1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/Support/raw_ostream.h"
21 
22 using namespace llvm;
23 using namespace llvm::ELF;
24 using namespace llvm::object;
25 using namespace llvm::sys::fs;
26 
27 using namespace lld;
28 using namespace lld::elf;
29 
30 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
31 std::string elf::getFilename(InputFile *F) {
32   if (!F)
33     return "(internal)";
34   if (!F->ArchiveName.empty())
35     return (F->ArchiveName + "(" + F->getName() + ")").str();
36   return F->getName();
37 }
38 
39 template <class ELFT>
40 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
41   std::error_code EC;
42   ELFFile<ELFT> F(MB.getBuffer(), EC);
43   check(EC);
44   return F;
45 }
46 
47 template <class ELFT>
48 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
49     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {}
50 
51 template <class ELFT>
52 ELFKind ELFFileBase<ELFT>::getELFKind() {
53   if (ELFT::TargetEndianness == support::little)
54     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
55   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
56 }
57 
58 template <class ELFT>
59 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
60   if (!Symtab)
61     return Elf_Sym_Range(nullptr, nullptr);
62   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
63   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
64   uint32_t FirstNonLocal = Symtab->sh_info;
65   if (FirstNonLocal > NumSymbols)
66     fatal("invalid sh_info in symbol table");
67 
68   if (OnlyGlobals)
69     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
70   return makeArrayRef(Syms.begin(), Syms.end());
71 }
72 
73 template <class ELFT>
74 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
75   uint32_t I = Sym.st_shndx;
76   if (I == ELF::SHN_XINDEX)
77     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
78   if (I >= ELF::SHN_LORESERVE)
79     return 0;
80   return I;
81 }
82 
83 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
84   if (!Symtab)
85     return;
86   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
87 }
88 
89 template <class ELFT>
90 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
91     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
92 
93 template <class ELFT>
94 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
95   if (!this->Symtab)
96     return this->SymbolBodies;
97   uint32_t FirstNonLocal = this->Symtab->sh_info;
98   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
99 }
100 
101 template <class ELFT>
102 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
103   if (!this->Symtab)
104     return this->SymbolBodies;
105   uint32_t FirstNonLocal = this->Symtab->sh_info;
106   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
107 }
108 
109 template <class ELFT>
110 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
111   if (!this->Symtab)
112     return this->SymbolBodies;
113   return makeArrayRef(this->SymbolBodies).slice(1);
114 }
115 
116 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
117   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
118     return MipsOptions->Reginfo->ri_gp_value;
119   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
120     return MipsReginfo->Reginfo->ri_gp_value;
121   return 0;
122 }
123 
124 template <class ELFT>
125 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
126   // Read section and symbol tables.
127   initializeSections(ComdatGroups);
128   initializeSymbols();
129 }
130 
131 // Sections with SHT_GROUP and comdat bits define comdat section groups.
132 // They are identified and deduplicated by group name. This function
133 // returns a group name.
134 template <class ELFT>
135 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
136   const ELFFile<ELFT> &Obj = this->ELFObj;
137   uint32_t SymtabdSectionIndex = Sec.sh_link;
138   const Elf_Shdr *SymtabSec = check(Obj.getSection(SymtabdSectionIndex));
139   uint32_t SymIndex = Sec.sh_info;
140   const Elf_Sym *Sym = Obj.getSymbol(SymtabSec, SymIndex);
141   StringRef StringTable = check(Obj.getStringTableForSymtab(*SymtabSec));
142   return check(Sym->getName(StringTable));
143 }
144 
145 template <class ELFT>
146 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
147 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
148   const ELFFile<ELFT> &Obj = this->ELFObj;
149   ArrayRef<Elf_Word> Entries =
150       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
151   if (Entries.empty() || Entries[0] != GRP_COMDAT)
152     fatal("unsupported SHT_GROUP format");
153   return Entries.slice(1);
154 }
155 
156 template <class ELFT> static bool shouldMerge(const typename ELFT::Shdr &Sec) {
157   typedef typename ELFT::uint uintX_t;
158 
159   // We don't merge sections if -O0 (default is -O1). This makes sometimes
160   // the linker significantly faster, although the output will be bigger.
161   if (Config->Optimize == 0)
162     return false;
163 
164   uintX_t Flags = Sec.sh_flags;
165   if (!(Flags & SHF_MERGE))
166     return false;
167   if (Flags & SHF_WRITE)
168     fatal("writable SHF_MERGE sections are not supported");
169   uintX_t EntSize = Sec.sh_entsize;
170   if (!EntSize || Sec.sh_size % EntSize)
171     fatal("SHF_MERGE section size must be a multiple of sh_entsize");
172 
173   // Don't try to merge if the alignment is larger than the sh_entsize and this
174   // is not SHF_STRINGS.
175   //
176   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
177   // It would be equivalent for the producer of the .o to just set a larger
178   // sh_entsize.
179   if (Flags & SHF_STRINGS)
180     return true;
181 
182   return Sec.sh_addralign <= EntSize;
183 }
184 
185 template <class ELFT>
186 void elf::ObjectFile<ELFT>::initializeSections(
187     DenseSet<StringRef> &ComdatGroups) {
188   uint64_t Size = this->ELFObj.getNumSections();
189   Sections.resize(Size);
190   unsigned I = -1;
191   const ELFFile<ELFT> &Obj = this->ELFObj;
192   for (const Elf_Shdr &Sec : Obj.sections()) {
193     ++I;
194     if (Sections[I] == &InputSection<ELFT>::Discarded)
195       continue;
196 
197     switch (Sec.sh_type) {
198     case SHT_GROUP:
199       Sections[I] = &InputSection<ELFT>::Discarded;
200       if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
201         continue;
202       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
203         if (SecIndex >= Size)
204           fatal("invalid section index in group");
205         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
206       }
207       break;
208     case SHT_SYMTAB:
209       this->Symtab = &Sec;
210       break;
211     case SHT_SYMTAB_SHNDX:
212       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
213       break;
214     case SHT_STRTAB:
215     case SHT_NULL:
216       break;
217     case SHT_RELA:
218     case SHT_REL: {
219       // This section contains relocation information.
220       // If -r is given, we do not interpret or apply relocation
221       // but just copy relocation sections to output.
222       if (Config->Relocatable) {
223         Sections[I] = new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
224         break;
225       }
226 
227       // Find the relocation target section and associate this
228       // section with it.
229       InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
230       if (!Target)
231         break;
232       if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
233         S->RelocSections.push_back(&Sec);
234         break;
235       }
236       if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
237         if (S->RelocSection)
238           fatal("multiple relocation sections to .eh_frame are not supported");
239         S->RelocSection = &Sec;
240         break;
241       }
242       fatal("relocations pointing to SHF_MERGE are not supported");
243     }
244     case SHT_ARM_ATTRIBUTES:
245       // FIXME: ARM meta-data section. At present attributes are ignored,
246       // they can be used to reason about object compatibility.
247       Sections[I] = &InputSection<ELFT>::Discarded;
248       break;
249     default:
250       Sections[I] = createInputSection(Sec);
251     }
252   }
253 }
254 
255 template <class ELFT>
256 InputSectionBase<ELFT> *
257 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
258   uint32_t Idx = Sec.sh_info;
259   if (Idx >= Sections.size())
260     fatal("invalid relocated section index");
261   InputSectionBase<ELFT> *Target = Sections[Idx];
262 
263   // Strictly speaking, a relocation section must be included in the
264   // group of the section it relocates. However, LLVM 3.3 and earlier
265   // would fail to do so, so we gracefully handle that case.
266   if (Target == &InputSection<ELFT>::Discarded)
267     return nullptr;
268 
269   if (!Target)
270     fatal("unsupported relocation reference");
271   return Target;
272 }
273 
274 template <class ELFT>
275 InputSectionBase<ELFT> *
276 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
277   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
278 
279   // .note.GNU-stack is a marker section to control the presence of
280   // PT_GNU_STACK segment in outputs. Since the presence of the segment
281   // is controlled only by the command line option (-z execstack) in LLD,
282   // .note.GNU-stack is ignored.
283   if (Name == ".note.GNU-stack")
284     return &InputSection<ELFT>::Discarded;
285 
286   if (Name == ".note.GNU-split-stack") {
287     error("objects using splitstacks are not supported");
288     return &InputSection<ELFT>::Discarded;
289   }
290 
291   if (Config->StripDebug && Name.startswith(".debug"))
292     return &InputSection<ELFT>::Discarded;
293 
294   // A MIPS object file has a special sections that contain register
295   // usage info, which need to be handled by the linker specially.
296   if (Config->EMachine == EM_MIPS) {
297     if (Name == ".reginfo") {
298       MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec));
299       return MipsReginfo.get();
300     }
301     if (Name == ".MIPS.options") {
302       MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec));
303       return MipsOptions.get();
304     }
305   }
306 
307   // We dont need special handling of .eh_frame sections if relocatable
308   // output was choosen. Proccess them as usual input sections.
309   if (!Config->Relocatable && Name == ".eh_frame")
310     return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec);
311   if (shouldMerge<ELFT>(Sec))
312     return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec);
313   return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec);
314 }
315 
316 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
317   this->initStringTable();
318   Elf_Sym_Range Syms = this->getElfSymbols(false);
319   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
320   SymbolBodies.reserve(NumSymbols);
321   for (const Elf_Sym &Sym : Syms)
322     SymbolBodies.push_back(createSymbolBody(&Sym));
323 }
324 
325 template <class ELFT>
326 InputSectionBase<ELFT> *
327 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
328   uint32_t Index = this->getSectionIndex(Sym);
329   if (Index == 0)
330     return nullptr;
331   if (Index >= Sections.size() || !Sections[Index])
332     fatal("invalid section index");
333   InputSectionBase<ELFT> *S = Sections[Index];
334   if (S == &InputSectionBase<ELFT>::Discarded)
335     return S;
336   return S->Repl;
337 }
338 
339 template <class ELFT>
340 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
341   unsigned char Binding = Sym->getBinding();
342   InputSectionBase<ELFT> *Sec = getSection(*Sym);
343   if (Binding == STB_LOCAL) {
344     if (Sym->st_shndx == SHN_UNDEF)
345       return new (Alloc) Undefined(Sym->st_name, Sym->st_other, Sym->getType());
346     return new (Alloc) DefinedRegular<ELFT>(*Sym, Sec);
347   }
348 
349   StringRef Name = check(Sym->getName(this->StringTable));
350 
351   switch (Sym->st_shndx) {
352   case SHN_UNDEF:
353     return elf::Symtab<ELFT>::X
354         ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), this)
355         ->body();
356   case SHN_COMMON:
357     return elf::Symtab<ELFT>::X
358         ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other,
359                     Sym->getType(), this)
360         ->body();
361   }
362 
363   switch (Binding) {
364   default:
365     fatal("unexpected binding");
366   case STB_GLOBAL:
367   case STB_WEAK:
368   case STB_GNU_UNIQUE:
369     if (Sec == &InputSection<ELFT>::Discarded)
370       return elf::Symtab<ELFT>::X
371           ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), this)
372           ->body();
373     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
374   }
375 }
376 
377 template <class ELFT> void ArchiveFile::parse() {
378   File = check(Archive::create(MB), "failed to parse archive");
379 
380   // Read the symbol table to construct Lazy objects.
381   for (const Archive::Symbol &Sym : File->symbols())
382     Symtab<ELFT>::X->addLazyArchive(this, Sym);
383 }
384 
385 // Returns a buffer pointing to a member file containing a given symbol.
386 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
387   Archive::Child C =
388       check(Sym->getMember(),
389             "could not get the member for symbol " + Sym->getName());
390 
391   if (!Seen.insert(C.getChildOffset()).second)
392     return MemoryBufferRef();
393 
394   MemoryBufferRef Ret =
395       check(C.getMemoryBufferRef(),
396             "could not get the buffer for the member defining symbol " +
397                 Sym->getName());
398 
399   if (C.getParent()->isThin() && Driver->Cpio)
400     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
401                          Ret.getBuffer());
402 
403   return Ret;
404 }
405 
406 template <class ELFT>
407 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
408     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
409 
410 template <class ELFT>
411 const typename ELFT::Shdr *
412 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
413   uint32_t Index = this->getSectionIndex(Sym);
414   if (Index == 0)
415     return nullptr;
416   return check(this->ELFObj.getSection(Index));
417 }
418 
419 // Partially parse the shared object file so that we can call
420 // getSoName on this object.
421 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
422   typedef typename ELFT::Dyn Elf_Dyn;
423   typedef typename ELFT::uint uintX_t;
424   const Elf_Shdr *DynamicSec = nullptr;
425 
426   const ELFFile<ELFT> Obj = this->ELFObj;
427   for (const Elf_Shdr &Sec : Obj.sections()) {
428     switch (Sec.sh_type) {
429     default:
430       continue;
431     case SHT_DYNSYM:
432       this->Symtab = &Sec;
433       break;
434     case SHT_DYNAMIC:
435       DynamicSec = &Sec;
436       break;
437     case SHT_SYMTAB_SHNDX:
438       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
439       break;
440     case SHT_GNU_versym:
441       this->VersymSec = &Sec;
442       break;
443     case SHT_GNU_verdef:
444       this->VerdefSec = &Sec;
445       break;
446     }
447   }
448 
449   this->initStringTable();
450   SoName = this->getName();
451 
452   if (!DynamicSec)
453     return;
454   auto *Begin =
455       reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset);
456   const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn);
457 
458   for (const Elf_Dyn &Dyn : make_range(Begin, End)) {
459     if (Dyn.d_tag == DT_SONAME) {
460       uintX_t Val = Dyn.getVal();
461       if (Val >= this->StringTable.size())
462         fatal("invalid DT_SONAME entry");
463       SoName = StringRef(this->StringTable.data() + Val);
464       return;
465     }
466   }
467 }
468 
469 // Parse the version definitions in the object file if present. Returns a vector
470 // whose nth element contains a pointer to the Elf_Verdef for version identifier
471 // n. Version identifiers that are not definitions map to nullptr. The array
472 // always has at least length 1.
473 template <class ELFT>
474 std::vector<const typename ELFT::Verdef *>
475 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
476   std::vector<const Elf_Verdef *> Verdefs(1);
477   // We only need to process symbol versions for this DSO if it has both a
478   // versym and a verdef section, which indicates that the DSO contains symbol
479   // version definitions.
480   if (!VersymSec || !VerdefSec)
481     return Verdefs;
482 
483   // The location of the first global versym entry.
484   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
485                                                 VersymSec->sh_offset) +
486            this->Symtab->sh_info;
487 
488   // We cannot determine the largest verdef identifier without inspecting
489   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
490   // sequentially starting from 1, so we predict that the largest identifier
491   // will be VerdefCount.
492   unsigned VerdefCount = VerdefSec->sh_info;
493   Verdefs.resize(VerdefCount + 1);
494 
495   // Build the Verdefs array by following the chain of Elf_Verdef objects
496   // from the start of the .gnu.version_d section.
497   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
498   for (unsigned I = 0; I != VerdefCount; ++I) {
499     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
500     Verdef += CurVerdef->vd_next;
501     unsigned VerdefIndex = CurVerdef->vd_ndx;
502     if (Verdefs.size() <= VerdefIndex)
503       Verdefs.resize(VerdefIndex + 1);
504     Verdefs[VerdefIndex] = CurVerdef;
505   }
506 
507   return Verdefs;
508 }
509 
510 // Fully parse the shared object file. This must be called after parseSoName().
511 template <class ELFT> void SharedFile<ELFT>::parseRest() {
512   // Create mapping from version identifiers to Elf_Verdef entries.
513   const Elf_Versym *Versym = nullptr;
514   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
515 
516   Elf_Sym_Range Syms = this->getElfSymbols(true);
517   for (const Elf_Sym &Sym : Syms) {
518     unsigned VersymIndex = 0;
519     if (Versym) {
520       VersymIndex = Versym->vs_index;
521       ++Versym;
522     }
523 
524     StringRef Name = check(Sym.getName(this->StringTable));
525     if (Sym.isUndefined()) {
526       Undefs.push_back(Name);
527       continue;
528     }
529 
530     if (Versym) {
531       // Ignore local symbols and non-default versions.
532       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
533         continue;
534     }
535 
536     const Elf_Verdef *V =
537         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
538     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
539   }
540 }
541 
542 BitcodeFile::BitcodeFile(MemoryBufferRef M) : InputFile(BitcodeKind, M) {}
543 
544 static uint8_t getGvVisibility(const GlobalValue *GV) {
545   switch (GV->getVisibility()) {
546   case GlobalValue::DefaultVisibility:
547     return STV_DEFAULT;
548   case GlobalValue::HiddenVisibility:
549     return STV_HIDDEN;
550   case GlobalValue::ProtectedVisibility:
551     return STV_PROTECTED;
552   }
553   llvm_unreachable("unknown visibility");
554 }
555 
556 template <class ELFT>
557 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats,
558                                   const IRObjectFile &Obj,
559                                   const BasicSymbolRef &Sym) {
560   const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl());
561 
562   SmallString<64> Name;
563   raw_svector_ostream OS(Name);
564   Sym.printName(OS);
565   StringRef NameRef = Saver.save(StringRef(Name));
566 
567   uint32_t Flags = Sym.getFlags();
568   bool IsWeak = Flags & BasicSymbolRef::SF_Weak;
569   uint32_t Binding = IsWeak ? STB_WEAK : STB_GLOBAL;
570 
571   uint8_t Type = STT_NOTYPE;
572   bool CanOmitFromDynSym = false;
573   // FIXME: Expose a thread-local flag for module asm symbols.
574   if (GV) {
575     if (GV->isThreadLocal())
576       Type = STT_TLS;
577     CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV);
578   }
579 
580   uint8_t Visibility;
581   if (GV)
582     Visibility = getGvVisibility(GV);
583   else
584     // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose
585     // protected visibility.
586     Visibility = STV_DEFAULT;
587 
588   if (GV)
589     if (const Comdat *C = GV->getComdat())
590       if (!KeptComdats.count(C))
591         return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
592                                              this);
593 
594   const Module &M = Obj.getModule();
595   if (Flags & BasicSymbolRef::SF_Undefined)
596     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
597                                          this);
598   if (Flags & BasicSymbolRef::SF_Common) {
599     // FIXME: Set SF_Common flag correctly for module asm symbols, and expose
600     // size and alignment.
601     assert(GV);
602     const DataLayout &DL = M.getDataLayout();
603     uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
604     return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(),
605                                       Binding, Visibility, STT_OBJECT, this);
606   }
607   return Symtab<ELFT>::X->addBitcode(NameRef, IsWeak, Visibility, Type,
608                                      CanOmitFromDynSym, this);
609 }
610 
611 bool BitcodeFile::shouldSkip(uint32_t Flags) {
612   if (!(Flags & BasicSymbolRef::SF_Global))
613     return true;
614   if (Flags & BasicSymbolRef::SF_FormatSpecific)
615     return true;
616   return false;
617 }
618 
619 template <class ELFT>
620 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
621   Obj = check(IRObjectFile::create(MB, Driver->Context));
622   const Module &M = Obj->getModule();
623 
624   DenseSet<const Comdat *> KeptComdats;
625   for (const auto &P : M.getComdatSymbolTable()) {
626     StringRef N = Saver.save(P.first());
627     if (ComdatGroups.insert(N).second)
628       KeptComdats.insert(&P.second);
629   }
630 
631   for (const BasicSymbolRef &Sym : Obj->symbols())
632     if (!shouldSkip(Sym.getFlags()))
633       Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym));
634 }
635 
636 template <typename T>
637 static std::unique_ptr<InputFile> createELFFileAux(MemoryBufferRef MB) {
638   std::unique_ptr<T> Ret = llvm::make_unique<T>(MB);
639 
640   if (!Config->FirstElf)
641     Config->FirstElf = Ret.get();
642 
643   if (Config->EKind == ELFNoneKind) {
644     Config->EKind = Ret->getELFKind();
645     Config->EMachine = Ret->getEMachine();
646     if (Config->EMachine == EM_MIPS && Config->EKind == ELF64LEKind)
647       Config->Mips64EL = true;
648   }
649 
650   return std::move(Ret);
651 }
652 
653 template <template <class> class T>
654 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) {
655   unsigned char Size;
656   unsigned char Endian;
657   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
658   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
659     fatal("invalid data encoding: " + MB.getBufferIdentifier());
660 
661   if (Size == ELFCLASS32) {
662     if (Endian == ELFDATA2LSB)
663       return createELFFileAux<T<ELF32LE>>(MB);
664     return createELFFileAux<T<ELF32BE>>(MB);
665   }
666   if (Size == ELFCLASS64) {
667     if (Endian == ELFDATA2LSB)
668       return createELFFileAux<T<ELF64LE>>(MB);
669     return createELFFileAux<T<ELF64BE>>(MB);
670   }
671   fatal("invalid file class: " + MB.getBufferIdentifier());
672 }
673 
674 static bool isBitcode(MemoryBufferRef MB) {
675   using namespace sys::fs;
676   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
677 }
678 
679 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB,
680                                                  StringRef ArchiveName) {
681   std::unique_ptr<InputFile> F;
682   if (isBitcode(MB))
683     F.reset(new BitcodeFile(MB));
684   else
685     F = createELFFile<ObjectFile>(MB);
686   F->ArchiveName = ArchiveName;
687   return F;
688 }
689 
690 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) {
691   return createELFFile<SharedFile>(MB);
692 }
693 
694 MemoryBufferRef LazyObjectFile::getBuffer() {
695   if (Seen)
696     return MemoryBufferRef();
697   Seen = true;
698   return MB;
699 }
700 
701 template <class ELFT>
702 void LazyObjectFile::parse() {
703   for (StringRef Sym : getSymbols())
704     Symtab<ELFT>::X->addLazyObject(Sym, *this);
705 }
706 
707 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
708   typedef typename ELFT::Shdr Elf_Shdr;
709   typedef typename ELFT::Sym Elf_Sym;
710   typedef typename ELFT::SymRange Elf_Sym_Range;
711 
712   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
713   for (const Elf_Shdr &Sec : Obj.sections()) {
714     if (Sec.sh_type != SHT_SYMTAB)
715       continue;
716     Elf_Sym_Range Syms = Obj.symbols(&Sec);
717     uint32_t FirstNonLocal = Sec.sh_info;
718     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
719     std::vector<StringRef> V;
720     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
721       if (Sym.st_shndx != SHN_UNDEF)
722         V.push_back(check(Sym.getName(StringTable)));
723     return V;
724   }
725   return {};
726 }
727 
728 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
729   LLVMContext Context;
730   std::unique_ptr<IRObjectFile> Obj =
731       check(IRObjectFile::create(this->MB, Context));
732   std::vector<StringRef> V;
733   for (const BasicSymbolRef &Sym : Obj->symbols()) {
734     uint32_t Flags = Sym.getFlags();
735     if (BitcodeFile::shouldSkip(Flags))
736       continue;
737     if (Flags & BasicSymbolRef::SF_Undefined)
738       continue;
739     SmallString<64> Name;
740     raw_svector_ostream OS(Name);
741     Sym.printName(OS);
742     V.push_back(Saver.save(StringRef(Name)));
743   }
744   return V;
745 }
746 
747 // Returns a vector of globally-visible defined symbol names.
748 std::vector<StringRef> LazyObjectFile::getSymbols() {
749   if (isBitcode(this->MB))
750     return getBitcodeSymbols();
751 
752   unsigned char Size;
753   unsigned char Endian;
754   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
755   if (Size == ELFCLASS32) {
756     if (Endian == ELFDATA2LSB)
757       return getElfSymbols<ELF32LE>();
758     return getElfSymbols<ELF32BE>();
759   }
760   if (Endian == ELFDATA2LSB)
761     return getElfSymbols<ELF64LE>();
762   return getElfSymbols<ELF64BE>();
763 }
764 
765 template void ArchiveFile::parse<ELF32LE>();
766 template void ArchiveFile::parse<ELF32BE>();
767 template void ArchiveFile::parse<ELF64LE>();
768 template void ArchiveFile::parse<ELF64BE>();
769 
770 template void BitcodeFile::parse<ELF32LE>(llvm::DenseSet<StringRef> &);
771 template void BitcodeFile::parse<ELF32BE>(llvm::DenseSet<StringRef> &);
772 template void BitcodeFile::parse<ELF64LE>(llvm::DenseSet<StringRef> &);
773 template void BitcodeFile::parse<ELF64BE>(llvm::DenseSet<StringRef> &);
774 
775 template void LazyObjectFile::parse<ELF32LE>();
776 template void LazyObjectFile::parse<ELF32BE>();
777 template void LazyObjectFile::parse<ELF64LE>();
778 template void LazyObjectFile::parse<ELF64BE>();
779 
780 template class elf::ELFFileBase<ELF32LE>;
781 template class elf::ELFFileBase<ELF32BE>;
782 template class elf::ELFFileBase<ELF64LE>;
783 template class elf::ELFFileBase<ELF64BE>;
784 
785 template class elf::ObjectFile<ELF32LE>;
786 template class elf::ObjectFile<ELF32BE>;
787 template class elf::ObjectFile<ELF64LE>;
788 template class elf::ObjectFile<ELF64BE>;
789 
790 template class elf::SharedFile<ELF32LE>;
791 template class elf::SharedFile<ELF32BE>;
792 template class elf::SharedFile<ELF64LE>;
793 template class elf::SharedFile<ELF64BE>;
794