1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Error.h" 12 #include "InputSection.h" 13 #include "LinkerScript.h" 14 #include "Memory.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/Path.h" 27 #include "llvm/Support/TarWriter.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace llvm; 31 using namespace llvm::ELF; 32 using namespace llvm::object; 33 using namespace llvm::sys::fs; 34 35 using namespace lld; 36 using namespace lld::elf; 37 38 TarWriter *elf::Tar; 39 40 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 41 42 namespace { 43 // In ELF object file all section addresses are zero. If we have multiple 44 // .text sections (when using -ffunction-section or comdat group) then 45 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless 46 // we assign each section some unique address. This callback method assigns 47 // each section an address equal to its offset in ELF object file. 48 class ObjectInfo : public LoadedObjectInfo { 49 public: 50 uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override { 51 return static_cast<const ELFSectionRef &>(Sec).getOffset(); 52 } 53 std::unique_ptr<LoadedObjectInfo> clone() const override { 54 return std::unique_ptr<LoadedObjectInfo>(); 55 } 56 }; 57 } 58 59 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 60 log(Path); 61 auto MBOrErr = MemoryBuffer::getFile(Path); 62 if (auto EC = MBOrErr.getError()) { 63 error("cannot open " + Path + ": " + EC.message()); 64 return None; 65 } 66 67 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 68 MemoryBufferRef MBRef = MB->getMemBufferRef(); 69 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 70 71 if (Tar) 72 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 73 return MBRef; 74 } 75 76 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() { 77 std::unique_ptr<object::ObjectFile> Obj = 78 check(object::ObjectFile::createObjectFile(this->MB), toString(this)); 79 80 ObjectInfo ObjInfo; 81 DWARFContextInMemory Dwarf(*Obj, &ObjInfo); 82 DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs)); 83 DataExtractor LineData(Dwarf.getLineSection().Data, Config->IsLE, 84 Config->Wordsize); 85 86 // The second parameter is offset in .debug_line section 87 // for compilation unit (CU) of interest. We have only one 88 // CU (object file), so offset is always 0. 89 DwarfLine->getOrParseLineTable(LineData, 0); 90 } 91 92 // Returns source line information for a given offset 93 // using DWARF debug info. 94 template <class ELFT> 95 Optional<DILineInfo> elf::ObjectFile<ELFT>::getDILineInfo(InputSectionBase *S, 96 uint64_t Offset) { 97 if (!DwarfLine) 98 initializeDwarfLine(); 99 100 // The offset to CU is 0. 101 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 102 if (!Tbl) 103 return None; 104 105 // Use fake address calcuated by adding section file offset and offset in 106 // section. See comments for ObjectInfo class. 107 DILineInfo Info; 108 Tbl->getFileLineInfoForAddress( 109 S->getOffsetInFile() + Offset, nullptr, 110 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 111 if (Info.Line == 0) 112 return None; 113 return Info; 114 } 115 116 // Returns source line information for a given offset 117 // using DWARF debug info. 118 template <class ELFT> 119 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase *S, 120 uint64_t Offset) { 121 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 122 return Info->FileName + ":" + std::to_string(Info->Line); 123 return ""; 124 } 125 126 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 127 std::string lld::toString(const InputFile *F) { 128 if (!F) 129 return "(internal)"; 130 131 if (F->ToStringCache.empty()) { 132 if (F->ArchiveName.empty()) 133 F->ToStringCache = F->getName(); 134 else 135 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 136 } 137 return F->ToStringCache; 138 } 139 140 template <class ELFT> static ELFKind getELFKind() { 141 if (ELFT::TargetEndianness == support::little) 142 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 143 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 144 } 145 146 template <class ELFT> 147 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 148 EKind = getELFKind<ELFT>(); 149 EMachine = getObj().getHeader()->e_machine; 150 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 151 } 152 153 template <class ELFT> 154 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() { 155 return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end()); 156 } 157 158 template <class ELFT> 159 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 160 return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX), 161 toString(this)); 162 } 163 164 template <class ELFT> 165 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 166 const Elf_Shdr *Symtab) { 167 FirstNonLocal = Symtab->sh_info; 168 Symbols = check(getObj().symbols(Symtab), toString(this)); 169 if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size()) 170 fatal(toString(this) + ": invalid sh_info in symbol table"); 171 172 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections), 173 toString(this)); 174 } 175 176 template <class ELFT> 177 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 178 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 179 180 template <class ELFT> 181 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 182 if (this->SymbolBodies.empty()) 183 return this->SymbolBodies; 184 return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1); 185 } 186 187 template <class ELFT> 188 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 189 if (this->SymbolBodies.empty()) 190 return this->SymbolBodies; 191 return makeArrayRef(this->SymbolBodies).slice(1); 192 } 193 194 template <class ELFT> 195 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 196 // Read section and symbol tables. 197 initializeSections(ComdatGroups); 198 initializeSymbols(); 199 } 200 201 // Sections with SHT_GROUP and comdat bits define comdat section groups. 202 // They are identified and deduplicated by group name. This function 203 // returns a group name. 204 template <class ELFT> 205 StringRef 206 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 207 const Elf_Shdr &Sec) { 208 if (this->Symbols.empty()) 209 this->initSymtab( 210 Sections, 211 check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this))); 212 const Elf_Sym *Sym = check( 213 object::getSymbol<ELFT>(this->Symbols, Sec.sh_info), toString(this)); 214 return check(Sym->getName(this->StringTable), toString(this)); 215 } 216 217 template <class ELFT> 218 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 219 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 220 const ELFFile<ELFT> &Obj = this->getObj(); 221 ArrayRef<Elf_Word> Entries = check( 222 Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this)); 223 if (Entries.empty() || Entries[0] != GRP_COMDAT) 224 fatal(toString(this) + ": unsupported SHT_GROUP format"); 225 return Entries.slice(1); 226 } 227 228 template <class ELFT> 229 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 230 // We don't merge sections if -O0 (default is -O1). This makes sometimes 231 // the linker significantly faster, although the output will be bigger. 232 if (Config->Optimize == 0) 233 return false; 234 235 // Do not merge sections if generating a relocatable object. It makes 236 // the code simpler because we do not need to update relocation addends 237 // to reflect changes introduced by merging. Instead of that we write 238 // such "merge" sections into separate OutputSections and keep SHF_MERGE 239 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 240 // later during a final linking. 241 if (Config->Relocatable) 242 return false; 243 244 // A mergeable section with size 0 is useless because they don't have 245 // any data to merge. A mergeable string section with size 0 can be 246 // argued as invalid because it doesn't end with a null character. 247 // We'll avoid a mess by handling them as if they were non-mergeable. 248 if (Sec.sh_size == 0) 249 return false; 250 251 // Check for sh_entsize. The ELF spec is not clear about the zero 252 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 253 // the section does not hold a table of fixed-size entries". We know 254 // that Rust 1.13 produces a string mergeable section with a zero 255 // sh_entsize. Here we just accept it rather than being picky about it. 256 uint64_t EntSize = Sec.sh_entsize; 257 if (EntSize == 0) 258 return false; 259 if (Sec.sh_size % EntSize) 260 fatal(toString(this) + 261 ": SHF_MERGE section size must be a multiple of sh_entsize"); 262 263 uint64_t Flags = Sec.sh_flags; 264 if (!(Flags & SHF_MERGE)) 265 return false; 266 if (Flags & SHF_WRITE) 267 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 268 269 // Don't try to merge if the alignment is larger than the sh_entsize and this 270 // is not SHF_STRINGS. 271 // 272 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 273 // It would be equivalent for the producer of the .o to just set a larger 274 // sh_entsize. 275 if (Flags & SHF_STRINGS) 276 return true; 277 278 return Sec.sh_addralign <= EntSize; 279 } 280 281 template <class ELFT> 282 void elf::ObjectFile<ELFT>::initializeSections( 283 DenseSet<CachedHashStringRef> &ComdatGroups) { 284 ArrayRef<Elf_Shdr> ObjSections = 285 check(this->getObj().sections(), toString(this)); 286 const ELFFile<ELFT> &Obj = this->getObj(); 287 uint64_t Size = ObjSections.size(); 288 this->Sections.resize(Size); 289 unsigned I = -1; 290 StringRef SectionStringTable = 291 check(Obj.getSectionStringTable(ObjSections), toString(this)); 292 for (const Elf_Shdr &Sec : ObjSections) { 293 ++I; 294 if (this->Sections[I] == &InputSection::Discarded) 295 continue; 296 297 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 298 // if -r is given, we'll let the final link discard such sections. 299 // This is compatible with GNU. 300 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 301 this->Sections[I] = &InputSection::Discarded; 302 continue; 303 } 304 305 switch (Sec.sh_type) { 306 case SHT_GROUP: 307 this->Sections[I] = &InputSection::Discarded; 308 if (ComdatGroups 309 .insert( 310 CachedHashStringRef(getShtGroupSignature(ObjSections, Sec))) 311 .second) 312 continue; 313 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 314 if (SecIndex >= Size) 315 fatal(toString(this) + 316 ": invalid section index in group: " + Twine(SecIndex)); 317 this->Sections[SecIndex] = &InputSection::Discarded; 318 } 319 break; 320 case SHT_SYMTAB: 321 this->initSymtab(ObjSections, &Sec); 322 break; 323 case SHT_SYMTAB_SHNDX: 324 this->SymtabSHNDX = 325 check(Obj.getSHNDXTable(Sec, ObjSections), toString(this)); 326 break; 327 case SHT_STRTAB: 328 case SHT_NULL: 329 break; 330 default: 331 this->Sections[I] = createInputSection(Sec, SectionStringTable); 332 } 333 334 // .ARM.exidx sections have a reverse dependency on the InputSection they 335 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 336 if (Sec.sh_flags & SHF_LINK_ORDER) { 337 if (Sec.sh_link >= this->Sections.size()) 338 fatal(toString(this) + ": invalid sh_link index: " + 339 Twine(Sec.sh_link)); 340 this->Sections[Sec.sh_link]->DependentSections.push_back( 341 this->Sections[I]); 342 } 343 } 344 } 345 346 template <class ELFT> 347 InputSectionBase *elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 348 uint32_t Idx = Sec.sh_info; 349 if (Idx >= this->Sections.size()) 350 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 351 InputSectionBase *Target = this->Sections[Idx]; 352 353 // Strictly speaking, a relocation section must be included in the 354 // group of the section it relocates. However, LLVM 3.3 and earlier 355 // would fail to do so, so we gracefully handle that case. 356 if (Target == &InputSection::Discarded) 357 return nullptr; 358 359 if (!Target) 360 fatal(toString(this) + ": unsupported relocation reference"); 361 return Target; 362 } 363 364 template <class ELFT> 365 InputSectionBase * 366 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec, 367 StringRef SectionStringTable) { 368 StringRef Name = check( 369 this->getObj().getSectionName(&Sec, SectionStringTable), toString(this)); 370 371 switch (Sec.sh_type) { 372 case SHT_ARM_ATTRIBUTES: 373 // FIXME: ARM meta-data section. Retain the first attribute section 374 // we see. The eglibc ARM dynamic loaders require the presence of an 375 // attribute section for dlopen to work. 376 // In a full implementation we would merge all attribute sections. 377 if (In<ELFT>::ARMAttributes == nullptr) { 378 In<ELFT>::ARMAttributes = make<InputSection>(this, &Sec, Name); 379 return In<ELFT>::ARMAttributes; 380 } 381 return &InputSection::Discarded; 382 case SHT_RELA: 383 case SHT_REL: { 384 // Find the relocation target section and associate this 385 // section with it. Target can be discarded, for example 386 // if it is a duplicated member of SHT_GROUP section, we 387 // do not create or proccess relocatable sections then. 388 InputSectionBase *Target = getRelocTarget(Sec); 389 if (!Target) 390 return nullptr; 391 392 // This section contains relocation information. 393 // If -r is given, we do not interpret or apply relocation 394 // but just copy relocation sections to output. 395 if (Config->Relocatable) 396 return make<InputSection>(this, &Sec, Name); 397 398 if (Target->FirstRelocation) 399 fatal(toString(this) + 400 ": multiple relocation sections to one section are not supported"); 401 if (isa<MergeInputSection>(Target)) 402 fatal(toString(this) + 403 ": relocations pointing to SHF_MERGE are not supported"); 404 405 size_t NumRelocations; 406 if (Sec.sh_type == SHT_RELA) { 407 ArrayRef<Elf_Rela> Rels = 408 check(this->getObj().relas(&Sec), toString(this)); 409 Target->FirstRelocation = Rels.begin(); 410 NumRelocations = Rels.size(); 411 Target->AreRelocsRela = true; 412 } else { 413 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this)); 414 Target->FirstRelocation = Rels.begin(); 415 NumRelocations = Rels.size(); 416 Target->AreRelocsRela = false; 417 } 418 assert(isUInt<31>(NumRelocations)); 419 Target->NumRelocations = NumRelocations; 420 421 // Relocation sections processed by the linker are usually removed 422 // from the output, so returning `nullptr` for the normal case. 423 // However, if -emit-relocs is given, we need to leave them in the output. 424 // (Some post link analysis tools need this information.) 425 if (Config->EmitRelocs) { 426 InputSection *RelocSec = make<InputSection>(this, &Sec, Name); 427 // We will not emit relocation section if target was discarded. 428 Target->DependentSections.push_back(RelocSec); 429 return RelocSec; 430 } 431 return nullptr; 432 } 433 } 434 435 // The GNU linker uses .note.GNU-stack section as a marker indicating 436 // that the code in the object file does not expect that the stack is 437 // executable (in terms of NX bit). If all input files have the marker, 438 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 439 // make the stack non-executable. Most object files have this section as 440 // of 2017. 441 // 442 // But making the stack non-executable is a norm today for security 443 // reasons. Failure to do so may result in a serious security issue. 444 // Therefore, we make LLD always add PT_GNU_STACK unless it is 445 // explicitly told to do otherwise (by -z execstack). Because the stack 446 // executable-ness is controlled solely by command line options, 447 // .note.GNU-stack sections are simply ignored. 448 if (Name == ".note.GNU-stack") 449 return &InputSection::Discarded; 450 451 // Split stacks is a feature to support a discontiguous stack. At least 452 // as of 2017, it seems that the feature is not being used widely. 453 // Only GNU gold supports that. We don't. For the details about that, 454 // see https://gcc.gnu.org/wiki/SplitStacks 455 if (Name == ".note.GNU-split-stack") { 456 error(toString(this) + 457 ": object file compiled with -fsplit-stack is not supported"); 458 return &InputSection::Discarded; 459 } 460 461 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 462 return &InputSection::Discarded; 463 464 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 465 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 466 // sections. Drop those sections to avoid duplicate symbol errors. 467 // FIXME: This is glibc PR20543, we should remove this hack once that has been 468 // fixed for a while. 469 if (Name.startswith(".gnu.linkonce.")) 470 return &InputSection::Discarded; 471 472 // The linker merges EH (exception handling) frames and creates a 473 // .eh_frame_hdr section for runtime. So we handle them with a special 474 // class. For relocatable outputs, they are just passed through. 475 if (Name == ".eh_frame" && !Config->Relocatable) 476 return make<EhInputSection>(this, &Sec, Name); 477 478 if (shouldMerge(Sec)) 479 return make<MergeInputSection>(this, &Sec, Name); 480 return make<InputSection>(this, &Sec, Name); 481 } 482 483 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 484 SymbolBodies.reserve(this->Symbols.size()); 485 for (const Elf_Sym &Sym : this->Symbols) 486 SymbolBodies.push_back(createSymbolBody(&Sym)); 487 } 488 489 template <class ELFT> 490 InputSectionBase *elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 491 uint32_t Index = this->getSectionIndex(Sym); 492 if (Index >= this->Sections.size()) 493 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 494 InputSectionBase *S = this->Sections[Index]; 495 496 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could 497 // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be 498 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 499 // In this case it is fine for section to be null here as we do not 500 // allocate sections of these types. 501 if (!S) { 502 if (Index == 0 || Sym.getType() == STT_SECTION || 503 Sym.getType() == STT_NOTYPE) 504 return nullptr; 505 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 506 } 507 508 if (S == &InputSection::Discarded) 509 return S; 510 return S->Repl; 511 } 512 513 template <class ELFT> 514 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 515 int Binding = Sym->getBinding(); 516 InputSectionBase *Sec = getSection(*Sym); 517 518 uint8_t StOther = Sym->st_other; 519 uint8_t Type = Sym->getType(); 520 uint64_t Value = Sym->st_value; 521 uint64_t Size = Sym->st_size; 522 523 if (Binding == STB_LOCAL) { 524 if (Sym->getType() == STT_FILE) 525 SourceFile = check(Sym->getName(this->StringTable), toString(this)); 526 527 if (this->StringTable.size() <= Sym->st_name) 528 fatal(toString(this) + ": invalid symbol name offset"); 529 530 StringRefZ Name = this->StringTable.data() + Sym->st_name; 531 if (Sym->st_shndx == SHN_UNDEF) 532 return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type, this); 533 534 return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value, 535 Size, Sec, this); 536 } 537 538 StringRef Name = check(Sym->getName(this->StringTable), toString(this)); 539 540 switch (Sym->st_shndx) { 541 case SHN_UNDEF: 542 return elf::Symtab<ELFT>::X 543 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 544 /*CanOmitFromDynSym=*/false, this) 545 ->body(); 546 case SHN_COMMON: 547 if (Value == 0 || Value >= UINT32_MAX) 548 fatal(toString(this) + ": common symbol '" + Name + 549 "' has invalid alignment: " + Twine(Value)); 550 return elf::Symtab<ELFT>::X 551 ->addCommon(Name, Size, Value, Binding, StOther, Type, this) 552 ->body(); 553 } 554 555 switch (Binding) { 556 default: 557 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 558 case STB_GLOBAL: 559 case STB_WEAK: 560 case STB_GNU_UNIQUE: 561 if (Sec == &InputSection::Discarded) 562 return elf::Symtab<ELFT>::X 563 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 564 /*CanOmitFromDynSym=*/false, this) 565 ->body(); 566 return elf::Symtab<ELFT>::X 567 ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this) 568 ->body(); 569 } 570 } 571 572 template <class ELFT> void ArchiveFile::parse() { 573 File = check(Archive::create(MB), 574 MB.getBufferIdentifier() + ": failed to parse archive"); 575 576 // Read the symbol table to construct Lazy objects. 577 for (const Archive::Symbol &Sym : File->symbols()) { 578 Symtab<ELFT>::X->addLazyArchive(this, Sym); 579 } 580 581 if (File->symbols().begin() == File->symbols().end()) 582 Config->ArchiveWithoutSymbolsSeen = true; 583 } 584 585 // Returns a buffer pointing to a member file containing a given symbol. 586 std::pair<MemoryBufferRef, uint64_t> 587 ArchiveFile::getMember(const Archive::Symbol *Sym) { 588 Archive::Child C = 589 check(Sym->getMember(), toString(this) + 590 ": could not get the member for symbol " + 591 Sym->getName()); 592 593 if (!Seen.insert(C.getChildOffset()).second) 594 return {MemoryBufferRef(), 0}; 595 596 MemoryBufferRef Ret = 597 check(C.getMemoryBufferRef(), 598 toString(this) + 599 ": could not get the buffer for the member defining symbol " + 600 Sym->getName()); 601 602 if (C.getParent()->isThin() && Tar) 603 Tar->append(relativeToRoot(check(C.getFullName(), toString(this))), 604 Ret.getBuffer()); 605 if (C.getParent()->isThin()) 606 return {Ret, 0}; 607 return {Ret, C.getChildOffset()}; 608 } 609 610 template <class ELFT> 611 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 612 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 613 614 template <class ELFT> 615 const typename ELFT::Shdr * 616 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 617 return check( 618 this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX), 619 toString(this)); 620 } 621 622 template <class ELFT> StringRef SharedFile<ELFT>::getSoName() const { 623 if (SoName.empty()) 624 return this->DefaultSoName; 625 return SoName; 626 } 627 628 // Partially parse the shared object file so that we can call 629 // getSoName on this object. 630 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 631 const Elf_Shdr *DynamicSec = nullptr; 632 const ELFFile<ELFT> Obj = this->getObj(); 633 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 634 635 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 636 for (const Elf_Shdr &Sec : Sections) { 637 switch (Sec.sh_type) { 638 default: 639 continue; 640 case SHT_DYNSYM: 641 this->initSymtab(Sections, &Sec); 642 break; 643 case SHT_DYNAMIC: 644 DynamicSec = &Sec; 645 break; 646 case SHT_SYMTAB_SHNDX: 647 this->SymtabSHNDX = 648 check(Obj.getSHNDXTable(Sec, Sections), toString(this)); 649 break; 650 case SHT_GNU_versym: 651 this->VersymSec = &Sec; 652 break; 653 case SHT_GNU_verdef: 654 this->VerdefSec = &Sec; 655 break; 656 } 657 } 658 659 if (this->VersymSec && this->Symbols.empty()) 660 error("SHT_GNU_versym should be associated with symbol table"); 661 662 // Search for a DT_SONAME tag to initialize this->SoName. 663 if (!DynamicSec) 664 return; 665 ArrayRef<Elf_Dyn> Arr = 666 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 667 toString(this)); 668 for (const Elf_Dyn &Dyn : Arr) { 669 if (Dyn.d_tag == DT_SONAME) { 670 uint64_t Val = Dyn.getVal(); 671 if (Val >= this->StringTable.size()) 672 fatal(toString(this) + ": invalid DT_SONAME entry"); 673 SoName = StringRef(this->StringTable.data() + Val); 674 return; 675 } 676 } 677 } 678 679 // Parse the version definitions in the object file if present. Returns a vector 680 // whose nth element contains a pointer to the Elf_Verdef for version identifier 681 // n. Version identifiers that are not definitions map to nullptr. The array 682 // always has at least length 1. 683 template <class ELFT> 684 std::vector<const typename ELFT::Verdef *> 685 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 686 std::vector<const Elf_Verdef *> Verdefs(1); 687 // We only need to process symbol versions for this DSO if it has both a 688 // versym and a verdef section, which indicates that the DSO contains symbol 689 // version definitions. 690 if (!VersymSec || !VerdefSec) 691 return Verdefs; 692 693 // The location of the first global versym entry. 694 const char *Base = this->MB.getBuffer().data(); 695 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 696 this->FirstNonLocal; 697 698 // We cannot determine the largest verdef identifier without inspecting 699 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 700 // sequentially starting from 1, so we predict that the largest identifier 701 // will be VerdefCount. 702 unsigned VerdefCount = VerdefSec->sh_info; 703 Verdefs.resize(VerdefCount + 1); 704 705 // Build the Verdefs array by following the chain of Elf_Verdef objects 706 // from the start of the .gnu.version_d section. 707 const char *Verdef = Base + VerdefSec->sh_offset; 708 for (unsigned I = 0; I != VerdefCount; ++I) { 709 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 710 Verdef += CurVerdef->vd_next; 711 unsigned VerdefIndex = CurVerdef->vd_ndx; 712 if (Verdefs.size() <= VerdefIndex) 713 Verdefs.resize(VerdefIndex + 1); 714 Verdefs[VerdefIndex] = CurVerdef; 715 } 716 717 return Verdefs; 718 } 719 720 // Fully parse the shared object file. This must be called after parseSoName(). 721 template <class ELFT> void SharedFile<ELFT>::parseRest() { 722 // Create mapping from version identifiers to Elf_Verdef entries. 723 const Elf_Versym *Versym = nullptr; 724 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 725 726 Elf_Sym_Range Syms = this->getGlobalSymbols(); 727 for (const Elf_Sym &Sym : Syms) { 728 unsigned VersymIndex = 0; 729 if (Versym) { 730 VersymIndex = Versym->vs_index; 731 ++Versym; 732 } 733 bool Hidden = VersymIndex & VERSYM_HIDDEN; 734 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 735 736 StringRef Name = check(Sym.getName(this->StringTable), toString(this)); 737 if (Sym.isUndefined()) { 738 Undefs.push_back(Name); 739 continue; 740 } 741 742 // Ignore local symbols. 743 if (Versym && VersymIndex == VER_NDX_LOCAL) 744 continue; 745 746 const Elf_Verdef *V = 747 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 748 749 if (!Hidden) 750 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 751 752 // Also add the symbol with the versioned name to handle undefined symbols 753 // with explicit versions. 754 if (V) { 755 StringRef VerName = this->StringTable.data() + V->getAux()->vda_name; 756 Name = Saver.save(Twine(Name) + "@" + VerName); 757 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 758 } 759 } 760 } 761 762 static ELFKind getBitcodeELFKind(const Triple &T) { 763 if (T.isLittleEndian()) 764 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 765 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 766 } 767 768 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 769 switch (T.getArch()) { 770 case Triple::aarch64: 771 return EM_AARCH64; 772 case Triple::arm: 773 case Triple::thumb: 774 return EM_ARM; 775 case Triple::mips: 776 case Triple::mipsel: 777 case Triple::mips64: 778 case Triple::mips64el: 779 return EM_MIPS; 780 case Triple::ppc: 781 return EM_PPC; 782 case Triple::ppc64: 783 return EM_PPC64; 784 case Triple::x86: 785 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 786 case Triple::x86_64: 787 return EM_X86_64; 788 default: 789 fatal(Path + ": could not infer e_machine from bitcode target triple " + 790 T.str()); 791 } 792 } 793 794 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 795 uint64_t OffsetInArchive) 796 : InputFile(BitcodeKind, MB) { 797 this->ArchiveName = ArchiveName; 798 799 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 800 // (the fully resolved path of the archive) + member name + offset of the 801 // member in the archive. 802 // ThinLTO uses the MemoryBufferRef identifier to access its internal 803 // data structures and if two archives define two members with the same name, 804 // this causes a collision which result in only one of the objects being 805 // taken into consideration at LTO time (which very likely causes undefined 806 // symbols later in the link stage). 807 MemoryBufferRef MBRef(MB.getBuffer(), 808 Saver.save(ArchiveName + MB.getBufferIdentifier() + 809 utostr(OffsetInArchive))); 810 Obj = check(lto::InputFile::create(MBRef), toString(this)); 811 812 Triple T(Obj->getTargetTriple()); 813 EKind = getBitcodeELFKind(T); 814 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 815 } 816 817 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 818 switch (GvVisibility) { 819 case GlobalValue::DefaultVisibility: 820 return STV_DEFAULT; 821 case GlobalValue::HiddenVisibility: 822 return STV_HIDDEN; 823 case GlobalValue::ProtectedVisibility: 824 return STV_PROTECTED; 825 } 826 llvm_unreachable("unknown visibility"); 827 } 828 829 template <class ELFT> 830 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 831 const lto::InputFile::Symbol &ObjSym, 832 BitcodeFile *F) { 833 StringRef NameRef = Saver.save(ObjSym.getName()); 834 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 835 836 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 837 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 838 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 839 840 int C = ObjSym.getComdatIndex(); 841 if (C != -1 && !KeptComdats[C]) 842 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 843 Visibility, Type, CanOmitFromDynSym, 844 F); 845 846 if (ObjSym.isUndefined()) 847 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 848 Visibility, Type, CanOmitFromDynSym, 849 F); 850 851 if (ObjSym.isCommon()) 852 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 853 ObjSym.getCommonAlignment(), Binding, 854 Visibility, STT_OBJECT, F); 855 856 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 857 CanOmitFromDynSym, F); 858 } 859 860 template <class ELFT> 861 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 862 std::vector<bool> KeptComdats; 863 for (StringRef S : Obj->getComdatTable()) 864 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 865 866 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 867 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 868 } 869 870 template <template <class> class T> 871 static InputFile *createELFFile(MemoryBufferRef MB) { 872 unsigned char Size; 873 unsigned char Endian; 874 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 875 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 876 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 877 878 size_t BufSize = MB.getBuffer().size(); 879 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 880 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 881 fatal(MB.getBufferIdentifier() + ": file is too short"); 882 883 InputFile *Obj; 884 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 885 Obj = make<T<ELF32LE>>(MB); 886 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 887 Obj = make<T<ELF32BE>>(MB); 888 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 889 Obj = make<T<ELF64LE>>(MB); 890 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 891 Obj = make<T<ELF64BE>>(MB); 892 else 893 fatal(MB.getBufferIdentifier() + ": invalid file class"); 894 895 if (!Config->FirstElf) 896 Config->FirstElf = Obj; 897 return Obj; 898 } 899 900 template <class ELFT> void BinaryFile::parse() { 901 StringRef Buf = MB.getBuffer(); 902 ArrayRef<uint8_t> Data = 903 makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size()); 904 905 std::string Filename = MB.getBufferIdentifier(); 906 std::transform(Filename.begin(), Filename.end(), Filename.begin(), 907 [](char C) { return isalnum(C) ? C : '_'; }); 908 Filename = "_binary_" + Filename; 909 StringRef StartName = Saver.save(Twine(Filename) + "_start"); 910 StringRef EndName = Saver.save(Twine(Filename) + "_end"); 911 StringRef SizeName = Saver.save(Twine(Filename) + "_size"); 912 913 auto *Section = 914 make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); 915 Sections.push_back(Section); 916 917 elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0, 918 STB_GLOBAL, Section, nullptr); 919 elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT, 920 Data.size(), 0, STB_GLOBAL, Section, 921 nullptr); 922 elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT, 923 Data.size(), 0, STB_GLOBAL, nullptr, 924 nullptr); 925 } 926 927 static bool isBitcode(MemoryBufferRef MB) { 928 using namespace sys::fs; 929 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 930 } 931 932 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 933 uint64_t OffsetInArchive) { 934 InputFile *F = isBitcode(MB) 935 ? make<BitcodeFile>(MB, ArchiveName, OffsetInArchive) 936 : createELFFile<ObjectFile>(MB); 937 F->ArchiveName = ArchiveName; 938 return F; 939 } 940 941 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 942 return createELFFile<SharedFile>(MB); 943 } 944 945 MemoryBufferRef LazyObjectFile::getBuffer() { 946 if (Seen) 947 return MemoryBufferRef(); 948 Seen = true; 949 return MB; 950 } 951 952 template <class ELFT> void LazyObjectFile::parse() { 953 for (StringRef Sym : getSymbols()) 954 Symtab<ELFT>::X->addLazyObject(Sym, *this); 955 } 956 957 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 958 typedef typename ELFT::Shdr Elf_Shdr; 959 typedef typename ELFT::Sym Elf_Sym; 960 typedef typename ELFT::SymRange Elf_Sym_Range; 961 962 const ELFFile<ELFT> Obj(this->MB.getBuffer()); 963 ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); 964 for (const Elf_Shdr &Sec : Sections) { 965 if (Sec.sh_type != SHT_SYMTAB) 966 continue; 967 968 Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this)); 969 uint32_t FirstNonLocal = Sec.sh_info; 970 StringRef StringTable = 971 check(Obj.getStringTableForSymtab(Sec, Sections), toString(this)); 972 std::vector<StringRef> V; 973 974 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 975 if (Sym.st_shndx != SHN_UNDEF) 976 V.push_back(check(Sym.getName(StringTable), toString(this))); 977 return V; 978 } 979 return {}; 980 } 981 982 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 983 std::unique_ptr<lto::InputFile> Obj = 984 check(lto::InputFile::create(this->MB), toString(this)); 985 std::vector<StringRef> V; 986 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 987 if (!Sym.isUndefined()) 988 V.push_back(Saver.save(Sym.getName())); 989 return V; 990 } 991 992 // Returns a vector of globally-visible defined symbol names. 993 std::vector<StringRef> LazyObjectFile::getSymbols() { 994 if (isBitcode(this->MB)) 995 return getBitcodeSymbols(); 996 997 unsigned char Size; 998 unsigned char Endian; 999 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 1000 if (Size == ELFCLASS32) { 1001 if (Endian == ELFDATA2LSB) 1002 return getElfSymbols<ELF32LE>(); 1003 return getElfSymbols<ELF32BE>(); 1004 } 1005 if (Endian == ELFDATA2LSB) 1006 return getElfSymbols<ELF64LE>(); 1007 return getElfSymbols<ELF64BE>(); 1008 } 1009 1010 template void ArchiveFile::parse<ELF32LE>(); 1011 template void ArchiveFile::parse<ELF32BE>(); 1012 template void ArchiveFile::parse<ELF64LE>(); 1013 template void ArchiveFile::parse<ELF64BE>(); 1014 1015 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1016 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1017 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1018 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1019 1020 template void LazyObjectFile::parse<ELF32LE>(); 1021 template void LazyObjectFile::parse<ELF32BE>(); 1022 template void LazyObjectFile::parse<ELF64LE>(); 1023 template void LazyObjectFile::parse<ELF64BE>(); 1024 1025 template class elf::ELFFileBase<ELF32LE>; 1026 template class elf::ELFFileBase<ELF32BE>; 1027 template class elf::ELFFileBase<ELF64LE>; 1028 template class elf::ELFFileBase<ELF64BE>; 1029 1030 template class elf::ObjectFile<ELF32LE>; 1031 template class elf::ObjectFile<ELF32BE>; 1032 template class elf::ObjectFile<ELF64LE>; 1033 template class elf::ObjectFile<ELF64BE>; 1034 1035 template class elf::SharedFile<ELF32LE>; 1036 template class elf::SharedFile<ELF32BE>; 1037 template class elf::SharedFile<ELF64LE>; 1038 template class elf::SharedFile<ELF64BE>; 1039 1040 template void BinaryFile::parse<ELF32LE>(); 1041 template void BinaryFile::parse<ELF32BE>(); 1042 template void BinaryFile::parse<ELF64LE>(); 1043 template void BinaryFile::parse<ELF64BE>(); 1044