1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "DWARF.h" 11 #include "Driver.h" 12 #include "InputSection.h" 13 #include "LinkerScript.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "SyntheticSections.h" 17 #include "Target.h" 18 #include "lld/Common/CommonLinkerContext.h" 19 #include "lld/Common/DWARF.h" 20 #include "llvm/ADT/CachedHashString.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/LTO/LTO.h" 23 #include "llvm/Object/IRObjectFile.h" 24 #include "llvm/Support/ARMAttributeParser.h" 25 #include "llvm/Support/ARMBuildAttributes.h" 26 #include "llvm/Support/Endian.h" 27 #include "llvm/Support/FileSystem.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/RISCVAttributeParser.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 using namespace lld; 40 using namespace lld::elf; 41 42 bool InputFile::isInGroup; 43 uint32_t InputFile::nextGroupId; 44 45 SmallVector<std::unique_ptr<MemoryBuffer>> elf::memoryBuffers; 46 SmallVector<ArchiveFile *, 0> elf::archiveFiles; 47 SmallVector<BinaryFile *, 0> elf::binaryFiles; 48 SmallVector<BitcodeFile *, 0> elf::bitcodeFiles; 49 SmallVector<BitcodeFile *, 0> elf::lazyBitcodeFiles; 50 SmallVector<ELFFileBase *, 0> elf::objectFiles; 51 SmallVector<SharedFile *, 0> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = f->getName(); 63 else 64 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 65 } 66 return std::string(f->toStringCache); 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver().save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 119 /*RequiresNullTerminator=*/false); 120 if (auto ec = mbOrErr.getError()) { 121 error("cannot open " + path + ": " + ec.message()); 122 return None; 123 } 124 125 MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef(); 126 memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership 127 128 if (tar) 129 tar->append(relativeToRoot(path), mbref.getBuffer()); 130 return mbref; 131 } 132 133 // All input object files must be for the same architecture 134 // (e.g. it does not make sense to link x86 object files with 135 // MIPS object files.) This function checks for that error. 136 static bool isCompatible(InputFile *file) { 137 if (!file->isElf() && !isa<BitcodeFile>(file)) 138 return true; 139 140 if (file->ekind == config->ekind && file->emachine == config->emachine) { 141 if (config->emachine != EM_MIPS) 142 return true; 143 if (isMipsN32Abi(file) == config->mipsN32Abi) 144 return true; 145 } 146 147 StringRef target = 148 !config->bfdname.empty() ? config->bfdname : config->emulation; 149 if (!target.empty()) { 150 error(toString(file) + " is incompatible with " + target); 151 return false; 152 } 153 154 InputFile *existing = nullptr; 155 if (!objectFiles.empty()) 156 existing = objectFiles[0]; 157 else if (!sharedFiles.empty()) 158 existing = sharedFiles[0]; 159 else if (!bitcodeFiles.empty()) 160 existing = bitcodeFiles[0]; 161 std::string with; 162 if (existing) 163 with = " with " + toString(existing); 164 error(toString(file) + " is incompatible" + with); 165 return false; 166 } 167 168 template <class ELFT> static void doParseFile(InputFile *file) { 169 if (!isCompatible(file)) 170 return; 171 172 // Binary file 173 if (auto *f = dyn_cast<BinaryFile>(file)) { 174 binaryFiles.push_back(f); 175 f->parse(); 176 return; 177 } 178 179 // .a file 180 if (auto *f = dyn_cast<ArchiveFile>(file)) { 181 archiveFiles.push_back(f); 182 f->parse(); 183 return; 184 } 185 186 // Lazy object file 187 if (file->lazy) { 188 if (auto *f = dyn_cast<BitcodeFile>(file)) { 189 lazyBitcodeFiles.push_back(f); 190 f->parseLazy(); 191 } else { 192 cast<ObjFile<ELFT>>(file)->parseLazy(); 193 } 194 return; 195 } 196 197 if (config->trace) 198 message(toString(file)); 199 200 // .so file 201 if (auto *f = dyn_cast<SharedFile>(file)) { 202 f->parse<ELFT>(); 203 return; 204 } 205 206 // LLVM bitcode file 207 if (auto *f = dyn_cast<BitcodeFile>(file)) { 208 bitcodeFiles.push_back(f); 209 f->parse<ELFT>(); 210 return; 211 } 212 213 // Regular object file 214 objectFiles.push_back(cast<ELFFileBase>(file)); 215 cast<ObjFile<ELFT>>(file)->parse(); 216 } 217 218 // Add symbols in File to the symbol table. 219 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); } 220 221 // Concatenates arguments to construct a string representing an error location. 222 static std::string createFileLineMsg(StringRef path, unsigned line) { 223 std::string filename = std::string(path::filename(path)); 224 std::string lineno = ":" + std::to_string(line); 225 if (filename == path) 226 return filename + lineno; 227 return filename + lineno + " (" + path.str() + lineno + ")"; 228 } 229 230 template <class ELFT> 231 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 232 InputSectionBase &sec, uint64_t offset) { 233 // In DWARF, functions and variables are stored to different places. 234 // First, lookup a function for a given offset. 235 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 236 return createFileLineMsg(info->FileName, info->Line); 237 238 // If it failed, lookup again as a variable. 239 if (Optional<std::pair<std::string, unsigned>> fileLine = 240 file.getVariableLoc(sym.getName())) 241 return createFileLineMsg(fileLine->first, fileLine->second); 242 243 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 244 return std::string(file.sourceFile); 245 } 246 247 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 248 uint64_t offset) { 249 if (kind() != ObjKind) 250 return ""; 251 switch (config->ekind) { 252 default: 253 llvm_unreachable("Invalid kind"); 254 case ELF32LEKind: 255 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 256 case ELF32BEKind: 257 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 258 case ELF64LEKind: 259 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 260 case ELF64BEKind: 261 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 262 } 263 } 264 265 StringRef InputFile::getNameForScript() const { 266 if (archiveName.empty()) 267 return getName(); 268 269 if (nameForScriptCache.empty()) 270 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 271 272 return nameForScriptCache; 273 } 274 275 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 276 llvm::call_once(initDwarf, [this]() { 277 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 278 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 279 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 280 [&](Error warning) { 281 warn(getName() + ": " + toString(std::move(warning))); 282 })); 283 }); 284 285 return dwarf.get(); 286 } 287 288 // Returns the pair of file name and line number describing location of data 289 // object (variable, array, etc) definition. 290 template <class ELFT> 291 Optional<std::pair<std::string, unsigned>> 292 ObjFile<ELFT>::getVariableLoc(StringRef name) { 293 return getDwarf()->getVariableLoc(name); 294 } 295 296 // Returns source line information for a given offset 297 // using DWARF debug info. 298 template <class ELFT> 299 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 300 uint64_t offset) { 301 // Detect SectionIndex for specified section. 302 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 303 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 304 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 305 if (s == sections[curIndex]) { 306 sectionIndex = curIndex; 307 break; 308 } 309 } 310 311 return getDwarf()->getDILineInfo(offset, sectionIndex); 312 } 313 314 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 315 ekind = getELFKind(mb, ""); 316 317 switch (ekind) { 318 case ELF32LEKind: 319 init<ELF32LE>(); 320 break; 321 case ELF32BEKind: 322 init<ELF32BE>(); 323 break; 324 case ELF64LEKind: 325 init<ELF64LE>(); 326 break; 327 case ELF64BEKind: 328 init<ELF64BE>(); 329 break; 330 default: 331 llvm_unreachable("getELFKind"); 332 } 333 } 334 335 template <typename Elf_Shdr> 336 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 337 for (const Elf_Shdr &sec : sections) 338 if (sec.sh_type == type) 339 return &sec; 340 return nullptr; 341 } 342 343 template <class ELFT> void ELFFileBase::init() { 344 using Elf_Shdr = typename ELFT::Shdr; 345 using Elf_Sym = typename ELFT::Sym; 346 347 // Initialize trivial attributes. 348 const ELFFile<ELFT> &obj = getObj<ELFT>(); 349 emachine = obj.getHeader().e_machine; 350 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 351 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 352 353 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 354 elfShdrs = sections.data(); 355 numELFShdrs = sections.size(); 356 357 // Find a symbol table. 358 bool isDSO = 359 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 360 const Elf_Shdr *symtabSec = 361 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 362 363 if (!symtabSec) 364 return; 365 366 // Initialize members corresponding to a symbol table. 367 firstGlobal = symtabSec->sh_info; 368 369 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 370 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 371 fatal(toString(this) + ": invalid sh_info in symbol table"); 372 373 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 374 numELFSyms = uint32_t(eSyms.size()); 375 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 376 } 377 378 template <class ELFT> 379 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 380 return CHECK( 381 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 382 this); 383 } 384 385 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 386 object::ELFFile<ELFT> obj = this->getObj(); 387 // Read a section table. justSymbols is usually false. 388 if (this->justSymbols) 389 initializeJustSymbols(); 390 else 391 initializeSections(ignoreComdats, obj); 392 393 // Read a symbol table. 394 initializeSymbols(obj); 395 } 396 397 // Sections with SHT_GROUP and comdat bits define comdat section groups. 398 // They are identified and deduplicated by group name. This function 399 // returns a group name. 400 template <class ELFT> 401 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 402 const Elf_Shdr &sec) { 403 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 404 if (sec.sh_info >= symbols.size()) 405 fatal(toString(this) + ": invalid symbol index"); 406 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 407 return CHECK(sym.getName(this->stringTable), this); 408 } 409 410 template <class ELFT> 411 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 412 // On a regular link we don't merge sections if -O0 (default is -O1). This 413 // sometimes makes the linker significantly faster, although the output will 414 // be bigger. 415 // 416 // Doing the same for -r would create a problem as it would combine sections 417 // with different sh_entsize. One option would be to just copy every SHF_MERGE 418 // section as is to the output. While this would produce a valid ELF file with 419 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 420 // they see two .debug_str. We could have separate logic for combining 421 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 422 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 423 // logic for -r. 424 if (config->optimize == 0 && !config->relocatable) 425 return false; 426 427 // A mergeable section with size 0 is useless because they don't have 428 // any data to merge. A mergeable string section with size 0 can be 429 // argued as invalid because it doesn't end with a null character. 430 // We'll avoid a mess by handling them as if they were non-mergeable. 431 if (sec.sh_size == 0) 432 return false; 433 434 // Check for sh_entsize. The ELF spec is not clear about the zero 435 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 436 // the section does not hold a table of fixed-size entries". We know 437 // that Rust 1.13 produces a string mergeable section with a zero 438 // sh_entsize. Here we just accept it rather than being picky about it. 439 uint64_t entSize = sec.sh_entsize; 440 if (entSize == 0) 441 return false; 442 if (sec.sh_size % entSize) 443 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 444 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 445 Twine(entSize) + ")"); 446 447 if (sec.sh_flags & SHF_WRITE) 448 fatal(toString(this) + ":(" + name + 449 "): writable SHF_MERGE section is not supported"); 450 451 return true; 452 } 453 454 // This is for --just-symbols. 455 // 456 // --just-symbols is a very minor feature that allows you to link your 457 // output against other existing program, so that if you load both your 458 // program and the other program into memory, your output can refer the 459 // other program's symbols. 460 // 461 // When the option is given, we link "just symbols". The section table is 462 // initialized with null pointers. 463 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 464 sections.resize(numELFShdrs); 465 } 466 467 // An ELF object file may contain a `.deplibs` section. If it exists, the 468 // section contains a list of library specifiers such as `m` for libm. This 469 // function resolves a given name by finding the first matching library checking 470 // the various ways that a library can be specified to LLD. This ELF extension 471 // is a form of autolinking and is called `dependent libraries`. It is currently 472 // unique to LLVM and lld. 473 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 474 if (!config->dependentLibraries) 475 return; 476 if (Optional<std::string> s = searchLibraryBaseName(specifier)) 477 driver->addFile(*s, /*withLOption=*/true); 478 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 479 driver->addFile(*s, /*withLOption=*/true); 480 else if (fs::exists(specifier)) 481 driver->addFile(specifier, /*withLOption=*/false); 482 else 483 error(toString(f) + 484 ": unable to find library from dependent library specifier: " + 485 specifier); 486 } 487 488 // Record the membership of a section group so that in the garbage collection 489 // pass, section group members are kept or discarded as a unit. 490 template <class ELFT> 491 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 492 ArrayRef<typename ELFT::Word> entries) { 493 bool hasAlloc = false; 494 for (uint32_t index : entries.slice(1)) { 495 if (index >= sections.size()) 496 return; 497 if (InputSectionBase *s = sections[index]) 498 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 499 hasAlloc = true; 500 } 501 502 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 503 // collection. See the comment in markLive(). This rule retains .debug_types 504 // and .rela.debug_types. 505 if (!hasAlloc) 506 return; 507 508 // Connect the members in a circular doubly-linked list via 509 // nextInSectionGroup. 510 InputSectionBase *head; 511 InputSectionBase *prev = nullptr; 512 for (uint32_t index : entries.slice(1)) { 513 InputSectionBase *s = sections[index]; 514 if (!s || s == &InputSection::discarded) 515 continue; 516 if (prev) 517 prev->nextInSectionGroup = s; 518 else 519 head = s; 520 prev = s; 521 } 522 if (prev) 523 prev->nextInSectionGroup = head; 524 } 525 526 template <class ELFT> 527 void ObjFile<ELFT>::initializeSections(bool ignoreComdats, 528 const llvm::object::ELFFile<ELFT> &obj) { 529 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 530 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 531 uint64_t size = objSections.size(); 532 this->sections.resize(size); 533 534 std::vector<ArrayRef<Elf_Word>> selectedGroups; 535 536 for (size_t i = 0; i != size; ++i) { 537 if (this->sections[i] == &InputSection::discarded) 538 continue; 539 const Elf_Shdr &sec = objSections[i]; 540 541 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 542 // if -r is given, we'll let the final link discard such sections. 543 // This is compatible with GNU. 544 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 545 if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE) 546 cgProfileSectionIndex = i; 547 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 548 // We ignore the address-significance table if we know that the object 549 // file was created by objcopy or ld -r. This is because these tools 550 // will reorder the symbols in the symbol table, invalidating the data 551 // in the address-significance table, which refers to symbols by index. 552 if (sec.sh_link != 0) 553 this->addrsigSec = &sec; 554 else if (config->icf == ICFLevel::Safe) 555 warn(toString(this) + 556 ": --icf=safe conservatively ignores " 557 "SHT_LLVM_ADDRSIG [index " + 558 Twine(i) + 559 "] with sh_link=0 " 560 "(likely created using objcopy or ld -r)"); 561 } 562 this->sections[i] = &InputSection::discarded; 563 continue; 564 } 565 566 switch (sec.sh_type) { 567 case SHT_GROUP: { 568 // De-duplicate section groups by their signatures. 569 StringRef signature = getShtGroupSignature(objSections, sec); 570 this->sections[i] = &InputSection::discarded; 571 572 ArrayRef<Elf_Word> entries = 573 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 574 if (entries.empty()) 575 fatal(toString(this) + ": empty SHT_GROUP"); 576 577 Elf_Word flag = entries[0]; 578 if (flag && flag != GRP_COMDAT) 579 fatal(toString(this) + ": unsupported SHT_GROUP format"); 580 581 bool keepGroup = 582 (flag & GRP_COMDAT) == 0 || ignoreComdats || 583 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 584 .second; 585 if (keepGroup) { 586 if (config->relocatable) 587 this->sections[i] = createInputSection( 588 i, sec, check(obj.getSectionName(sec, shstrtab))); 589 selectedGroups.push_back(entries); 590 continue; 591 } 592 593 // Otherwise, discard group members. 594 for (uint32_t secIndex : entries.slice(1)) { 595 if (secIndex >= size) 596 fatal(toString(this) + 597 ": invalid section index in group: " + Twine(secIndex)); 598 this->sections[secIndex] = &InputSection::discarded; 599 } 600 break; 601 } 602 case SHT_SYMTAB_SHNDX: 603 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 604 break; 605 case SHT_SYMTAB: 606 case SHT_STRTAB: 607 case SHT_REL: 608 case SHT_RELA: 609 case SHT_NULL: 610 break; 611 default: 612 this->sections[i] = 613 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 614 } 615 } 616 617 // We have a second loop. It is used to: 618 // 1) handle SHF_LINK_ORDER sections. 619 // 2) create SHT_REL[A] sections. In some cases the section header index of a 620 // relocation section may be smaller than that of the relocated section. In 621 // such cases, the relocation section would attempt to reference a target 622 // section that has not yet been created. For simplicity, delay creation of 623 // relocation sections until now. 624 for (size_t i = 0; i != size; ++i) { 625 if (this->sections[i] == &InputSection::discarded) 626 continue; 627 const Elf_Shdr &sec = objSections[i]; 628 629 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) { 630 // Find a relocation target section and associate this section with that. 631 // Target may have been discarded if it is in a different section group 632 // and the group is discarded, even though it's a violation of the spec. 633 // We handle that situation gracefully by discarding dangling relocation 634 // sections. 635 const uint32_t info = sec.sh_info; 636 InputSectionBase *s = getRelocTarget(i, sec, info); 637 if (!s) 638 continue; 639 640 // ELF spec allows mergeable sections with relocations, but they are rare, 641 // and it is in practice hard to merge such sections by contents, because 642 // applying relocations at end of linking changes section contents. So, we 643 // simply handle such sections as non-mergeable ones. Degrading like this 644 // is acceptable because section merging is optional. 645 if (auto *ms = dyn_cast<MergeInputSection>(s)) { 646 s = make<InputSection>(ms->file, ms->flags, ms->type, ms->alignment, 647 ms->data(), ms->name); 648 sections[info] = s; 649 } 650 651 if (s->relSecIdx != 0) 652 error( 653 toString(s) + 654 ": multiple relocation sections to one section are not supported"); 655 s->relSecIdx = i; 656 657 // Relocation sections are usually removed from the output, so return 658 // `nullptr` for the normal case. However, if -r or --emit-relocs is 659 // specified, we need to copy them to the output. (Some post link analysis 660 // tools specify --emit-relocs to obtain the information.) 661 if (config->copyRelocs) { 662 auto *isec = make<InputSection>( 663 *this, sec, check(obj.getSectionName(sec, shstrtab))); 664 // If the relocated section is discarded (due to /DISCARD/ or 665 // --gc-sections), the relocation section should be discarded as well. 666 s->dependentSections.push_back(isec); 667 sections[i] = isec; 668 } 669 continue; 670 } 671 672 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 673 // the flag. 674 if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER)) 675 continue; 676 677 InputSectionBase *linkSec = nullptr; 678 if (sec.sh_link < size) 679 linkSec = this->sections[sec.sh_link]; 680 if (!linkSec) 681 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 682 683 // A SHF_LINK_ORDER section is discarded if its linked-to section is 684 // discarded. 685 InputSection *isec = cast<InputSection>(this->sections[i]); 686 linkSec->dependentSections.push_back(isec); 687 if (!isa<InputSection>(linkSec)) 688 error("a section " + isec->name + 689 " with SHF_LINK_ORDER should not refer a non-regular section: " + 690 toString(linkSec)); 691 } 692 693 for (ArrayRef<Elf_Word> entries : selectedGroups) 694 handleSectionGroup<ELFT>(this->sections, entries); 695 } 696 697 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 698 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 699 // the input objects have been compiled. 700 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 701 const InputFile *f) { 702 Optional<unsigned> attr = 703 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 704 if (!attr.hasValue()) 705 // If an ABI tag isn't present then it is implicitly given the value of 0 706 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 707 // including some in glibc that don't use FP args (and should have value 3) 708 // don't have the attribute so we do not consider an implicit value of 0 709 // as a clash. 710 return; 711 712 unsigned vfpArgs = attr.getValue(); 713 ARMVFPArgKind arg; 714 switch (vfpArgs) { 715 case ARMBuildAttrs::BaseAAPCS: 716 arg = ARMVFPArgKind::Base; 717 break; 718 case ARMBuildAttrs::HardFPAAPCS: 719 arg = ARMVFPArgKind::VFP; 720 break; 721 case ARMBuildAttrs::ToolChainFPPCS: 722 // Tool chain specific convention that conforms to neither AAPCS variant. 723 arg = ARMVFPArgKind::ToolChain; 724 break; 725 case ARMBuildAttrs::CompatibleFPAAPCS: 726 // Object compatible with all conventions. 727 return; 728 default: 729 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 730 return; 731 } 732 // Follow ld.bfd and error if there is a mix of calling conventions. 733 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 734 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 735 else 736 config->armVFPArgs = arg; 737 } 738 739 // The ARM support in lld makes some use of instructions that are not available 740 // on all ARM architectures. Namely: 741 // - Use of BLX instruction for interworking between ARM and Thumb state. 742 // - Use of the extended Thumb branch encoding in relocation. 743 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 744 // The ARM Attributes section contains information about the architecture chosen 745 // at compile time. We follow the convention that if at least one input object 746 // is compiled with an architecture that supports these features then lld is 747 // permitted to use them. 748 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 749 Optional<unsigned> attr = 750 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 751 if (!attr.hasValue()) 752 return; 753 auto arch = attr.getValue(); 754 switch (arch) { 755 case ARMBuildAttrs::Pre_v4: 756 case ARMBuildAttrs::v4: 757 case ARMBuildAttrs::v4T: 758 // Architectures prior to v5 do not support BLX instruction 759 break; 760 case ARMBuildAttrs::v5T: 761 case ARMBuildAttrs::v5TE: 762 case ARMBuildAttrs::v5TEJ: 763 case ARMBuildAttrs::v6: 764 case ARMBuildAttrs::v6KZ: 765 case ARMBuildAttrs::v6K: 766 config->armHasBlx = true; 767 // Architectures used in pre-Cortex processors do not support 768 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 769 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 770 break; 771 default: 772 // All other Architectures have BLX and extended branch encoding 773 config->armHasBlx = true; 774 config->armJ1J2BranchEncoding = true; 775 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 776 // All Architectures used in Cortex processors with the exception 777 // of v6-M and v6S-M have the MOVT and MOVW instructions. 778 config->armHasMovtMovw = true; 779 break; 780 } 781 } 782 783 // If a source file is compiled with x86 hardware-assisted call flow control 784 // enabled, the generated object file contains feature flags indicating that 785 // fact. This function reads the feature flags and returns it. 786 // 787 // Essentially we want to read a single 32-bit value in this function, but this 788 // function is rather complicated because the value is buried deep inside a 789 // .note.gnu.property section. 790 // 791 // The section consists of one or more NOTE records. Each NOTE record consists 792 // of zero or more type-length-value fields. We want to find a field of a 793 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 794 // the ABI is unnecessarily complicated. 795 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 796 using Elf_Nhdr = typename ELFT::Nhdr; 797 using Elf_Note = typename ELFT::Note; 798 799 uint32_t featuresSet = 0; 800 ArrayRef<uint8_t> data = sec.data(); 801 auto reportFatal = [&](const uint8_t *place, const char *msg) { 802 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 803 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 804 }; 805 while (!data.empty()) { 806 // Read one NOTE record. 807 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 808 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 809 reportFatal(data.data(), "data is too short"); 810 811 Elf_Note note(*nhdr); 812 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 813 data = data.slice(nhdr->getSize()); 814 continue; 815 } 816 817 uint32_t featureAndType = config->emachine == EM_AARCH64 818 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 819 : GNU_PROPERTY_X86_FEATURE_1_AND; 820 821 // Read a body of a NOTE record, which consists of type-length-value fields. 822 ArrayRef<uint8_t> desc = note.getDesc(); 823 while (!desc.empty()) { 824 const uint8_t *place = desc.data(); 825 if (desc.size() < 8) 826 reportFatal(place, "program property is too short"); 827 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 828 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 829 desc = desc.slice(8); 830 if (desc.size() < size) 831 reportFatal(place, "program property is too short"); 832 833 if (type == featureAndType) { 834 // We found a FEATURE_1_AND field. There may be more than one of these 835 // in a .note.gnu.property section, for a relocatable object we 836 // accumulate the bits set. 837 if (size < 4) 838 reportFatal(place, "FEATURE_1_AND entry is too short"); 839 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 840 } 841 842 // Padding is present in the note descriptor, if necessary. 843 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 844 } 845 846 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 847 data = data.slice(nhdr->getSize()); 848 } 849 850 return featuresSet; 851 } 852 853 template <class ELFT> 854 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, 855 const Elf_Shdr &sec, 856 uint32_t info) { 857 if (info < this->sections.size()) { 858 InputSectionBase *target = this->sections[info]; 859 860 // Strictly speaking, a relocation section must be included in the 861 // group of the section it relocates. However, LLVM 3.3 and earlier 862 // would fail to do so, so we gracefully handle that case. 863 if (target == &InputSection::discarded) 864 return nullptr; 865 866 if (target != nullptr) 867 return target; 868 } 869 870 error(toString(this) + Twine(": relocation section (index ") + Twine(idx) + 871 ") has invalid sh_info (" + Twine(info) + ")"); 872 return nullptr; 873 } 874 875 template <class ELFT> 876 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 877 const Elf_Shdr &sec, 878 StringRef name) { 879 if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) { 880 ARMAttributeParser attributes; 881 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 882 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 883 ? support::little 884 : support::big)) { 885 auto *isec = make<InputSection>(*this, sec, name); 886 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 887 } else { 888 updateSupportedARMFeatures(attributes); 889 updateARMVFPArgs(attributes, this); 890 891 // FIXME: Retain the first attribute section we see. The eglibc ARM 892 // dynamic loaders require the presence of an attribute section for dlopen 893 // to work. In a full implementation we would merge all attribute 894 // sections. 895 if (in.attributes == nullptr) { 896 in.attributes = std::make_unique<InputSection>(*this, sec, name); 897 return in.attributes.get(); 898 } 899 return &InputSection::discarded; 900 } 901 } 902 903 if (sec.sh_type == SHT_RISCV_ATTRIBUTES && config->emachine == EM_RISCV) { 904 RISCVAttributeParser attributes; 905 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 906 if (Error e = attributes.parse(contents, support::little)) { 907 auto *isec = make<InputSection>(*this, sec, name); 908 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 909 } else { 910 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 911 // present. 912 913 // FIXME: Retain the first attribute section we see. Tools such as 914 // llvm-objdump make use of the attribute section to determine which 915 // standard extensions to enable. In a full implementation we would merge 916 // all attribute sections. 917 if (in.attributes == nullptr) { 918 in.attributes = std::make_unique<InputSection>(*this, sec, name); 919 return in.attributes.get(); 920 } 921 return &InputSection::discarded; 922 } 923 } 924 925 if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) { 926 ArrayRef<char> data = 927 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 928 if (!data.empty() && data.back() != '\0') { 929 error(toString(this) + 930 ": corrupted dependent libraries section (unterminated string): " + 931 name); 932 return &InputSection::discarded; 933 } 934 for (const char *d = data.begin(), *e = data.end(); d < e;) { 935 StringRef s(d); 936 addDependentLibrary(s, this); 937 d += s.size() + 1; 938 } 939 return &InputSection::discarded; 940 } 941 942 if (name.startswith(".n")) { 943 // The GNU linker uses .note.GNU-stack section as a marker indicating 944 // that the code in the object file does not expect that the stack is 945 // executable (in terms of NX bit). If all input files have the marker, 946 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 947 // make the stack non-executable. Most object files have this section as 948 // of 2017. 949 // 950 // But making the stack non-executable is a norm today for security 951 // reasons. Failure to do so may result in a serious security issue. 952 // Therefore, we make LLD always add PT_GNU_STACK unless it is 953 // explicitly told to do otherwise (by -z execstack). Because the stack 954 // executable-ness is controlled solely by command line options, 955 // .note.GNU-stack sections are simply ignored. 956 if (name == ".note.GNU-stack") 957 return &InputSection::discarded; 958 959 // Object files that use processor features such as Intel Control-Flow 960 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 961 // .note.gnu.property section containing a bitfield of feature bits like the 962 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 963 // 964 // Since we merge bitmaps from multiple object files to create a new 965 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 966 // file's .note.gnu.property section. 967 if (name == ".note.gnu.property") { 968 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 969 return &InputSection::discarded; 970 } 971 972 // Split stacks is a feature to support a discontiguous stack, 973 // commonly used in the programming language Go. For the details, 974 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 975 // for split stack will include a .note.GNU-split-stack section. 976 if (name == ".note.GNU-split-stack") { 977 if (config->relocatable) { 978 error( 979 "cannot mix split-stack and non-split-stack in a relocatable link"); 980 return &InputSection::discarded; 981 } 982 this->splitStack = true; 983 return &InputSection::discarded; 984 } 985 986 // An object file cmpiled for split stack, but where some of the 987 // functions were compiled with the no_split_stack_attribute will 988 // include a .note.GNU-no-split-stack section. 989 if (name == ".note.GNU-no-split-stack") { 990 this->someNoSplitStack = true; 991 return &InputSection::discarded; 992 } 993 994 // Strip existing .note.gnu.build-id sections so that the output won't have 995 // more than one build-id. This is not usually a problem because input 996 // object files normally don't have .build-id sections, but you can create 997 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 998 // against it. 999 if (name == ".note.gnu.build-id") 1000 return &InputSection::discarded; 1001 } 1002 1003 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1004 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1005 // sections. Drop those sections to avoid duplicate symbol errors. 1006 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1007 // fixed for a while. 1008 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1009 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1010 return &InputSection::discarded; 1011 1012 // The linker merges EH (exception handling) frames and creates a 1013 // .eh_frame_hdr section for runtime. So we handle them with a special 1014 // class. For relocatable outputs, they are just passed through. 1015 if (name == ".eh_frame" && !config->relocatable) 1016 return make<EhInputSection>(*this, sec, name); 1017 1018 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1019 return make<MergeInputSection>(*this, sec, name); 1020 return make<InputSection>(*this, sec, name); 1021 } 1022 1023 // Initialize this->Symbols. this->Symbols is a parallel array as 1024 // its corresponding ELF symbol table. 1025 template <class ELFT> 1026 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) { 1027 ArrayRef<InputSectionBase *> sections(this->sections); 1028 SymbolTable &symtab = *elf::symtab; 1029 1030 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1031 symbols.resize(eSyms.size()); 1032 SymbolUnion *locals = 1033 firstGlobal == 0 1034 ? nullptr 1035 : getSpecificAllocSingleton<SymbolUnion>().Allocate(firstGlobal); 1036 1037 for (size_t i = 0, end = firstGlobal; i != end; ++i) { 1038 const Elf_Sym &eSym = eSyms[i]; 1039 uint32_t secIdx = eSym.st_shndx; 1040 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1041 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1042 else if (secIdx >= SHN_LORESERVE) 1043 secIdx = 0; 1044 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1045 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1046 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL)) 1047 error(toString(this) + ": non-local symbol (" + Twine(i) + 1048 ") found at index < .symtab's sh_info (" + Twine(end) + ")"); 1049 1050 InputSectionBase *sec = sections[secIdx]; 1051 uint8_t type = eSym.getType(); 1052 if (type == STT_FILE) 1053 sourceFile = CHECK(eSym.getName(stringTable), this); 1054 if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name)) 1055 fatal(toString(this) + ": invalid symbol name offset"); 1056 StringRef name(stringTable.data() + eSym.st_name); 1057 1058 symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1059 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1060 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1061 /*discardedSecIdx=*/secIdx); 1062 else 1063 new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type, 1064 eSym.st_value, eSym.st_size, sec); 1065 } 1066 1067 // Some entries have been filled by LazyObjFile. 1068 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1069 if (!symbols[i]) 1070 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1071 1072 // Perform symbol resolution on non-local symbols. 1073 SmallVector<unsigned, 32> undefineds; 1074 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1075 const Elf_Sym &eSym = eSyms[i]; 1076 uint8_t binding = eSym.getBinding(); 1077 if (LLVM_UNLIKELY(binding == STB_LOCAL)) { 1078 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1079 ") found at index >= .symtab's sh_info (" + 1080 Twine(firstGlobal) + ")"); 1081 continue; 1082 } 1083 uint32_t secIdx = eSym.st_shndx; 1084 if (secIdx == SHN_UNDEF) { 1085 undefineds.push_back(i); 1086 continue; 1087 } 1088 1089 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1090 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1091 else if (secIdx >= SHN_LORESERVE) 1092 secIdx = 0; 1093 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1094 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1095 InputSectionBase *sec = sections[secIdx]; 1096 uint8_t stOther = eSym.st_other; 1097 uint8_t type = eSym.getType(); 1098 uint64_t value = eSym.st_value; 1099 uint64_t size = eSym.st_size; 1100 1101 Symbol *sym = symbols[i]; 1102 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) { 1103 if (value == 0 || value >= UINT32_MAX) 1104 fatal(toString(this) + ": common symbol '" + sym->getName() + 1105 "' has invalid alignment: " + Twine(value)); 1106 hasCommonSyms = true; 1107 sym->resolve( 1108 CommonSymbol{this, StringRef(), binding, stOther, type, value, size}); 1109 continue; 1110 } 1111 1112 // If a defined symbol is in a discarded section, handle it as if it 1113 // were an undefined symbol. Such symbol doesn't comply with the 1114 // standard, but in practice, a .eh_frame often directly refer 1115 // COMDAT member sections, and if a comdat group is discarded, some 1116 // defined symbol in a .eh_frame becomes dangling symbols. 1117 if (sec == &InputSection::discarded) { 1118 Undefined und{this, StringRef(), binding, stOther, type, secIdx}; 1119 // !ArchiveFile::parsed or !LazyObjFile::lazy means that the file 1120 // containing this object has not finished processing, i.e. this symbol is 1121 // a result of a lazy symbol extract. We should demote the lazy symbol to 1122 // an Undefined so that any relocations outside of the group to it will 1123 // trigger a discarded section error. 1124 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1125 !cast<ArchiveFile>(sym->file)->parsed) || 1126 (sym->symbolKind == Symbol::LazyObjectKind && !sym->file->lazy)) { 1127 sym->replace(und); 1128 // Prevent LTO from internalizing the symbol in case there is a 1129 // reference to this symbol from this file. 1130 sym->isUsedInRegularObj = true; 1131 } else 1132 sym->resolve(und); 1133 continue; 1134 } 1135 1136 // Handle global defined symbols. 1137 if (binding == STB_GLOBAL || binding == STB_WEAK || 1138 binding == STB_GNU_UNIQUE) { 1139 sym->resolve( 1140 Defined{this, StringRef(), binding, stOther, type, value, size, sec}); 1141 continue; 1142 } 1143 1144 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1145 } 1146 1147 // Undefined symbols (excluding those defined relative to non-prevailing 1148 // sections) can trigger recursive extract. Process defined symbols first so 1149 // that the relative order between a defined symbol and an undefined symbol 1150 // does not change the symbol resolution behavior. In addition, a set of 1151 // interconnected symbols will all be resolved to the same file, instead of 1152 // being resolved to different files. 1153 for (unsigned i : undefineds) { 1154 const Elf_Sym &eSym = eSyms[i]; 1155 Symbol *sym = symbols[i]; 1156 sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other, 1157 eSym.getType()}); 1158 sym->referenced = true; 1159 } 1160 } 1161 1162 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1163 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1164 file(std::move(file)) {} 1165 1166 void ArchiveFile::parse() { 1167 SymbolTable &symtab = *elf::symtab; 1168 for (const Archive::Symbol &sym : file->symbols()) 1169 symtab.addSymbol(LazyArchive{*this, sym}); 1170 1171 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1172 // archive has been processed. 1173 parsed = true; 1174 } 1175 1176 // Returns a buffer pointing to a member file containing a given symbol. 1177 void ArchiveFile::extract(const Archive::Symbol &sym) { 1178 Archive::Child c = 1179 CHECK(sym.getMember(), toString(this) + 1180 ": could not get the member for symbol " + 1181 toELFString(sym)); 1182 1183 if (!seen.insert(c.getChildOffset()).second) 1184 return; 1185 1186 MemoryBufferRef mb = 1187 CHECK(c.getMemoryBufferRef(), 1188 toString(this) + 1189 ": could not get the buffer for the member defining symbol " + 1190 toELFString(sym)); 1191 1192 if (tar && c.getParent()->isThin()) 1193 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1194 1195 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1196 file->groupId = groupId; 1197 parseFile(file); 1198 } 1199 1200 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1201 // A tentative definition will be promoted to a global definition if there are 1202 // no non-tentative definitions to dominate it. When we hold a tentative 1203 // definition to a symbol and are inspecting archive members for inclusion 1204 // there are 2 ways we can proceed: 1205 // 1206 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1207 // tentative to real definition has already happened) and not inspect 1208 // archive members for Global/Weak definitions to replace the tentative 1209 // definition. An archive member would only be included if it satisfies some 1210 // other undefined symbol. This is the behavior Gold uses. 1211 // 1212 // 2) Consider the tentative definition as still undefined (ie the promotion to 1213 // a real definition happens only after all symbol resolution is done). 1214 // The linker searches archive members for STB_GLOBAL definitions to 1215 // replace the tentative definition with. This is the behavior used by 1216 // GNU ld. 1217 // 1218 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1219 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1220 // (pre F90) FORTRAN code that is packaged into an archive. 1221 // 1222 // The following functions search archive members for definitions to replace 1223 // tentative definitions (implementing behavior 2). 1224 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1225 StringRef archiveName) { 1226 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1227 for (const irsymtab::Reader::SymbolRef &sym : 1228 symtabFile.TheReader.symbols()) { 1229 if (sym.isGlobal() && sym.getName() == symName) 1230 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1231 } 1232 return false; 1233 } 1234 1235 template <class ELFT> 1236 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1237 StringRef archiveName) { 1238 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1239 StringRef stringtable = obj->getStringTable(); 1240 1241 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1242 Expected<StringRef> name = sym.getName(stringtable); 1243 if (name && name.get() == symName) 1244 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1245 !sym.isCommon(); 1246 } 1247 return false; 1248 } 1249 1250 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1251 StringRef archiveName) { 1252 switch (getELFKind(mb, archiveName)) { 1253 case ELF32LEKind: 1254 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1255 case ELF32BEKind: 1256 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1257 case ELF64LEKind: 1258 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1259 case ELF64BEKind: 1260 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1261 default: 1262 llvm_unreachable("getELFKind"); 1263 } 1264 } 1265 1266 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) { 1267 Archive::Child c = 1268 CHECK(sym.getMember(), toString(this) + 1269 ": could not get the member for symbol " + 1270 toELFString(sym)); 1271 MemoryBufferRef mb = 1272 CHECK(c.getMemoryBufferRef(), 1273 toString(this) + 1274 ": could not get the buffer for the member defining symbol " + 1275 toELFString(sym)); 1276 1277 if (isBitcode(mb)) 1278 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1279 1280 return isNonCommonDef(mb, sym.getName(), getName()); 1281 } 1282 1283 size_t ArchiveFile::getMemberCount() const { 1284 size_t count = 0; 1285 Error err = Error::success(); 1286 for (const Archive::Child &c : file->children(err)) { 1287 (void)c; 1288 ++count; 1289 } 1290 // This function is used by --print-archive-stats=, where an error does not 1291 // really matter. 1292 consumeError(std::move(err)); 1293 return count; 1294 } 1295 1296 unsigned SharedFile::vernauxNum; 1297 1298 // Parse the version definitions in the object file if present, and return a 1299 // vector whose nth element contains a pointer to the Elf_Verdef for version 1300 // identifier n. Version identifiers that are not definitions map to nullptr. 1301 template <typename ELFT> 1302 static SmallVector<const void *, 0> 1303 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1304 if (!sec) 1305 return {}; 1306 1307 // Build the Verdefs array by following the chain of Elf_Verdef objects 1308 // from the start of the .gnu.version_d section. 1309 SmallVector<const void *, 0> verdefs; 1310 const uint8_t *verdef = base + sec->sh_offset; 1311 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1312 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1313 verdef += curVerdef->vd_next; 1314 unsigned verdefIndex = curVerdef->vd_ndx; 1315 if (verdefIndex >= verdefs.size()) 1316 verdefs.resize(verdefIndex + 1); 1317 verdefs[verdefIndex] = curVerdef; 1318 } 1319 return verdefs; 1320 } 1321 1322 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1323 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1324 // implement sophisticated error checking like in llvm-readobj because the value 1325 // of such diagnostics is low. 1326 template <typename ELFT> 1327 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1328 const typename ELFT::Shdr *sec) { 1329 if (!sec) 1330 return {}; 1331 std::vector<uint32_t> verneeds; 1332 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1333 const uint8_t *verneedBuf = data.begin(); 1334 for (unsigned i = 0; i != sec->sh_info; ++i) { 1335 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1336 fatal(toString(this) + " has an invalid Verneed"); 1337 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1338 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1339 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1340 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1341 fatal(toString(this) + " has an invalid Vernaux"); 1342 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1343 if (aux->vna_name >= this->stringTable.size()) 1344 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1345 uint16_t version = aux->vna_other & VERSYM_VERSION; 1346 if (version >= verneeds.size()) 1347 verneeds.resize(version + 1); 1348 verneeds[version] = aux->vna_name; 1349 vernauxBuf += aux->vna_next; 1350 } 1351 verneedBuf += vn->vn_next; 1352 } 1353 return verneeds; 1354 } 1355 1356 // We do not usually care about alignments of data in shared object 1357 // files because the loader takes care of it. However, if we promote a 1358 // DSO symbol to point to .bss due to copy relocation, we need to keep 1359 // the original alignment requirements. We infer it in this function. 1360 template <typename ELFT> 1361 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1362 const typename ELFT::Sym &sym) { 1363 uint64_t ret = UINT64_MAX; 1364 if (sym.st_value) 1365 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1366 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1367 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1368 return (ret > UINT32_MAX) ? 0 : ret; 1369 } 1370 1371 // Fully parse the shared object file. 1372 // 1373 // This function parses symbol versions. If a DSO has version information, 1374 // the file has a ".gnu.version_d" section which contains symbol version 1375 // definitions. Each symbol is associated to one version through a table in 1376 // ".gnu.version" section. That table is a parallel array for the symbol 1377 // table, and each table entry contains an index in ".gnu.version_d". 1378 // 1379 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1380 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1381 // ".gnu.version_d". 1382 // 1383 // The file format for symbol versioning is perhaps a bit more complicated 1384 // than necessary, but you can easily understand the code if you wrap your 1385 // head around the data structure described above. 1386 template <class ELFT> void SharedFile::parse() { 1387 using Elf_Dyn = typename ELFT::Dyn; 1388 using Elf_Shdr = typename ELFT::Shdr; 1389 using Elf_Sym = typename ELFT::Sym; 1390 using Elf_Verdef = typename ELFT::Verdef; 1391 using Elf_Versym = typename ELFT::Versym; 1392 1393 ArrayRef<Elf_Dyn> dynamicTags; 1394 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1395 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>(); 1396 1397 const Elf_Shdr *versymSec = nullptr; 1398 const Elf_Shdr *verdefSec = nullptr; 1399 const Elf_Shdr *verneedSec = nullptr; 1400 1401 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1402 for (const Elf_Shdr &sec : sections) { 1403 switch (sec.sh_type) { 1404 default: 1405 continue; 1406 case SHT_DYNAMIC: 1407 dynamicTags = 1408 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1409 break; 1410 case SHT_GNU_versym: 1411 versymSec = &sec; 1412 break; 1413 case SHT_GNU_verdef: 1414 verdefSec = &sec; 1415 break; 1416 case SHT_GNU_verneed: 1417 verneedSec = &sec; 1418 break; 1419 } 1420 } 1421 1422 if (versymSec && numELFSyms == 0) { 1423 error("SHT_GNU_versym should be associated with symbol table"); 1424 return; 1425 } 1426 1427 // Search for a DT_SONAME tag to initialize this->soName. 1428 for (const Elf_Dyn &dyn : dynamicTags) { 1429 if (dyn.d_tag == DT_NEEDED) { 1430 uint64_t val = dyn.getVal(); 1431 if (val >= this->stringTable.size()) 1432 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1433 dtNeeded.push_back(this->stringTable.data() + val); 1434 } else if (dyn.d_tag == DT_SONAME) { 1435 uint64_t val = dyn.getVal(); 1436 if (val >= this->stringTable.size()) 1437 fatal(toString(this) + ": invalid DT_SONAME entry"); 1438 soName = this->stringTable.data() + val; 1439 } 1440 } 1441 1442 // DSOs are uniquified not by filename but by soname. 1443 DenseMap<CachedHashStringRef, SharedFile *>::iterator it; 1444 bool wasInserted; 1445 std::tie(it, wasInserted) = 1446 symtab->soNames.try_emplace(CachedHashStringRef(soName), this); 1447 1448 // If a DSO appears more than once on the command line with and without 1449 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1450 // user can add an extra DSO with --no-as-needed to force it to be added to 1451 // the dependency list. 1452 it->second->isNeeded |= isNeeded; 1453 if (!wasInserted) 1454 return; 1455 1456 sharedFiles.push_back(this); 1457 1458 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1459 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1460 1461 // Parse ".gnu.version" section which is a parallel array for the symbol 1462 // table. If a given file doesn't have a ".gnu.version" section, we use 1463 // VER_NDX_GLOBAL. 1464 size_t size = numELFSyms - firstGlobal; 1465 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1466 if (versymSec) { 1467 ArrayRef<Elf_Versym> versym = 1468 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1469 this) 1470 .slice(firstGlobal); 1471 for (size_t i = 0; i < size; ++i) 1472 versyms[i] = versym[i].vs_index; 1473 } 1474 1475 // System libraries can have a lot of symbols with versions. Using a 1476 // fixed buffer for computing the versions name (foo@ver) can save a 1477 // lot of allocations. 1478 SmallString<0> versionedNameBuffer; 1479 1480 // Add symbols to the symbol table. 1481 SymbolTable &symtab = *elf::symtab; 1482 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1483 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1484 const Elf_Sym &sym = syms[i]; 1485 1486 // ELF spec requires that all local symbols precede weak or global 1487 // symbols in each symbol table, and the index of first non-local symbol 1488 // is stored to sh_info. If a local symbol appears after some non-local 1489 // symbol, that's a violation of the spec. 1490 StringRef name = CHECK(sym.getName(stringTable), this); 1491 if (sym.getBinding() == STB_LOCAL) { 1492 warn("found local symbol '" + name + 1493 "' in global part of symbol table in file " + toString(this)); 1494 continue; 1495 } 1496 1497 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1498 if (sym.isUndefined()) { 1499 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1500 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1501 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1502 if (idx >= verneeds.size()) { 1503 error("corrupt input file: version need index " + Twine(idx) + 1504 " for symbol " + name + " is out of bounds\n>>> defined in " + 1505 toString(this)); 1506 continue; 1507 } 1508 StringRef verName = stringTable.data() + verneeds[idx]; 1509 versionedNameBuffer.clear(); 1510 name = saver().save( 1511 (name + "@" + verName).toStringRef(versionedNameBuffer)); 1512 } 1513 Symbol *s = symtab.addSymbol( 1514 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1515 s->exportDynamic = true; 1516 if (s->isUndefined() && sym.getBinding() != STB_WEAK && 1517 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1518 requiredSymbols.push_back(s); 1519 continue; 1520 } 1521 1522 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1523 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1524 // workaround for this bug. 1525 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1526 name == "_gp_disp") 1527 continue; 1528 1529 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1530 if (!(versyms[i] & VERSYM_HIDDEN)) { 1531 auto *s = symtab.addSymbol( 1532 SharedSymbol{*this, name, sym.getBinding(), sym.st_other, 1533 sym.getType(), sym.st_value, sym.st_size, alignment}); 1534 if (s->file == this) 1535 s->verdefIndex = idx; 1536 } 1537 1538 // Also add the symbol with the versioned name to handle undefined symbols 1539 // with explicit versions. 1540 if (idx == VER_NDX_GLOBAL) 1541 continue; 1542 1543 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1544 error("corrupt input file: version definition index " + Twine(idx) + 1545 " for symbol " + name + " is out of bounds\n>>> defined in " + 1546 toString(this)); 1547 continue; 1548 } 1549 1550 StringRef verName = 1551 stringTable.data() + 1552 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1553 versionedNameBuffer.clear(); 1554 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1555 auto *s = symtab.addSymbol( 1556 SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other, 1557 sym.getType(), sym.st_value, sym.st_size, alignment}); 1558 if (s->file == this) 1559 s->verdefIndex = idx; 1560 } 1561 } 1562 1563 static ELFKind getBitcodeELFKind(const Triple &t) { 1564 if (t.isLittleEndian()) 1565 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1566 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1567 } 1568 1569 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1570 switch (t.getArch()) { 1571 case Triple::aarch64: 1572 case Triple::aarch64_be: 1573 return EM_AARCH64; 1574 case Triple::amdgcn: 1575 case Triple::r600: 1576 return EM_AMDGPU; 1577 case Triple::arm: 1578 case Triple::thumb: 1579 return EM_ARM; 1580 case Triple::avr: 1581 return EM_AVR; 1582 case Triple::hexagon: 1583 return EM_HEXAGON; 1584 case Triple::mips: 1585 case Triple::mipsel: 1586 case Triple::mips64: 1587 case Triple::mips64el: 1588 return EM_MIPS; 1589 case Triple::msp430: 1590 return EM_MSP430; 1591 case Triple::ppc: 1592 case Triple::ppcle: 1593 return EM_PPC; 1594 case Triple::ppc64: 1595 case Triple::ppc64le: 1596 return EM_PPC64; 1597 case Triple::riscv32: 1598 case Triple::riscv64: 1599 return EM_RISCV; 1600 case Triple::x86: 1601 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1602 case Triple::x86_64: 1603 return EM_X86_64; 1604 default: 1605 error(path + ": could not infer e_machine from bitcode target triple " + 1606 t.str()); 1607 return EM_NONE; 1608 } 1609 } 1610 1611 static uint8_t getOsAbi(const Triple &t) { 1612 switch (t.getOS()) { 1613 case Triple::AMDHSA: 1614 return ELF::ELFOSABI_AMDGPU_HSA; 1615 case Triple::AMDPAL: 1616 return ELF::ELFOSABI_AMDGPU_PAL; 1617 case Triple::Mesa3D: 1618 return ELF::ELFOSABI_AMDGPU_MESA3D; 1619 default: 1620 return ELF::ELFOSABI_NONE; 1621 } 1622 } 1623 1624 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1625 uint64_t offsetInArchive, bool lazy) 1626 : InputFile(BitcodeKind, mb) { 1627 this->archiveName = archiveName; 1628 this->lazy = lazy; 1629 1630 std::string path = mb.getBufferIdentifier().str(); 1631 if (config->thinLTOIndexOnly) 1632 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1633 1634 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1635 // name. If two archives define two members with the same name, this 1636 // causes a collision which result in only one of the objects being taken 1637 // into consideration at LTO time (which very likely causes undefined 1638 // symbols later in the link stage). So we append file offset to make 1639 // filename unique. 1640 StringRef name = archiveName.empty() 1641 ? saver().save(path) 1642 : saver().save(archiveName + "(" + path::filename(path) + 1643 " at " + utostr(offsetInArchive) + ")"); 1644 MemoryBufferRef mbref(mb.getBuffer(), name); 1645 1646 obj = CHECK(lto::InputFile::create(mbref), this); 1647 1648 Triple t(obj->getTargetTriple()); 1649 ekind = getBitcodeELFKind(t); 1650 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1651 osabi = getOsAbi(t); 1652 } 1653 1654 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1655 switch (gvVisibility) { 1656 case GlobalValue::DefaultVisibility: 1657 return STV_DEFAULT; 1658 case GlobalValue::HiddenVisibility: 1659 return STV_HIDDEN; 1660 case GlobalValue::ProtectedVisibility: 1661 return STV_PROTECTED; 1662 } 1663 llvm_unreachable("unknown visibility"); 1664 } 1665 1666 template <class ELFT> 1667 static void 1668 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats, 1669 const lto::InputFile::Symbol &objSym, BitcodeFile &f) { 1670 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1671 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1672 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1673 1674 if (!sym) 1675 sym = symtab->insert(saver().save(objSym.getName())); 1676 1677 int c = objSym.getComdatIndex(); 1678 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1679 Undefined newSym(&f, StringRef(), binding, visibility, type); 1680 sym->resolve(newSym); 1681 sym->referenced = true; 1682 return; 1683 } 1684 1685 if (objSym.isCommon()) { 1686 sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT, 1687 objSym.getCommonAlignment(), 1688 objSym.getCommonSize()}); 1689 } else { 1690 Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr); 1691 if (objSym.canBeOmittedFromSymbolTable()) 1692 newSym.exportDynamic = false; 1693 sym->resolve(newSym); 1694 } 1695 } 1696 1697 template <class ELFT> void BitcodeFile::parse() { 1698 std::vector<bool> keptComdats; 1699 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1700 keptComdats.push_back( 1701 s.second == Comdat::NoDeduplicate || 1702 symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1703 .second); 1704 } 1705 1706 symbols.resize(obj->symbols().size()); 1707 for (auto it : llvm::enumerate(obj->symbols())) { 1708 Symbol *&sym = symbols[it.index()]; 1709 createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this); 1710 } 1711 1712 for (auto l : obj->getDependentLibraries()) 1713 addDependentLibrary(l, this); 1714 } 1715 1716 void BitcodeFile::parseLazy() { 1717 SymbolTable &symtab = *elf::symtab; 1718 symbols.resize(obj->symbols().size()); 1719 for (auto it : llvm::enumerate(obj->symbols())) 1720 if (!it.value().isUndefined()) { 1721 auto *sym = symtab.insert(saver().save(it.value().getName())); 1722 sym->resolve(LazyObject{*this}); 1723 symbols[it.index()] = sym; 1724 } 1725 } 1726 1727 void BinaryFile::parse() { 1728 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1729 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1730 8, data, ".data"); 1731 sections.push_back(section); 1732 1733 // For each input file foo that is embedded to a result as a binary 1734 // blob, we define _binary_foo_{start,end,size} symbols, so that 1735 // user programs can access blobs by name. Non-alphanumeric 1736 // characters in a filename are replaced with underscore. 1737 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1738 for (size_t i = 0; i < s.size(); ++i) 1739 if (!isAlnum(s[i])) 1740 s[i] = '_'; 1741 1742 llvm::StringSaver &saver = lld::saver(); 1743 1744 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1745 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1746 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1747 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1748 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1749 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1750 } 1751 1752 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1753 uint64_t offsetInArchive) { 1754 if (isBitcode(mb)) 1755 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false); 1756 1757 switch (getELFKind(mb, archiveName)) { 1758 case ELF32LEKind: 1759 return make<ObjFile<ELF32LE>>(mb, archiveName); 1760 case ELF32BEKind: 1761 return make<ObjFile<ELF32BE>>(mb, archiveName); 1762 case ELF64LEKind: 1763 return make<ObjFile<ELF64LE>>(mb, archiveName); 1764 case ELF64BEKind: 1765 return make<ObjFile<ELF64BE>>(mb, archiveName); 1766 default: 1767 llvm_unreachable("getELFKind"); 1768 } 1769 } 1770 1771 InputFile *elf::createLazyFile(MemoryBufferRef mb, StringRef archiveName, 1772 uint64_t offsetInArchive) { 1773 if (isBitcode(mb)) 1774 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/true); 1775 1776 auto *file = 1777 cast<ELFFileBase>(createObjectFile(mb, archiveName, offsetInArchive)); 1778 file->lazy = true; 1779 return file; 1780 } 1781 1782 template <class ELFT> void ObjFile<ELFT>::parseLazy() { 1783 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>(); 1784 SymbolTable &symtab = *elf::symtab; 1785 1786 symbols.resize(eSyms.size()); 1787 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1788 if (eSyms[i].st_shndx != SHN_UNDEF) 1789 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1790 1791 // Replace existing symbols with LazyObject symbols. 1792 // 1793 // resolve() may trigger this->extract() if an existing symbol is an undefined 1794 // symbol. If that happens, this function has served its purpose, and we can 1795 // exit from the loop early. 1796 for (Symbol *sym : makeArrayRef(symbols).slice(firstGlobal)) 1797 if (sym) { 1798 sym->resolve(LazyObject{*this}); 1799 if (!lazy) 1800 return; 1801 } 1802 } 1803 1804 bool InputFile::shouldExtractForCommon(StringRef name) { 1805 if (isBitcode(mb)) 1806 return isBitcodeNonCommonDef(mb, name, archiveName); 1807 1808 return isNonCommonDef(mb, name, archiveName); 1809 } 1810 1811 std::string elf::replaceThinLTOSuffix(StringRef path) { 1812 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1813 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1814 1815 if (path.consume_back(suffix)) 1816 return (path + repl).str(); 1817 return std::string(path); 1818 } 1819 1820 template void BitcodeFile::parse<ELF32LE>(); 1821 template void BitcodeFile::parse<ELF32BE>(); 1822 template void BitcodeFile::parse<ELF64LE>(); 1823 template void BitcodeFile::parse<ELF64BE>(); 1824 1825 template class elf::ObjFile<ELF32LE>; 1826 template class elf::ObjFile<ELF32BE>; 1827 template class elf::ObjFile<ELF64LE>; 1828 template class elf::ObjFile<ELF64BE>; 1829 1830 template void SharedFile::parse<ELF32LE>(); 1831 template void SharedFile::parse<ELF32BE>(); 1832 template void SharedFile::parse<ELF64LE>(); 1833 template void SharedFile::parse<ELF64BE>(); 1834