if (Sec.sh_flags & SHF_LINK_ORDER) { 386 if (Sec.sh_link >= this->Sections.size()) 387 fatal(toString(this) + ": invalid sh_link index: " + 388 Twine(Sec.sh_link)); 389 this->Sections[Sec.sh_link]->DependentSections.push_back( 390 cast<InputSection>(this->Sections[I])); 391 } 392 } 393 } 394 395 // The ARM support in lld makes some use of instructions that are not available 396 // on all ARM architectures. Namely: 397 // - Use of BLX instruction for interworking between ARM and Thumb state. 398 // - Use of the extended Thumb branch encoding in relocation. 399 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 400 // The ARM Attributes section contains information about the architecture chosen 401 // at compile time. We follow the convention that if at least one input object 402 // is compiled with an architecture that supports these features then lld is 403 // permitted to use them. 404 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 405 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 406 return; 407 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 408 switch (Arch) { 409 case ARMBuildAttrs::Pre_v4: 410 case ARMBuildAttrs::v4: 411 case ARMBuildAttrs::v4T: 412 // Architectures prior to v5 do not support BLX instruction 413 break; 414 case ARMBuildAttrs::v5T: 415 case ARMBuildAttrs::v5TE: 416 case ARMBuildAttrs::v5TEJ: 417 case ARMBuildAttrs::v6: 418 case ARMBuildAttrs::v6KZ: 419 case ARMBuildAttrs::v6K: 420 Config->ARMHasBlx = true; 421 // Architectures used in pre-Cortex processors do not support 422 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 423 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 424 break; 425 default: 426 // All other Architectures have BLX and extended branch encoding 427 Config->ARMHasBlx = true; 428 Config->ARMJ1J2BranchEncoding = true; 429 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 430 // All Architectures used in Cortex processors with the exception 431 // of v6-M and v6S-M have the MOVT and MOVW instructions. 432 Config->ARMHasMovtMovw = true; 433 break; 434 } 435 } 436 437 template <class ELFT> 438 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 439 uint32_t Idx = Sec.sh_info; 440 if (Idx >= this->Sections.size()) 441 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 442 InputSectionBase *Target = this->Sections[Idx]; 443 444 // Strictly speaking, a relocation section must be included in the 445 // group of the section it relocates. However, LLVM 3.3 and earlier 446 // would fail to do so, so we gracefully handle that case. 447 if (Target == &InputSection::Discarded) 448 return nullptr; 449 450 if (!Target) 451 fatal(toString(this) + ": unsupported relocation reference"); 452 return Target; 453 } 454 455 // Create a regular InputSection class that has the same contents 456 // as a given section. 457 InputSectionBase *toRegularSection(MergeInputSection *Sec) { 458 auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, 459 Sec->Data, Sec->Name); 460 Ret->File = Sec->File; 461 return Ret; 462 } 463 464 template <class ELFT> 465 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 466 StringRef Name = getSectionName(Sec); 467 468 switch (Sec.sh_type) { 469 case SHT_ARM_ATTRIBUTES: { 470 if (Config->EMachine != EM_ARM) 471 break; 472 ARMAttributeParser Attributes; 473 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 474 Attributes.Parse(Contents, /*isLittle*/Config->EKind == ELF32LEKind); 475 updateSupportedARMFeatures(Attributes); 476 // FIXME: Retain the first attribute section we see. The eglibc ARM 477 // dynamic loaders require the presence of an attribute section for dlopen 478 // to work. In a full implementation we would merge all attribute sections. 479 if (InX::ARMAttributes == nullptr) { 480 InX::ARMAttributes = make<InputSection>(this, &Sec, Name); 481 return InX::ARMAttributes; 482 } 483 return &InputSection::Discarded; 484 } 485 case SHT_RELA: 486 case SHT_REL: { 487 // Find the relocation target section and associate this 488 // section with it. Target can be discarded, for example 489 // if it is a duplicated member of SHT_GROUP section, we 490 // do not create or proccess relocatable sections then. 491 InputSectionBase *Target = getRelocTarget(Sec); 492 if (!Target) 493 return nullptr; 494 495 // This section contains relocation information. 496 // If -r is given, we do not interpret or apply relocation 497 // but just copy relocation sections to output. 498 if (Config->Relocatable) 499 return make<InputSection>(this, &Sec, Name); 500 501 if (Target->FirstRelocation) 502 fatal(toString(this) + 503 ": multiple relocation sections to one section are not supported"); 504 505 // Mergeable sections with relocations are tricky because relocations 506 // need to be taken into account when comparing section contents for 507 // merging. It's not worth supporting such mergeable sections because 508 // they are rare and it'd complicates the internal design (we usually 509 // have to determine if two sections are mergeable early in the link 510 // process much before applying relocations). We simply handle mergeable 511 // sections with relocations as non-mergeable. 512 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 513 Target = toRegularSection(MS); 514 this->Sections[Sec.sh_info] = Target; 515 } 516 517 size_t NumRelocations; 518 if (Sec.sh_type == SHT_RELA) { 519 ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this); 520 Target->FirstRelocation = Rels.begin(); 521 NumRelocations = Rels.size(); 522 Target->AreRelocsRela = true; 523 } else { 524 ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this); 525 Target->FirstRelocation = Rels.begin(); 526 NumRelocations = Rels.size(); 527 Target->AreRelocsRela = false; 528 } 529 assert(isUInt<31>(NumRelocations)); 530 Target->NumRelocations = NumRelocations; 531 532 // Relocation sections processed by the linker are usually removed 533 // from the output, so returning `nullptr` for the normal case. 534 // However, if -emit-relocs is given, we need to leave them in the output. 535 // (Some post link analysis tools need this information.) 536 if (Config->EmitRelocs) { 537 InputSection *RelocSec = make<InputSection>(this, &Sec, Name); 538 // We will not emit relocation section if target was discarded. 539 Target->DependentSections.push_back(RelocSec); 540 return RelocSec; 541 } 542 return nullptr; 543 } 544 } 545 546 // The GNU linker uses .note.GNU-stack section as a marker indicating 547 // that the code in the object file does not expect that the stack is 548 // executable (in terms of NX bit). If all input files have the marker, 549 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 550 // make the stack non-executable. Most object files have this section as 551 // of 2017. 552 // 553 // But making the stack non-executable is a norm today for security 554 // reasons. Failure to do so may result in a serious security issue. 555 // Therefore, we make LLD always add PT_GNU_STACK unless it is 556 // explicitly told to do otherwise (by -z execstack). Because the stack 557 // executable-ness is controlled solely by command line options, 558 // .note.GNU-stack sections are simply ignored. 559 if (Name == ".note.GNU-stack") 560 return &InputSection::Discarded; 561 562 // Split stacks is a feature to support a discontiguous stack. At least 563 // as of 2017, it seems that the feature is not being used widely. 564 // Only GNU gold supports that. We don't. For the details about that, 565 // see https://gcc.gnu.org/wiki/SplitStacks 566 if (Name == ".note.GNU-split-stack") { 567 error(toString(this) + 568 ": object file compiled with -fsplit-stack is not supported"); 569 return &InputSection::Discarded; 570 } 571 572 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 573 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 574 // sections. Drop those sections to avoid duplicate symbol errors. 575 // FIXME: This is glibc PR20543, we should remove this hack once that has been 576 // fixed for a while. 577 if (Name.startswith(".gnu.linkonce.")) 578 return &InputSection::Discarded; 579 580 // The linker merges EH (exception handling) frames and creates a 581 // .eh_frame_hdr section for runtime. So we handle them with a special 582 // class. For relocatable outputs, they are just passed through. 583 if (Name == ".eh_frame" && !Config->Relocatable) 584 return make<EhInputSection>(this, &Sec, Name); 585 586 if (shouldMerge(Sec)) 587 return make<MergeInputSection>(this, &Sec, Name); 588 return make<InputSection>(this, &Sec, Name); 589 } 590 591 template <class ELFT> 592 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 593 return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this); 594 } 595 596 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 597 this->Symbols.reserve(this->ELFSyms.size()); 598 for (const Elf_Sym &Sym : this->ELFSyms) 599 this->Symbols.push_back(createSymbol(&Sym)); 600 } 601 602 template <class ELFT> 603 InputSectionBase *ObjFile<ELFT>::getSection(uint32_t Index) const { 604 if (Index == 0) 605 return nullptr; 606 if (Index >= this->Sections.size()) 607 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 608 609 if (InputSectionBase *Sec = this->Sections[Index]) 610 return Sec->Repl; 611 return nullptr; 612 } 613 614 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 615 int Binding = Sym->getBinding(); 616 InputSectionBase *Sec = getSection(this->getSectionIndex(*Sym)); 617 618 uint8_t StOther = Sym->st_other; 619 uint8_t Type = Sym->getType(); 620 uint64_t Value = Sym->st_value; 621 uint64_t Size = Sym->st_size; 622 623 if (Binding == STB_LOCAL) { 624 if (Sym->getType() == STT_FILE) 625 SourceFile = CHECK(Sym->getName(this->StringTable), this); 626 627 if (this->StringTable.size() <= Sym->st_name) 628 fatal(toString(this) + ": invalid symbol name offset"); 629 630 StringRefZ Name = this->StringTable.data() + Sym->st_name; 631 if (Sym->st_shndx == SHN_UNDEF) 632 return make<Undefined>(this, Name, Binding, StOther, Type); 633 634 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 635 } 636 637 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 638 639 switch (Sym->st_shndx) { 640 case SHN_UNDEF: 641 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 642 /*CanOmitFromDynSym=*/false, this); 643 case SHN_COMMON: 644 if (Value == 0 || Value >= UINT32_MAX) 645 fatal(toString(this) + ": common symbol '" + Name + 646 "' has invalid alignment: " + Twine(Value)); 647 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this); 648 } 649 650 switch (Binding) { 651 default: 652 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 653 case STB_GLOBAL: 654 case STB_WEAK: 655 case STB_GNU_UNIQUE: 656 if (Sec == &InputSection::Discarded) 657 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 658 /*CanOmitFromDynSym=*/false, this); 659 return Symtab->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding, 660 Sec, this); 661 } 662 } 663 664 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 665 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 666 File(std::move(File)) {} 667 668 template <class ELFT> void ArchiveFile::parse() { 669 Symbols.reserve(File->getNumberOfSymbols()); 670 for (const Archive::Symbol &Sym : File->symbols()) 671 Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym)); 672 } 673 674 // Returns a buffer pointing to a member file containing a given symbol. 675 std::pair<MemoryBufferRef, uint64_t> 676 ArchiveFile::getMember(const Archive::Symbol *Sym) { 677 Archive::Child C = 678 CHECK(Sym->getMember(), toString(this) + 679 ": could not get the member for symbol " + 680 Sym->getName()); 681 682 if (!Seen.insert(C.getChildOffset()).second) 683 return {MemoryBufferRef(), 0}; 684 685 MemoryBufferRef Ret = 686 CHECK(C.getMemoryBufferRef(), 687 toString(this) + 688 ": could not get the buffer for the member defining symbol " + 689 Sym->getName()); 690 691 if (C.getParent()->isThin() && Tar) 692 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), Ret.getBuffer()); 693 if (C.getParent()->isThin()) 694 return {Ret, 0}; 695 return {Ret, C.getChildOffset()}; 696 } 697 698 template <class ELFT> 699 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 700 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 701 IsNeeded(!Config->AsNeeded) {} 702 703 // Partially parse the shared object file so that we can call 704 // getSoName on this object. 705 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 706 const Elf_Shdr *DynamicSec = nullptr; 707 const ELFFile<ELFT> Obj = this->getObj(); 708 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 709 710 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 711 for (const Elf_Shdr &Sec : Sections) { 712 switch (Sec.sh_type) { 713 default: 714 continue; 715 case SHT_DYNSYM: 716 this->initSymtab(Sections, &Sec); 717 break; 718 case SHT_DYNAMIC: 719 DynamicSec = &Sec; 720 break; 721 case SHT_SYMTAB_SHNDX: 722 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this); 723 break; 724 case SHT_GNU_versym: 725 this->VersymSec = &Sec; 726 break; 727 case SHT_GNU_verdef: 728 this->VerdefSec = &Sec; 729 break; 730 } 731 } 732 733 if (this->VersymSec && this->ELFSyms.empty()) 734 error("SHT_GNU_versym should be associated with symbol table"); 735 736 // Search for a DT_SONAME tag to initialize this->SoName. 737 if (!DynamicSec) 738 return; 739 ArrayRef<Elf_Dyn> Arr = 740 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this); 741 for (const Elf_Dyn &Dyn : Arr) { 742 if (Dyn.d_tag == DT_SONAME) { 743 uint64_t Val = Dyn.getVal(); 744 if (Val >= this->StringTable.size()) 745 fatal(toString(this) + ": invalid DT_SONAME entry"); 746 SoName = this->StringTable.data() + Val; 747 return; 748 } 749 } 750 } 751 752 // Parse the version definitions in the object file if present. Returns a vector 753 // whose nth element contains a pointer to the Elf_Verdef for version identifier 754 // n. Version identifiers that are not definitions map to nullptr. The array 755 // always has at least length 1. 756 template <class ELFT> 757 std::vector<const typename ELFT::Verdef *> 758 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 759 std::vector<const Elf_Verdef *> Verdefs(1); 760 // We only need to process symbol versions for this DSO if it has both a 761 // versym and a verdef section, which indicates that the DSO contains symbol 762 // version definitions. 763 if (!VersymSec || !VerdefSec) 764 return Verdefs; 765 766 // The location of the first global versym entry. 767 const char *Base = this->MB.getBuffer().data(); 768 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 769 this->FirstNonLocal; 770 771 // We cannot determine the largest verdef identifier without inspecting 772 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 773 // sequentially starting from 1, so we predict that the largest identifier 774 // will be VerdefCount. 775 unsigned VerdefCount = VerdefSec->sh_info; 776 Verdefs.resize(VerdefCount + 1); 777 778 // Build the Verdefs array by following the chain of Elf_Verdef objects 779 // from the start of the .gnu.version_d section. 780 const char *Verdef = Base + VerdefSec->sh_offset; 781 for (unsigned I = 0; I != VerdefCount; ++I) { 782 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 783 Verdef += CurVerdef->vd_next; 784 unsigned VerdefIndex = CurVerdef->vd_ndx; 785 if (Verdefs.size() <= VerdefIndex) 786 Verdefs.resize(VerdefIndex + 1); 787 Verdefs[VerdefIndex] = CurVerdef; 788 } 789 790 return Verdefs; 791 } 792 793 // Fully parse the shared object file. This must be called after parseSoName(). 794 template <class ELFT> void SharedFile<ELFT>::parseRest() { 795 // Create mapping from version identifiers to Elf_Verdef entries. 796 const Elf_Versym *Versym = nullptr; 797 Verdefs = parseVerdefs(Versym); 798 799 ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); 800 801 // Add symbols to the symbol table. 802 Elf_Sym_Range Syms = this->getGlobalELFSyms(); 803 for (const Elf_Sym &Sym : Syms) { 804 unsigned VersymIndex = 0; 805 if (Versym) { 806 VersymIndex = Versym->vs_index; 807 ++Versym; 808 } 809 bool Hidden = VersymIndex & VERSYM_HIDDEN; 810 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 811 812 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 813 if (Sym.isUndefined()) { 814 Undefs.push_back(Name); 815 continue; 816 } 817 818 // Ignore local symbols. 819 if (Versym && VersymIndex == VER_NDX_LOCAL) 820 continue; 821 const Elf_Verdef *Ver = nullptr; 822 if (VersymIndex != VER_NDX_GLOBAL) { 823 if (VersymIndex >= Verdefs.size()) { 824 error("corrupt input file: version definition index " + 825 Twine(VersymIndex) + " for symbol " + Name + 826 " is out of bounds\n>>> defined in " + toString(this)); 827 continue; 828 } 829 Ver = Verdefs[VersymIndex]; 830 } else { 831 VersymIndex = 0; 832 } 833 834 // We do not usually care about alignments of data in shared object 835 // files because the loader takes care of it. However, if we promote a 836 // DSO symbol to point to .bss due to copy relocation, we need to keep 837 // the original alignment requirements. We infer it here. 838 uint64_t Alignment = 1; 839 if (Sym.st_value) 840 Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 841 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) { 842 uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign; 843 Alignment = std::min(Alignment, SecAlign); 844 } 845 if (Alignment > UINT32_MAX) 846 error(toString(this) + ": alignment too large: " + Name); 847 848 if (!Hidden) 849 Symtab->addShared(Name, this, Sym, Alignment, VersymIndex); 850 851 // Also add the symbol with the versioned name to handle undefined symbols 852 // with explicit versions. 853 if (Ver) { 854 StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name; 855 Name = Saver.save(Name + "@" + VerName); 856 Symtab->addShared(Name, this, Sym, Alignment, VersymIndex); 857 } 858 } 859 } 860 861 static ELFKind getBitcodeELFKind(const Triple &T) { 862 if (T.isLittleEndian()) 863 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 864 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 865 } 866 867 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 868 switch (T.getArch()) { 869 case Triple::aarch64: 870 return EM_AARCH64; 871 case Triple::arm: 872 case Triple::thumb: 873 return EM_ARM; 874 case Triple::avr: 875 return EM_AVR; 876 case Triple::mips: 877 case Triple::mipsel: 878 case Triple::mips64: 879 case Triple::mips64el: 880 return EM_MIPS; 881 case Triple::ppc: 882 return EM_PPC; 883 case Triple::ppc64: 884 return EM_PPC64; 885 case Triple::x86: 886 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 887 case Triple::x86_64: 888 return EM_X86_64; 889 default: 890 fatal(Path + ": could not infer e_machine from bitcode target triple " + 891 T.str()); 892 } 893 } 894 895 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 896 uint64_t OffsetInArchive) 897 : InputFile(BitcodeKind, MB) { 898 this->ArchiveName = ArchiveName; 899 900 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 901 // (the fully resolved path of the archive) + member name + offset of the 902 // member in the archive. 903 // ThinLTO uses the MemoryBufferRef identifier to access its internal 904 // data structures and if two archives define two members with the same name, 905 // this causes a collision which result in only one of the objects being 906 // taken into consideration at LTO time (which very likely causes undefined 907 // symbols later in the link stage). 908 MemoryBufferRef MBRef(MB.getBuffer(), 909 Saver.save(ArchiveName + MB.getBufferIdentifier() + 910 utostr(OffsetInArchive))); 911 Obj = CHECK(lto::InputFile::create(MBRef), this); 912 913 Triple T(Obj->getTargetTriple()); 914 EKind = getBitcodeELFKind(T); 915 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 916 } 917 918 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 919 switch (GvVisibility) { 920 case GlobalValue::DefaultVisibility: 921 return STV_DEFAULT; 922 case GlobalValue::HiddenVisibility: 923 return STV_HIDDEN; 924 case GlobalValue::ProtectedVisibility: 925 return STV_PROTECTED; 926 } 927 llvm_unreachable("unknown visibility"); 928 } 929 930 template <class ELFT> 931 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 932 const lto::InputFile::Symbol &ObjSym, 933 BitcodeFile *F) { 934 StringRef NameRef = Saver.save(ObjSym.getName()); 935 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 936 937 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 938 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 939 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 940 941 int C = ObjSym.getComdatIndex(); 942 if (C != -1 && !KeptComdats[C]) 943 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 944 CanOmitFromDynSym, F); 945 946 if (ObjSym.isUndefined()) 947 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 948 CanOmitFromDynSym, F); 949 950 if (ObjSym.isCommon()) 951 return Symtab->addCommon(NameRef, ObjSym.getCommonSize(), 952 ObjSym.getCommonAlignment(), Binding, Visibility, 953 STT_OBJECT, F); 954 955 return Symtab->addBitcode(NameRef, Binding, Visibility, Type, 956 CanOmitFromDynSym, F); 957 } 958 959 template <class ELFT> 960 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 961 std::vector<bool> KeptComdats; 962 for (StringRef S : Obj->getComdatTable()) 963 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 964 965 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 966 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 967 } 968 969 static ELFKind getELFKind(MemoryBufferRef MB) { 970 unsigned char Size; 971 unsigned char Endian; 972 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 973 974 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 975 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 976 if (Size != ELFCLASS32 && Size != ELFCLASS64) 977 fatal(MB.getBufferIdentifier() + ": invalid file class"); 978 979 size_t BufSize = MB.getBuffer().size(); 980 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 981 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 982 fatal(MB.getBufferIdentifier() + ": file is too short"); 983 984 if (Size == ELFCLASS32) 985 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 986 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 987 } 988 989 template <class ELFT> void BinaryFile::parse() { 990 ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); 991 auto *Section = 992 make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); 993 Sections.push_back(Section); 994 995 // For each input file foo that is embedded to a result as a binary 996 // blob, we define _binary_foo_{start,end,size} symbols, so that 997 // user programs can access blobs by name. Non-alphanumeric 998 // characters in a filename are replaced with underscore. 999 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1000 for (size_t I = 0; I < S.size(); ++I) 1001 if (!isAlnum(S[I])) 1002 S[I] = '_'; 1003 1004 Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 1005 0, 0, STB_GLOBAL, Section, nullptr); 1006 Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1007 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1008 Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1009 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1010 } 1011 1012 static bool isBitcode(MemoryBufferRef MB) { 1013 using namespace sys::fs; 1014 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 1015 } 1016 1017 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1018 uint64_t OffsetInArchive) { 1019 if (isBitcode(MB)) 1020 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1021 1022 switch (getELFKind(MB)) { 1023 case ELF32LEKind: 1024 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1025 case ELF32BEKind: 1026 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1027 case ELF64LEKind: 1028 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1029 case ELF64BEKind: 1030 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1031 default: 1032 llvm_unreachable("getELFKind"); 1033 } 1034 } 1035 1036 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1037 switch (getELFKind(MB)) { 1038 case ELF32LEKind: 1039 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 1040 case ELF32BEKind: 1041 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1042 case ELF64LEKind: 1043 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1044 case ELF64BEKind: 1045 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1046 default: 1047 llvm_unreachable("getELFKind"); 1048 } 1049 } 1050 1051 MemoryBufferRef LazyObjFile::getBuffer() { 1052 if (Seen) 1053 return MemoryBufferRef(); 1054 Seen = true; 1055 return MB; 1056 } 1057 1058 InputFile *LazyObjFile::fetch() { 1059 MemoryBufferRef MBRef = getBuffer(); 1060 if (MBRef.getBuffer().empty()) 1061 return nullptr; 1062 return createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1063 } 1064 1065 template <class ELFT> void LazyObjFile::parse() { 1066 for (StringRef Sym : getSymbolNames()) 1067 Symtab->addLazyObject<ELFT>(Sym, *this); 1068 } 1069 1070 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() { 1071 typedef typename ELFT::Shdr Elf_Shdr; 1072 typedef typename ELFT::Sym Elf_Sym; 1073 typedef typename ELFT::SymRange Elf_Sym_Range; 1074 1075 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer())); 1076 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 1077 for (const Elf_Shdr &Sec : Sections) { 1078 if (Sec.sh_type != SHT_SYMTAB) 1079 continue; 1080 1081 Elf_Sym_Range Syms = CHECK(Obj.symbols(&Sec), this); 1082 uint32_t FirstNonLocal = Sec.sh_info; 1083 StringRef StringTable = 1084 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1085 std::vector<StringRef> V; 1086 1087 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 1088 if (Sym.st_shndx != SHN_UNDEF) 1089 V.push_back(CHECK(Sym.getName(StringTable), this)); 1090 return V; 1091 } 1092 return {}; 1093 } 1094 1095 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() { 1096 std::unique_ptr<lto::InputFile> Obj = 1097 CHECK(lto::InputFile::create(this->MB), this); 1098 std::vector<StringRef> V; 1099 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1100 if (!Sym.isUndefined()) 1101 V.push_back(Saver.save(Sym.getName())); 1102 return V; 1103 } 1104 1105 // Returns a vector of globally-visible defined symbol names. 1106 std::vector<StringRef> LazyObjFile::getSymbolNames() { 1107 if (isBitcode(this->MB)) 1108 return getBitcodeSymbols(); 1109 1110 switch (getELFKind(this->MB)) { 1111 case ELF32LEKind: 1112 return getElfSymbols<ELF32LE>(); 1113 case ELF32BEKind: 1114 return getElfSymbols<ELF32BE>(); 1115 case ELF64LEKind: 1116 return getElfSymbols<ELF64LE>(); 1117 case ELF64BEKind: 1118 return getElfSymbols<ELF64BE>(); 1119 default: 1120 llvm_unreachable("getELFKind"); 1121 } 1122 } 1123 1124 template void ArchiveFile::parse<ELF32LE>(); 1125 template void ArchiveFile::parse<ELF32BE>(); 1126 template void ArchiveFile::parse<ELF64LE>(); 1127 template void ArchiveFile::parse<ELF64BE>(); 1128 1129 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1130 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1131 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1132 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1133 1134 template void LazyObjFile::parse<ELF32LE>(); 1135 template void LazyObjFile::parse<ELF32BE>(); 1136 template void LazyObjFile::parse<ELF64LE>(); 1137 template void LazyObjFile::parse<ELF64BE>(); 1138 1139 template class elf::ELFFileBase<ELF32LE>; 1140 template class elf::ELFFileBase<ELF32BE>; 1141 template class elf::ELFFileBase<ELF64LE>; 1142 template class elf::ELFFileBase<ELF64BE>; 1143 1144 template class elf::ObjFile<ELF32LE>; 1145 template class elf::ObjFile<ELF32BE>; 1146 template class elf::ObjFile<ELF64LE>; 1147 template class elf::ObjFile<ELF64BE>; 1148 1149 template class elf::SharedFile<ELF32LE>; 1150 template class elf::SharedFile<ELF32BE>; 1151 template class elf::SharedFile<ELF64LE>; 1152 template class elf::SharedFile<ELF64BE>; 1153 1154 template void BinaryFile::parse<ELF32LE>(); 1155 template void BinaryFile::parse<ELF32BE>(); 1156 template void BinaryFile::parse<ELF64LE>(); 1157 template void BinaryFile::parse<ELF64BE>(); 1158