1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 SmallVector<ArchiveFile *, 0> elf::archiveFiles; 47 SmallVector<BinaryFile *, 0> elf::binaryFiles; 48 SmallVector<BitcodeFile *, 0> elf::bitcodeFiles; 49 SmallVector<BitcodeFile *, 0> elf::lazyBitcodeFiles; 50 SmallVector<ELFFileBase *, 0> elf::objectFiles; 51 SmallVector<SharedFile *, 0> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = f->getName(); 63 else 64 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 65 } 66 return std::string(f->toStringCache); 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver.save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 119 /*RequiresNullTerminator=*/false); 120 if (auto ec = mbOrErr.getError()) { 121 error("cannot open " + path + ": " + ec.message()); 122 return None; 123 } 124 125 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 126 MemoryBufferRef mbref = mb->getMemBufferRef(); 127 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 128 129 if (tar) 130 tar->append(relativeToRoot(path), mbref.getBuffer()); 131 return mbref; 132 } 133 134 // All input object files must be for the same architecture 135 // (e.g. it does not make sense to link x86 object files with 136 // MIPS object files.) This function checks for that error. 137 static bool isCompatible(InputFile *file) { 138 if (!file->isElf() && !isa<BitcodeFile>(file)) 139 return true; 140 141 if (file->ekind == config->ekind && file->emachine == config->emachine) { 142 if (config->emachine != EM_MIPS) 143 return true; 144 if (isMipsN32Abi(file) == config->mipsN32Abi) 145 return true; 146 } 147 148 StringRef target = 149 !config->bfdname.empty() ? config->bfdname : config->emulation; 150 if (!target.empty()) { 151 error(toString(file) + " is incompatible with " + target); 152 return false; 153 } 154 155 InputFile *existing; 156 if (!objectFiles.empty()) 157 existing = objectFiles[0]; 158 else if (!sharedFiles.empty()) 159 existing = sharedFiles[0]; 160 else if (!bitcodeFiles.empty()) 161 existing = bitcodeFiles[0]; 162 else 163 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 164 "determine target emulation"); 165 166 error(toString(file) + " is incompatible with " + toString(existing)); 167 return false; 168 } 169 170 template <class ELFT> static void doParseFile(InputFile *file) { 171 if (!isCompatible(file)) 172 return; 173 174 // Binary file 175 if (auto *f = dyn_cast<BinaryFile>(file)) { 176 binaryFiles.push_back(f); 177 f->parse(); 178 return; 179 } 180 181 // .a file 182 if (auto *f = dyn_cast<ArchiveFile>(file)) { 183 archiveFiles.push_back(f); 184 f->parse(); 185 return; 186 } 187 188 // Lazy object file 189 if (file->lazy) { 190 if (auto *f = dyn_cast<BitcodeFile>(file)) { 191 lazyBitcodeFiles.push_back(f); 192 f->parseLazy(); 193 } else { 194 cast<ObjFile<ELFT>>(file)->parseLazy(); 195 } 196 return; 197 } 198 199 if (config->trace) 200 message(toString(file)); 201 202 // .so file 203 if (auto *f = dyn_cast<SharedFile>(file)) { 204 f->parse<ELFT>(); 205 return; 206 } 207 208 // LLVM bitcode file 209 if (auto *f = dyn_cast<BitcodeFile>(file)) { 210 bitcodeFiles.push_back(f); 211 f->parse<ELFT>(); 212 return; 213 } 214 215 // Regular object file 216 objectFiles.push_back(cast<ELFFileBase>(file)); 217 cast<ObjFile<ELFT>>(file)->parse(); 218 } 219 220 // Add symbols in File to the symbol table. 221 void elf::parseFile(InputFile *file) { 222 switch (config->ekind) { 223 case ELF32LEKind: 224 doParseFile<ELF32LE>(file); 225 return; 226 case ELF32BEKind: 227 doParseFile<ELF32BE>(file); 228 return; 229 case ELF64LEKind: 230 doParseFile<ELF64LE>(file); 231 return; 232 case ELF64BEKind: 233 doParseFile<ELF64BE>(file); 234 return; 235 default: 236 llvm_unreachable("unknown ELFT"); 237 } 238 } 239 240 // Concatenates arguments to construct a string representing an error location. 241 static std::string createFileLineMsg(StringRef path, unsigned line) { 242 std::string filename = std::string(path::filename(path)); 243 std::string lineno = ":" + std::to_string(line); 244 if (filename == path) 245 return filename + lineno; 246 return filename + lineno + " (" + path.str() + lineno + ")"; 247 } 248 249 template <class ELFT> 250 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 251 InputSectionBase &sec, uint64_t offset) { 252 // In DWARF, functions and variables are stored to different places. 253 // First, lookup a function for a given offset. 254 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 255 return createFileLineMsg(info->FileName, info->Line); 256 257 // If it failed, lookup again as a variable. 258 if (Optional<std::pair<std::string, unsigned>> fileLine = 259 file.getVariableLoc(sym.getName())) 260 return createFileLineMsg(fileLine->first, fileLine->second); 261 262 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 263 return std::string(file.sourceFile); 264 } 265 266 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 267 uint64_t offset) { 268 if (kind() != ObjKind) 269 return ""; 270 switch (config->ekind) { 271 default: 272 llvm_unreachable("Invalid kind"); 273 case ELF32LEKind: 274 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 275 case ELF32BEKind: 276 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 277 case ELF64LEKind: 278 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 279 case ELF64BEKind: 280 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 281 } 282 } 283 284 StringRef InputFile::getNameForScript() const { 285 if (archiveName.empty()) 286 return getName(); 287 288 if (nameForScriptCache.empty()) 289 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 290 291 return nameForScriptCache; 292 } 293 294 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 295 llvm::call_once(initDwarf, [this]() { 296 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 297 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 298 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 299 [&](Error warning) { 300 warn(getName() + ": " + toString(std::move(warning))); 301 })); 302 }); 303 304 return dwarf.get(); 305 } 306 307 // Returns the pair of file name and line number describing location of data 308 // object (variable, array, etc) definition. 309 template <class ELFT> 310 Optional<std::pair<std::string, unsigned>> 311 ObjFile<ELFT>::getVariableLoc(StringRef name) { 312 return getDwarf()->getVariableLoc(name); 313 } 314 315 // Returns source line information for a given offset 316 // using DWARF debug info. 317 template <class ELFT> 318 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 319 uint64_t offset) { 320 // Detect SectionIndex for specified section. 321 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 322 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 323 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 324 if (s == sections[curIndex]) { 325 sectionIndex = curIndex; 326 break; 327 } 328 } 329 330 return getDwarf()->getDILineInfo(offset, sectionIndex); 331 } 332 333 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 334 ekind = getELFKind(mb, ""); 335 336 switch (ekind) { 337 case ELF32LEKind: 338 init<ELF32LE>(); 339 break; 340 case ELF32BEKind: 341 init<ELF32BE>(); 342 break; 343 case ELF64LEKind: 344 init<ELF64LE>(); 345 break; 346 case ELF64BEKind: 347 init<ELF64BE>(); 348 break; 349 default: 350 llvm_unreachable("getELFKind"); 351 } 352 } 353 354 template <typename Elf_Shdr> 355 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 356 for (const Elf_Shdr &sec : sections) 357 if (sec.sh_type == type) 358 return &sec; 359 return nullptr; 360 } 361 362 template <class ELFT> void ELFFileBase::init() { 363 using Elf_Shdr = typename ELFT::Shdr; 364 using Elf_Sym = typename ELFT::Sym; 365 366 // Initialize trivial attributes. 367 const ELFFile<ELFT> &obj = getObj<ELFT>(); 368 emachine = obj.getHeader().e_machine; 369 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 370 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 371 372 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 373 elfShdrs = sections.data(); 374 numELFShdrs = sections.size(); 375 376 // Find a symbol table. 377 bool isDSO = 378 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 379 const Elf_Shdr *symtabSec = 380 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 381 382 if (!symtabSec) 383 return; 384 385 // Initialize members corresponding to a symbol table. 386 firstGlobal = symtabSec->sh_info; 387 388 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 389 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 390 fatal(toString(this) + ": invalid sh_info in symbol table"); 391 392 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 393 numELFSyms = uint32_t(eSyms.size()); 394 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 395 } 396 397 template <class ELFT> 398 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 399 return CHECK( 400 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 401 this); 402 } 403 404 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 405 // Read a section table. justSymbols is usually false. 406 if (this->justSymbols) 407 initializeJustSymbols(); 408 else 409 initializeSections(ignoreComdats); 410 411 // Read a symbol table. 412 initializeSymbols(); 413 } 414 415 // Sections with SHT_GROUP and comdat bits define comdat section groups. 416 // They are identified and deduplicated by group name. This function 417 // returns a group name. 418 template <class ELFT> 419 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 420 const Elf_Shdr &sec) { 421 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 422 if (sec.sh_info >= symbols.size()) 423 fatal(toString(this) + ": invalid symbol index"); 424 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 425 return CHECK(sym.getName(this->stringTable), this); 426 } 427 428 template <class ELFT> 429 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 430 // On a regular link we don't merge sections if -O0 (default is -O1). This 431 // sometimes makes the linker significantly faster, although the output will 432 // be bigger. 433 // 434 // Doing the same for -r would create a problem as it would combine sections 435 // with different sh_entsize. One option would be to just copy every SHF_MERGE 436 // section as is to the output. While this would produce a valid ELF file with 437 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 438 // they see two .debug_str. We could have separate logic for combining 439 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 440 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 441 // logic for -r. 442 if (config->optimize == 0 && !config->relocatable) 443 return false; 444 445 // A mergeable section with size 0 is useless because they don't have 446 // any data to merge. A mergeable string section with size 0 can be 447 // argued as invalid because it doesn't end with a null character. 448 // We'll avoid a mess by handling them as if they were non-mergeable. 449 if (sec.sh_size == 0) 450 return false; 451 452 // Check for sh_entsize. The ELF spec is not clear about the zero 453 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 454 // the section does not hold a table of fixed-size entries". We know 455 // that Rust 1.13 produces a string mergeable section with a zero 456 // sh_entsize. Here we just accept it rather than being picky about it. 457 uint64_t entSize = sec.sh_entsize; 458 if (entSize == 0) 459 return false; 460 if (sec.sh_size % entSize) 461 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 462 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 463 Twine(entSize) + ")"); 464 465 if (sec.sh_flags & SHF_WRITE) 466 fatal(toString(this) + ":(" + name + 467 "): writable SHF_MERGE section is not supported"); 468 469 return true; 470 } 471 472 // This is for --just-symbols. 473 // 474 // --just-symbols is a very minor feature that allows you to link your 475 // output against other existing program, so that if you load both your 476 // program and the other program into memory, your output can refer the 477 // other program's symbols. 478 // 479 // When the option is given, we link "just symbols". The section table is 480 // initialized with null pointers. 481 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 482 sections.resize(numELFShdrs); 483 } 484 485 // An ELF object file may contain a `.deplibs` section. If it exists, the 486 // section contains a list of library specifiers such as `m` for libm. This 487 // function resolves a given name by finding the first matching library checking 488 // the various ways that a library can be specified to LLD. This ELF extension 489 // is a form of autolinking and is called `dependent libraries`. It is currently 490 // unique to LLVM and lld. 491 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 492 if (!config->dependentLibraries) 493 return; 494 if (fs::exists(specifier)) 495 driver->addFile(specifier, /*withLOption=*/false); 496 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 497 driver->addFile(*s, /*withLOption=*/true); 498 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 499 driver->addFile(*s, /*withLOption=*/true); 500 else 501 error(toString(f) + 502 ": unable to find library from dependent library specifier: " + 503 specifier); 504 } 505 506 // Record the membership of a section group so that in the garbage collection 507 // pass, section group members are kept or discarded as a unit. 508 template <class ELFT> 509 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 510 ArrayRef<typename ELFT::Word> entries) { 511 bool hasAlloc = false; 512 for (uint32_t index : entries.slice(1)) { 513 if (index >= sections.size()) 514 return; 515 if (InputSectionBase *s = sections[index]) 516 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 517 hasAlloc = true; 518 } 519 520 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 521 // collection. See the comment in markLive(). This rule retains .debug_types 522 // and .rela.debug_types. 523 if (!hasAlloc) 524 return; 525 526 // Connect the members in a circular doubly-linked list via 527 // nextInSectionGroup. 528 InputSectionBase *head; 529 InputSectionBase *prev = nullptr; 530 for (uint32_t index : entries.slice(1)) { 531 InputSectionBase *s = sections[index]; 532 if (!s || s == &InputSection::discarded) 533 continue; 534 if (prev) 535 prev->nextInSectionGroup = s; 536 else 537 head = s; 538 prev = s; 539 } 540 if (prev) 541 prev->nextInSectionGroup = head; 542 } 543 544 template <class ELFT> 545 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 546 const ELFFile<ELFT> &obj = this->getObj(); 547 548 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 549 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 550 uint64_t size = objSections.size(); 551 this->sections.resize(size); 552 553 std::vector<ArrayRef<Elf_Word>> selectedGroups; 554 555 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 556 if (this->sections[i] == &InputSection::discarded) 557 continue; 558 const Elf_Shdr &sec = objSections[i]; 559 560 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 561 // if -r is given, we'll let the final link discard such sections. 562 // This is compatible with GNU. 563 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 564 if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE) 565 cgProfileSectionIndex = i; 566 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 567 // We ignore the address-significance table if we know that the object 568 // file was created by objcopy or ld -r. This is because these tools 569 // will reorder the symbols in the symbol table, invalidating the data 570 // in the address-significance table, which refers to symbols by index. 571 if (sec.sh_link != 0) 572 this->addrsigSec = &sec; 573 else if (config->icf == ICFLevel::Safe) 574 warn(toString(this) + 575 ": --icf=safe conservatively ignores " 576 "SHT_LLVM_ADDRSIG [index " + 577 Twine(i) + 578 "] with sh_link=0 " 579 "(likely created using objcopy or ld -r)"); 580 } 581 this->sections[i] = &InputSection::discarded; 582 continue; 583 } 584 585 switch (sec.sh_type) { 586 case SHT_GROUP: { 587 // De-duplicate section groups by their signatures. 588 StringRef signature = getShtGroupSignature(objSections, sec); 589 this->sections[i] = &InputSection::discarded; 590 591 ArrayRef<Elf_Word> entries = 592 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 593 if (entries.empty()) 594 fatal(toString(this) + ": empty SHT_GROUP"); 595 596 Elf_Word flag = entries[0]; 597 if (flag && flag != GRP_COMDAT) 598 fatal(toString(this) + ": unsupported SHT_GROUP format"); 599 600 bool keepGroup = 601 (flag & GRP_COMDAT) == 0 || ignoreComdats || 602 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 603 .second; 604 if (keepGroup) { 605 if (config->relocatable) 606 this->sections[i] = createInputSection(i, sec, shstrtab); 607 selectedGroups.push_back(entries); 608 continue; 609 } 610 611 // Otherwise, discard group members. 612 for (uint32_t secIndex : entries.slice(1)) { 613 if (secIndex >= size) 614 fatal(toString(this) + 615 ": invalid section index in group: " + Twine(secIndex)); 616 this->sections[secIndex] = &InputSection::discarded; 617 } 618 break; 619 } 620 case SHT_SYMTAB_SHNDX: 621 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 622 break; 623 case SHT_SYMTAB: 624 case SHT_STRTAB: 625 case SHT_REL: 626 case SHT_RELA: 627 case SHT_NULL: 628 break; 629 default: 630 this->sections[i] = createInputSection(i, sec, shstrtab); 631 } 632 } 633 634 // We have a second loop. It is used to: 635 // 1) handle SHF_LINK_ORDER sections. 636 // 2) create SHT_REL[A] sections. In some cases the section header index of a 637 // relocation section may be smaller than that of the relocated section. In 638 // such cases, the relocation section would attempt to reference a target 639 // section that has not yet been created. For simplicity, delay creation of 640 // relocation sections until now. 641 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 642 if (this->sections[i] == &InputSection::discarded) 643 continue; 644 const Elf_Shdr &sec = objSections[i]; 645 646 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 647 this->sections[i] = createInputSection(i, sec, shstrtab); 648 649 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 650 // the flag. 651 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 652 continue; 653 654 InputSectionBase *linkSec = nullptr; 655 if (sec.sh_link < this->sections.size()) 656 linkSec = this->sections[sec.sh_link]; 657 if (!linkSec) 658 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 659 660 // A SHF_LINK_ORDER section is discarded if its linked-to section is 661 // discarded. 662 InputSection *isec = cast<InputSection>(this->sections[i]); 663 linkSec->dependentSections.push_back(isec); 664 if (!isa<InputSection>(linkSec)) 665 error("a section " + isec->name + 666 " with SHF_LINK_ORDER should not refer a non-regular section: " + 667 toString(linkSec)); 668 } 669 670 for (ArrayRef<Elf_Word> entries : selectedGroups) 671 handleSectionGroup<ELFT>(this->sections, entries); 672 } 673 674 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 675 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 676 // the input objects have been compiled. 677 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 678 const InputFile *f) { 679 Optional<unsigned> attr = 680 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 681 if (!attr.hasValue()) 682 // If an ABI tag isn't present then it is implicitly given the value of 0 683 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 684 // including some in glibc that don't use FP args (and should have value 3) 685 // don't have the attribute so we do not consider an implicit value of 0 686 // as a clash. 687 return; 688 689 unsigned vfpArgs = attr.getValue(); 690 ARMVFPArgKind arg; 691 switch (vfpArgs) { 692 case ARMBuildAttrs::BaseAAPCS: 693 arg = ARMVFPArgKind::Base; 694 break; 695 case ARMBuildAttrs::HardFPAAPCS: 696 arg = ARMVFPArgKind::VFP; 697 break; 698 case ARMBuildAttrs::ToolChainFPPCS: 699 // Tool chain specific convention that conforms to neither AAPCS variant. 700 arg = ARMVFPArgKind::ToolChain; 701 break; 702 case ARMBuildAttrs::CompatibleFPAAPCS: 703 // Object compatible with all conventions. 704 return; 705 default: 706 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 707 return; 708 } 709 // Follow ld.bfd and error if there is a mix of calling conventions. 710 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 711 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 712 else 713 config->armVFPArgs = arg; 714 } 715 716 // The ARM support in lld makes some use of instructions that are not available 717 // on all ARM architectures. Namely: 718 // - Use of BLX instruction for interworking between ARM and Thumb state. 719 // - Use of the extended Thumb branch encoding in relocation. 720 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 721 // The ARM Attributes section contains information about the architecture chosen 722 // at compile time. We follow the convention that if at least one input object 723 // is compiled with an architecture that supports these features then lld is 724 // permitted to use them. 725 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 726 Optional<unsigned> attr = 727 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 728 if (!attr.hasValue()) 729 return; 730 auto arch = attr.getValue(); 731 switch (arch) { 732 case ARMBuildAttrs::Pre_v4: 733 case ARMBuildAttrs::v4: 734 case ARMBuildAttrs::v4T: 735 // Architectures prior to v5 do not support BLX instruction 736 break; 737 case ARMBuildAttrs::v5T: 738 case ARMBuildAttrs::v5TE: 739 case ARMBuildAttrs::v5TEJ: 740 case ARMBuildAttrs::v6: 741 case ARMBuildAttrs::v6KZ: 742 case ARMBuildAttrs::v6K: 743 config->armHasBlx = true; 744 // Architectures used in pre-Cortex processors do not support 745 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 746 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 747 break; 748 default: 749 // All other Architectures have BLX and extended branch encoding 750 config->armHasBlx = true; 751 config->armJ1J2BranchEncoding = true; 752 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 753 // All Architectures used in Cortex processors with the exception 754 // of v6-M and v6S-M have the MOVT and MOVW instructions. 755 config->armHasMovtMovw = true; 756 break; 757 } 758 } 759 760 // If a source file is compiled with x86 hardware-assisted call flow control 761 // enabled, the generated object file contains feature flags indicating that 762 // fact. This function reads the feature flags and returns it. 763 // 764 // Essentially we want to read a single 32-bit value in this function, but this 765 // function is rather complicated because the value is buried deep inside a 766 // .note.gnu.property section. 767 // 768 // The section consists of one or more NOTE records. Each NOTE record consists 769 // of zero or more type-length-value fields. We want to find a field of a 770 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 771 // the ABI is unnecessarily complicated. 772 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 773 using Elf_Nhdr = typename ELFT::Nhdr; 774 using Elf_Note = typename ELFT::Note; 775 776 uint32_t featuresSet = 0; 777 ArrayRef<uint8_t> data = sec.data(); 778 auto reportFatal = [&](const uint8_t *place, const char *msg) { 779 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 780 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 781 }; 782 while (!data.empty()) { 783 // Read one NOTE record. 784 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 785 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 786 reportFatal(data.data(), "data is too short"); 787 788 Elf_Note note(*nhdr); 789 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 790 data = data.slice(nhdr->getSize()); 791 continue; 792 } 793 794 uint32_t featureAndType = config->emachine == EM_AARCH64 795 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 796 : GNU_PROPERTY_X86_FEATURE_1_AND; 797 798 // Read a body of a NOTE record, which consists of type-length-value fields. 799 ArrayRef<uint8_t> desc = note.getDesc(); 800 while (!desc.empty()) { 801 const uint8_t *place = desc.data(); 802 if (desc.size() < 8) 803 reportFatal(place, "program property is too short"); 804 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 805 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 806 desc = desc.slice(8); 807 if (desc.size() < size) 808 reportFatal(place, "program property is too short"); 809 810 if (type == featureAndType) { 811 // We found a FEATURE_1_AND field. There may be more than one of these 812 // in a .note.gnu.property section, for a relocatable object we 813 // accumulate the bits set. 814 if (size < 4) 815 reportFatal(place, "FEATURE_1_AND entry is too short"); 816 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 817 } 818 819 // Padding is present in the note descriptor, if necessary. 820 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 821 } 822 823 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 824 data = data.slice(nhdr->getSize()); 825 } 826 827 return featuresSet; 828 } 829 830 template <class ELFT> 831 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, StringRef name, 832 const Elf_Shdr &sec) { 833 uint32_t info = sec.sh_info; 834 if (info < this->sections.size()) { 835 InputSectionBase *target = this->sections[info]; 836 837 // Strictly speaking, a relocation section must be included in the 838 // group of the section it relocates. However, LLVM 3.3 and earlier 839 // would fail to do so, so we gracefully handle that case. 840 if (target == &InputSection::discarded) 841 return nullptr; 842 843 if (target != nullptr) 844 return target; 845 } 846 847 error(toString(this) + Twine(": relocation section ") + name + " (index " + 848 Twine(idx) + ") has invalid sh_info (" + Twine(info) + ")"); 849 return nullptr; 850 } 851 852 // Create a regular InputSection class that has the same contents 853 // as a given section. 854 static InputSection *toRegularSection(MergeInputSection *sec) { 855 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 856 sec->data(), sec->name); 857 } 858 859 template <class ELFT> 860 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 861 const Elf_Shdr &sec, 862 StringRef shstrtab) { 863 StringRef name = CHECK(getObj().getSectionName(sec, shstrtab), this); 864 865 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { 866 ARMAttributeParser attributes; 867 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 868 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 869 ? support::little 870 : support::big)) { 871 auto *isec = make<InputSection>(*this, sec, name); 872 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 873 } else { 874 updateSupportedARMFeatures(attributes); 875 updateARMVFPArgs(attributes, this); 876 877 // FIXME: Retain the first attribute section we see. The eglibc ARM 878 // dynamic loaders require the presence of an attribute section for dlopen 879 // to work. In a full implementation we would merge all attribute 880 // sections. 881 if (in.attributes == nullptr) { 882 in.attributes = make<InputSection>(*this, sec, name); 883 return in.attributes; 884 } 885 return &InputSection::discarded; 886 } 887 } 888 889 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { 890 RISCVAttributeParser attributes; 891 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 892 if (Error e = attributes.parse(contents, support::little)) { 893 auto *isec = make<InputSection>(*this, sec, name); 894 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 895 } else { 896 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 897 // present. 898 899 // FIXME: Retain the first attribute section we see. Tools such as 900 // llvm-objdump make use of the attribute section to determine which 901 // standard extensions to enable. In a full implementation we would merge 902 // all attribute sections. 903 if (in.attributes == nullptr) { 904 in.attributes = make<InputSection>(*this, sec, name); 905 return in.attributes; 906 } 907 return &InputSection::discarded; 908 } 909 } 910 911 switch (sec.sh_type) { 912 case SHT_LLVM_DEPENDENT_LIBRARIES: { 913 if (config->relocatable) 914 break; 915 ArrayRef<char> data = 916 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 917 if (!data.empty() && data.back() != '\0') { 918 error(toString(this) + 919 ": corrupted dependent libraries section (unterminated string): " + 920 name); 921 return &InputSection::discarded; 922 } 923 for (const char *d = data.begin(), *e = data.end(); d < e;) { 924 StringRef s(d); 925 addDependentLibrary(s, this); 926 d += s.size() + 1; 927 } 928 return &InputSection::discarded; 929 } 930 case SHT_RELA: 931 case SHT_REL: { 932 // Find a relocation target section and associate this section with that. 933 // Target may have been discarded if it is in a different section group 934 // and the group is discarded, even though it's a violation of the 935 // spec. We handle that situation gracefully by discarding dangling 936 // relocation sections. 937 InputSectionBase *target = getRelocTarget(idx, name, sec); 938 if (!target) 939 return nullptr; 940 941 // ELF spec allows mergeable sections with relocations, but they are 942 // rare, and it is in practice hard to merge such sections by contents, 943 // because applying relocations at end of linking changes section 944 // contents. So, we simply handle such sections as non-mergeable ones. 945 // Degrading like this is acceptable because section merging is optional. 946 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 947 target = toRegularSection(ms); 948 this->sections[sec.sh_info] = target; 949 } 950 951 if (target->relSecIdx != 0) 952 fatal(toString(this) + 953 ": multiple relocation sections to one section are not supported"); 954 target->relSecIdx = idx; 955 956 // Relocation sections are usually removed from the output, so return 957 // `nullptr` for the normal case. However, if -r or --emit-relocs is 958 // specified, we need to copy them to the output. (Some post link analysis 959 // tools specify --emit-relocs to obtain the information.) 960 if (!config->copyRelocs) 961 return nullptr; 962 InputSection *relocSec = make<InputSection>(*this, sec, name); 963 // If the relocated section is discarded (due to /DISCARD/ or 964 // --gc-sections), the relocation section should be discarded as well. 965 target->dependentSections.push_back(relocSec); 966 return relocSec; 967 } 968 } 969 970 if (name.startswith(".n")) { 971 // The GNU linker uses .note.GNU-stack section as a marker indicating 972 // that the code in the object file does not expect that the stack is 973 // executable (in terms of NX bit). If all input files have the marker, 974 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 975 // make the stack non-executable. Most object files have this section as 976 // of 2017. 977 // 978 // But making the stack non-executable is a norm today for security 979 // reasons. Failure to do so may result in a serious security issue. 980 // Therefore, we make LLD always add PT_GNU_STACK unless it is 981 // explicitly told to do otherwise (by -z execstack). Because the stack 982 // executable-ness is controlled solely by command line options, 983 // .note.GNU-stack sections are simply ignored. 984 if (name == ".note.GNU-stack") 985 return &InputSection::discarded; 986 987 // Object files that use processor features such as Intel Control-Flow 988 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 989 // .note.gnu.property section containing a bitfield of feature bits like the 990 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 991 // 992 // Since we merge bitmaps from multiple object files to create a new 993 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 994 // file's .note.gnu.property section. 995 if (name == ".note.gnu.property") { 996 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 997 return &InputSection::discarded; 998 } 999 1000 // Split stacks is a feature to support a discontiguous stack, 1001 // commonly used in the programming language Go. For the details, 1002 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1003 // for split stack will include a .note.GNU-split-stack section. 1004 if (name == ".note.GNU-split-stack") { 1005 if (config->relocatable) { 1006 error( 1007 "cannot mix split-stack and non-split-stack in a relocatable link"); 1008 return &InputSection::discarded; 1009 } 1010 this->splitStack = true; 1011 return &InputSection::discarded; 1012 } 1013 1014 // An object file cmpiled for split stack, but where some of the 1015 // functions were compiled with the no_split_stack_attribute will 1016 // include a .note.GNU-no-split-stack section. 1017 if (name == ".note.GNU-no-split-stack") { 1018 this->someNoSplitStack = true; 1019 return &InputSection::discarded; 1020 } 1021 1022 // Strip existing .note.gnu.build-id sections so that the output won't have 1023 // more than one build-id. This is not usually a problem because input 1024 // object files normally don't have .build-id sections, but you can create 1025 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 1026 // against it. 1027 if (name == ".note.gnu.build-id") 1028 return &InputSection::discarded; 1029 } 1030 1031 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1032 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1033 // sections. Drop those sections to avoid duplicate symbol errors. 1034 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1035 // fixed for a while. 1036 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1037 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1038 return &InputSection::discarded; 1039 1040 // The linker merges EH (exception handling) frames and creates a 1041 // .eh_frame_hdr section for runtime. So we handle them with a special 1042 // class. For relocatable outputs, they are just passed through. 1043 if (name == ".eh_frame" && !config->relocatable) 1044 return make<EhInputSection>(*this, sec, name); 1045 1046 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1047 return make<MergeInputSection>(*this, sec, name); 1048 return make<InputSection>(*this, sec, name); 1049 } 1050 1051 // Initialize this->Symbols. this->Symbols is a parallel array as 1052 // its corresponding ELF symbol table. 1053 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1054 ArrayRef<InputSectionBase *> sections(this->sections); 1055 SymbolTable &symtab = *elf::symtab; 1056 1057 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1058 symbols.resize(eSyms.size()); 1059 SymbolUnion *locals = 1060 firstGlobal == 0 1061 ? nullptr 1062 : getSpecificAllocSingleton<SymbolUnion>().Allocate(firstGlobal); 1063 1064 for (size_t i = 0, end = firstGlobal; i != end; ++i) { 1065 const Elf_Sym &eSym = eSyms[i]; 1066 uint32_t secIdx = getSectionIndex(eSym); 1067 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1068 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1069 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL)) 1070 error(toString(this) + ": non-local symbol (" + Twine(i) + 1071 ") found at index < .symtab's sh_info (" + Twine(end) + ")"); 1072 1073 InputSectionBase *sec = sections[secIdx]; 1074 uint8_t type = eSym.getType(); 1075 if (type == STT_FILE) 1076 sourceFile = CHECK(eSym.getName(stringTable), this); 1077 if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name)) 1078 fatal(toString(this) + ": invalid symbol name offset"); 1079 StringRefZ name = stringTable.data() + eSym.st_name; 1080 1081 symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1082 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1083 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1084 /*discardedSecIdx=*/secIdx); 1085 else 1086 new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type, 1087 eSym.st_value, eSym.st_size, sec); 1088 } 1089 1090 // Some entries have been filled by LazyObjFile. 1091 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1092 if (!symbols[i]) 1093 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1094 1095 // Perform symbol resolution on non-local symbols. 1096 SmallVector<unsigned, 32> undefineds; 1097 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1098 const Elf_Sym &eSym = eSyms[i]; 1099 uint8_t binding = eSym.getBinding(); 1100 if (LLVM_UNLIKELY(binding == STB_LOCAL)) { 1101 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1102 ") found at index >= .symtab's sh_info (" + 1103 Twine(firstGlobal) + ")"); 1104 continue; 1105 } 1106 uint32_t secIdx = getSectionIndex(eSym); 1107 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1108 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1109 InputSectionBase *sec = sections[secIdx]; 1110 uint8_t stOther = eSym.st_other; 1111 uint8_t type = eSym.getType(); 1112 uint64_t value = eSym.st_value; 1113 uint64_t size = eSym.st_size; 1114 1115 if (eSym.st_shndx == SHN_UNDEF) { 1116 undefineds.push_back(i); 1117 continue; 1118 } 1119 1120 Symbol *sym = symbols[i]; 1121 const StringRef name = sym->getName(); 1122 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) { 1123 if (value == 0 || value >= UINT32_MAX) 1124 fatal(toString(this) + ": common symbol '" + name + 1125 "' has invalid alignment: " + Twine(value)); 1126 hasCommonSyms = true; 1127 sym->resolve( 1128 CommonSymbol{this, name, binding, stOther, type, value, size}); 1129 continue; 1130 } 1131 1132 // If a defined symbol is in a discarded section, handle it as if it 1133 // were an undefined symbol. Such symbol doesn't comply with the 1134 // standard, but in practice, a .eh_frame often directly refer 1135 // COMDAT member sections, and if a comdat group is discarded, some 1136 // defined symbol in a .eh_frame becomes dangling symbols. 1137 if (sec == &InputSection::discarded) { 1138 Undefined und{this, name, binding, stOther, type, secIdx}; 1139 // !ArchiveFile::parsed or !LazyObjFile::lazy means that the file 1140 // containing this object has not finished processing, i.e. this symbol is 1141 // a result of a lazy symbol extract. We should demote the lazy symbol to 1142 // an Undefined so that any relocations outside of the group to it will 1143 // trigger a discarded section error. 1144 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1145 !cast<ArchiveFile>(sym->file)->parsed) || 1146 (sym->symbolKind == Symbol::LazyObjectKind && !sym->file->lazy)) { 1147 sym->replace(und); 1148 // Prevent LTO from internalizing the symbol in case there is a 1149 // reference to this symbol from this file. 1150 sym->isUsedInRegularObj = true; 1151 } else 1152 sym->resolve(und); 1153 continue; 1154 } 1155 1156 // Handle global defined symbols. 1157 if (binding == STB_GLOBAL || binding == STB_WEAK || 1158 binding == STB_GNU_UNIQUE) { 1159 sym->resolve( 1160 Defined{this, name, binding, stOther, type, value, size, sec}); 1161 continue; 1162 } 1163 1164 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1165 } 1166 1167 // Undefined symbols (excluding those defined relative to non-prevailing 1168 // sections) can trigger recursive extract. Process defined symbols first so 1169 // that the relative order between a defined symbol and an undefined symbol 1170 // does not change the symbol resolution behavior. In addition, a set of 1171 // interconnected symbols will all be resolved to the same file, instead of 1172 // being resolved to different files. 1173 for (unsigned i : undefineds) { 1174 const Elf_Sym &eSym = eSyms[i]; 1175 Symbol *sym = symbols[i]; 1176 sym->resolve(Undefined{this, sym->getName(), eSym.getBinding(), 1177 eSym.st_other, eSym.getType()}); 1178 sym->referenced = true; 1179 } 1180 } 1181 1182 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1183 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1184 file(std::move(file)) {} 1185 1186 void ArchiveFile::parse() { 1187 SymbolTable &symtab = *elf::symtab; 1188 for (const Archive::Symbol &sym : file->symbols()) 1189 symtab.addSymbol(LazyArchive{*this, sym}); 1190 1191 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1192 // archive has been processed. 1193 parsed = true; 1194 } 1195 1196 // Returns a buffer pointing to a member file containing a given symbol. 1197 void ArchiveFile::extract(const Archive::Symbol &sym) { 1198 Archive::Child c = 1199 CHECK(sym.getMember(), toString(this) + 1200 ": could not get the member for symbol " + 1201 toELFString(sym)); 1202 1203 if (!seen.insert(c.getChildOffset()).second) 1204 return; 1205 1206 MemoryBufferRef mb = 1207 CHECK(c.getMemoryBufferRef(), 1208 toString(this) + 1209 ": could not get the buffer for the member defining symbol " + 1210 toELFString(sym)); 1211 1212 if (tar && c.getParent()->isThin()) 1213 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1214 1215 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1216 file->groupId = groupId; 1217 parseFile(file); 1218 } 1219 1220 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1221 // A tentative definition will be promoted to a global definition if there are 1222 // no non-tentative definitions to dominate it. When we hold a tentative 1223 // definition to a symbol and are inspecting archive members for inclusion 1224 // there are 2 ways we can proceed: 1225 // 1226 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1227 // tentative to real definition has already happened) and not inspect 1228 // archive members for Global/Weak definitions to replace the tentative 1229 // definition. An archive member would only be included if it satisfies some 1230 // other undefined symbol. This is the behavior Gold uses. 1231 // 1232 // 2) Consider the tentative definition as still undefined (ie the promotion to 1233 // a real definition happens only after all symbol resolution is done). 1234 // The linker searches archive members for STB_GLOBAL definitions to 1235 // replace the tentative definition with. This is the behavior used by 1236 // GNU ld. 1237 // 1238 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1239 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1240 // (pre F90) FORTRAN code that is packaged into an archive. 1241 // 1242 // The following functions search archive members for definitions to replace 1243 // tentative definitions (implementing behavior 2). 1244 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1245 StringRef archiveName) { 1246 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1247 for (const irsymtab::Reader::SymbolRef &sym : 1248 symtabFile.TheReader.symbols()) { 1249 if (sym.isGlobal() && sym.getName() == symName) 1250 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1251 } 1252 return false; 1253 } 1254 1255 template <class ELFT> 1256 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1257 StringRef archiveName) { 1258 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1259 StringRef stringtable = obj->getStringTable(); 1260 1261 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1262 Expected<StringRef> name = sym.getName(stringtable); 1263 if (name && name.get() == symName) 1264 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1265 !sym.isCommon(); 1266 } 1267 return false; 1268 } 1269 1270 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1271 StringRef archiveName) { 1272 switch (getELFKind(mb, archiveName)) { 1273 case ELF32LEKind: 1274 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1275 case ELF32BEKind: 1276 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1277 case ELF64LEKind: 1278 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1279 case ELF64BEKind: 1280 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1281 default: 1282 llvm_unreachable("getELFKind"); 1283 } 1284 } 1285 1286 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) { 1287 Archive::Child c = 1288 CHECK(sym.getMember(), toString(this) + 1289 ": could not get the member for symbol " + 1290 toELFString(sym)); 1291 MemoryBufferRef mb = 1292 CHECK(c.getMemoryBufferRef(), 1293 toString(this) + 1294 ": could not get the buffer for the member defining symbol " + 1295 toELFString(sym)); 1296 1297 if (isBitcode(mb)) 1298 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1299 1300 return isNonCommonDef(mb, sym.getName(), getName()); 1301 } 1302 1303 size_t ArchiveFile::getMemberCount() const { 1304 size_t count = 0; 1305 Error err = Error::success(); 1306 for (const Archive::Child &c : file->children(err)) { 1307 (void)c; 1308 ++count; 1309 } 1310 // This function is used by --print-archive-stats=, where an error does not 1311 // really matter. 1312 consumeError(std::move(err)); 1313 return count; 1314 } 1315 1316 unsigned SharedFile::vernauxNum; 1317 1318 // Parse the version definitions in the object file if present, and return a 1319 // vector whose nth element contains a pointer to the Elf_Verdef for version 1320 // identifier n. Version identifiers that are not definitions map to nullptr. 1321 template <typename ELFT> 1322 static SmallVector<const void *, 0> 1323 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1324 if (!sec) 1325 return {}; 1326 1327 // Build the Verdefs array by following the chain of Elf_Verdef objects 1328 // from the start of the .gnu.version_d section. 1329 SmallVector<const void *, 0> verdefs; 1330 const uint8_t *verdef = base + sec->sh_offset; 1331 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1332 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1333 verdef += curVerdef->vd_next; 1334 unsigned verdefIndex = curVerdef->vd_ndx; 1335 if (verdefIndex >= verdefs.size()) 1336 verdefs.resize(verdefIndex + 1); 1337 verdefs[verdefIndex] = curVerdef; 1338 } 1339 return verdefs; 1340 } 1341 1342 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1343 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1344 // implement sophisticated error checking like in llvm-readobj because the value 1345 // of such diagnostics is low. 1346 template <typename ELFT> 1347 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1348 const typename ELFT::Shdr *sec) { 1349 if (!sec) 1350 return {}; 1351 std::vector<uint32_t> verneeds; 1352 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1353 const uint8_t *verneedBuf = data.begin(); 1354 for (unsigned i = 0; i != sec->sh_info; ++i) { 1355 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1356 fatal(toString(this) + " has an invalid Verneed"); 1357 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1358 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1359 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1360 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1361 fatal(toString(this) + " has an invalid Vernaux"); 1362 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1363 if (aux->vna_name >= this->stringTable.size()) 1364 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1365 uint16_t version = aux->vna_other & VERSYM_VERSION; 1366 if (version >= verneeds.size()) 1367 verneeds.resize(version + 1); 1368 verneeds[version] = aux->vna_name; 1369 vernauxBuf += aux->vna_next; 1370 } 1371 verneedBuf += vn->vn_next; 1372 } 1373 return verneeds; 1374 } 1375 1376 // We do not usually care about alignments of data in shared object 1377 // files because the loader takes care of it. However, if we promote a 1378 // DSO symbol to point to .bss due to copy relocation, we need to keep 1379 // the original alignment requirements. We infer it in this function. 1380 template <typename ELFT> 1381 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1382 const typename ELFT::Sym &sym) { 1383 uint64_t ret = UINT64_MAX; 1384 if (sym.st_value) 1385 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1386 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1387 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1388 return (ret > UINT32_MAX) ? 0 : ret; 1389 } 1390 1391 // Fully parse the shared object file. 1392 // 1393 // This function parses symbol versions. If a DSO has version information, 1394 // the file has a ".gnu.version_d" section which contains symbol version 1395 // definitions. Each symbol is associated to one version through a table in 1396 // ".gnu.version" section. That table is a parallel array for the symbol 1397 // table, and each table entry contains an index in ".gnu.version_d". 1398 // 1399 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1400 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1401 // ".gnu.version_d". 1402 // 1403 // The file format for symbol versioning is perhaps a bit more complicated 1404 // than necessary, but you can easily understand the code if you wrap your 1405 // head around the data structure described above. 1406 template <class ELFT> void SharedFile::parse() { 1407 using Elf_Dyn = typename ELFT::Dyn; 1408 using Elf_Shdr = typename ELFT::Shdr; 1409 using Elf_Sym = typename ELFT::Sym; 1410 using Elf_Verdef = typename ELFT::Verdef; 1411 using Elf_Versym = typename ELFT::Versym; 1412 1413 ArrayRef<Elf_Dyn> dynamicTags; 1414 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1415 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>(); 1416 1417 const Elf_Shdr *versymSec = nullptr; 1418 const Elf_Shdr *verdefSec = nullptr; 1419 const Elf_Shdr *verneedSec = nullptr; 1420 1421 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1422 for (const Elf_Shdr &sec : sections) { 1423 switch (sec.sh_type) { 1424 default: 1425 continue; 1426 case SHT_DYNAMIC: 1427 dynamicTags = 1428 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1429 break; 1430 case SHT_GNU_versym: 1431 versymSec = &sec; 1432 break; 1433 case SHT_GNU_verdef: 1434 verdefSec = &sec; 1435 break; 1436 case SHT_GNU_verneed: 1437 verneedSec = &sec; 1438 break; 1439 } 1440 } 1441 1442 if (versymSec && numELFSyms == 0) { 1443 error("SHT_GNU_versym should be associated with symbol table"); 1444 return; 1445 } 1446 1447 // Search for a DT_SONAME tag to initialize this->soName. 1448 for (const Elf_Dyn &dyn : dynamicTags) { 1449 if (dyn.d_tag == DT_NEEDED) { 1450 uint64_t val = dyn.getVal(); 1451 if (val >= this->stringTable.size()) 1452 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1453 dtNeeded.push_back(this->stringTable.data() + val); 1454 } else if (dyn.d_tag == DT_SONAME) { 1455 uint64_t val = dyn.getVal(); 1456 if (val >= this->stringTable.size()) 1457 fatal(toString(this) + ": invalid DT_SONAME entry"); 1458 soName = this->stringTable.data() + val; 1459 } 1460 } 1461 1462 // DSOs are uniquified not by filename but by soname. 1463 DenseMap<StringRef, SharedFile *>::iterator it; 1464 bool wasInserted; 1465 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1466 1467 // If a DSO appears more than once on the command line with and without 1468 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1469 // user can add an extra DSO with --no-as-needed to force it to be added to 1470 // the dependency list. 1471 it->second->isNeeded |= isNeeded; 1472 if (!wasInserted) 1473 return; 1474 1475 sharedFiles.push_back(this); 1476 1477 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1478 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1479 1480 // Parse ".gnu.version" section which is a parallel array for the symbol 1481 // table. If a given file doesn't have a ".gnu.version" section, we use 1482 // VER_NDX_GLOBAL. 1483 size_t size = numELFSyms - firstGlobal; 1484 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1485 if (versymSec) { 1486 ArrayRef<Elf_Versym> versym = 1487 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1488 this) 1489 .slice(firstGlobal); 1490 for (size_t i = 0; i < size; ++i) 1491 versyms[i] = versym[i].vs_index; 1492 } 1493 1494 // System libraries can have a lot of symbols with versions. Using a 1495 // fixed buffer for computing the versions name (foo@ver) can save a 1496 // lot of allocations. 1497 SmallString<0> versionedNameBuffer; 1498 1499 // Add symbols to the symbol table. 1500 SymbolTable &symtab = *elf::symtab; 1501 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1502 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1503 const Elf_Sym &sym = syms[i]; 1504 1505 // ELF spec requires that all local symbols precede weak or global 1506 // symbols in each symbol table, and the index of first non-local symbol 1507 // is stored to sh_info. If a local symbol appears after some non-local 1508 // symbol, that's a violation of the spec. 1509 StringRef name = CHECK(sym.getName(stringTable), this); 1510 if (sym.getBinding() == STB_LOCAL) { 1511 warn("found local symbol '" + name + 1512 "' in global part of symbol table in file " + toString(this)); 1513 continue; 1514 } 1515 1516 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1517 if (sym.isUndefined()) { 1518 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1519 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1520 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1521 if (idx >= verneeds.size()) { 1522 error("corrupt input file: version need index " + Twine(idx) + 1523 " for symbol " + name + " is out of bounds\n>>> defined in " + 1524 toString(this)); 1525 continue; 1526 } 1527 StringRef verName = stringTable.data() + verneeds[idx]; 1528 versionedNameBuffer.clear(); 1529 name = 1530 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1531 } 1532 Symbol *s = symtab.addSymbol( 1533 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1534 s->exportDynamic = true; 1535 if (s->isUndefined() && sym.getBinding() != STB_WEAK && 1536 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1537 requiredSymbols.push_back(s); 1538 continue; 1539 } 1540 1541 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1542 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1543 // workaround for this bug. 1544 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1545 name == "_gp_disp") 1546 continue; 1547 1548 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1549 if (!(versyms[i] & VERSYM_HIDDEN)) { 1550 symtab.addSymbol(SharedSymbol{*this, name, sym.getBinding(), sym.st_other, 1551 sym.getType(), sym.st_value, sym.st_size, 1552 alignment, idx}); 1553 } 1554 1555 // Also add the symbol with the versioned name to handle undefined symbols 1556 // with explicit versions. 1557 if (idx == VER_NDX_GLOBAL) 1558 continue; 1559 1560 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1561 error("corrupt input file: version definition index " + Twine(idx) + 1562 " for symbol " + name + " is out of bounds\n>>> defined in " + 1563 toString(this)); 1564 continue; 1565 } 1566 1567 StringRef verName = 1568 stringTable.data() + 1569 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1570 versionedNameBuffer.clear(); 1571 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1572 symtab.addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1573 sym.st_other, sym.getType(), sym.st_value, 1574 sym.st_size, alignment, idx}); 1575 } 1576 } 1577 1578 static ELFKind getBitcodeELFKind(const Triple &t) { 1579 if (t.isLittleEndian()) 1580 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1581 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1582 } 1583 1584 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1585 switch (t.getArch()) { 1586 case Triple::aarch64: 1587 case Triple::aarch64_be: 1588 return EM_AARCH64; 1589 case Triple::amdgcn: 1590 case Triple::r600: 1591 return EM_AMDGPU; 1592 case Triple::arm: 1593 case Triple::thumb: 1594 return EM_ARM; 1595 case Triple::avr: 1596 return EM_AVR; 1597 case Triple::hexagon: 1598 return EM_HEXAGON; 1599 case Triple::mips: 1600 case Triple::mipsel: 1601 case Triple::mips64: 1602 case Triple::mips64el: 1603 return EM_MIPS; 1604 case Triple::msp430: 1605 return EM_MSP430; 1606 case Triple::ppc: 1607 case Triple::ppcle: 1608 return EM_PPC; 1609 case Triple::ppc64: 1610 case Triple::ppc64le: 1611 return EM_PPC64; 1612 case Triple::riscv32: 1613 case Triple::riscv64: 1614 return EM_RISCV; 1615 case Triple::x86: 1616 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1617 case Triple::x86_64: 1618 return EM_X86_64; 1619 default: 1620 error(path + ": could not infer e_machine from bitcode target triple " + 1621 t.str()); 1622 return EM_NONE; 1623 } 1624 } 1625 1626 static uint8_t getOsAbi(const Triple &t) { 1627 switch (t.getOS()) { 1628 case Triple::AMDHSA: 1629 return ELF::ELFOSABI_AMDGPU_HSA; 1630 case Triple::AMDPAL: 1631 return ELF::ELFOSABI_AMDGPU_PAL; 1632 case Triple::Mesa3D: 1633 return ELF::ELFOSABI_AMDGPU_MESA3D; 1634 default: 1635 return ELF::ELFOSABI_NONE; 1636 } 1637 } 1638 1639 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1640 uint64_t offsetInArchive, bool lazy) 1641 : InputFile(BitcodeKind, mb) { 1642 this->archiveName = archiveName; 1643 this->lazy = lazy; 1644 1645 std::string path = mb.getBufferIdentifier().str(); 1646 if (config->thinLTOIndexOnly) 1647 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1648 1649 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1650 // name. If two archives define two members with the same name, this 1651 // causes a collision which result in only one of the objects being taken 1652 // into consideration at LTO time (which very likely causes undefined 1653 // symbols later in the link stage). So we append file offset to make 1654 // filename unique. 1655 StringRef name = 1656 archiveName.empty() 1657 ? saver.save(path) 1658 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1659 utostr(offsetInArchive) + ")"); 1660 MemoryBufferRef mbref(mb.getBuffer(), name); 1661 1662 obj = CHECK(lto::InputFile::create(mbref), this); 1663 1664 Triple t(obj->getTargetTriple()); 1665 ekind = getBitcodeELFKind(t); 1666 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1667 osabi = getOsAbi(t); 1668 } 1669 1670 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1671 switch (gvVisibility) { 1672 case GlobalValue::DefaultVisibility: 1673 return STV_DEFAULT; 1674 case GlobalValue::HiddenVisibility: 1675 return STV_HIDDEN; 1676 case GlobalValue::ProtectedVisibility: 1677 return STV_PROTECTED; 1678 } 1679 llvm_unreachable("unknown visibility"); 1680 } 1681 1682 template <class ELFT> 1683 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1684 const lto::InputFile::Symbol &objSym, 1685 BitcodeFile &f) { 1686 StringRef name = saver.save(objSym.getName()); 1687 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1688 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1689 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1690 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1691 1692 int c = objSym.getComdatIndex(); 1693 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1694 Undefined newSym(&f, name, binding, visibility, type); 1695 if (canOmitFromDynSym) 1696 newSym.exportDynamic = false; 1697 Symbol *ret = symtab->addSymbol(newSym); 1698 ret->referenced = true; 1699 return ret; 1700 } 1701 1702 if (objSym.isCommon()) 1703 return symtab->addSymbol( 1704 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1705 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1706 1707 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1708 if (canOmitFromDynSym) 1709 newSym.exportDynamic = false; 1710 return symtab->addSymbol(newSym); 1711 } 1712 1713 template <class ELFT> void BitcodeFile::parse() { 1714 std::vector<bool> keptComdats; 1715 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1716 keptComdats.push_back( 1717 s.second == Comdat::NoDeduplicate || 1718 symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1719 .second); 1720 } 1721 1722 symbols.assign(obj->symbols().size(), nullptr); 1723 for (auto it : llvm::enumerate(obj->symbols())) 1724 symbols[it.index()] = 1725 createBitcodeSymbol<ELFT>(keptComdats, it.value(), *this); 1726 1727 for (auto l : obj->getDependentLibraries()) 1728 addDependentLibrary(l, this); 1729 } 1730 1731 void BitcodeFile::parseLazy() { 1732 SymbolTable &symtab = *elf::symtab; 1733 for (const lto::InputFile::Symbol &sym : obj->symbols()) 1734 if (!sym.isUndefined()) 1735 symtab.addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1736 } 1737 1738 void BinaryFile::parse() { 1739 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1740 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1741 8, data, ".data"); 1742 sections.push_back(section); 1743 1744 // For each input file foo that is embedded to a result as a binary 1745 // blob, we define _binary_foo_{start,end,size} symbols, so that 1746 // user programs can access blobs by name. Non-alphanumeric 1747 // characters in a filename are replaced with underscore. 1748 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1749 for (size_t i = 0; i < s.size(); ++i) 1750 if (!isAlnum(s[i])) 1751 s[i] = '_'; 1752 1753 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1754 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1755 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1756 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1757 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1758 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1759 } 1760 1761 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1762 uint64_t offsetInArchive) { 1763 if (isBitcode(mb)) 1764 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false); 1765 1766 switch (getELFKind(mb, archiveName)) { 1767 case ELF32LEKind: 1768 return make<ObjFile<ELF32LE>>(mb, archiveName); 1769 case ELF32BEKind: 1770 return make<ObjFile<ELF32BE>>(mb, archiveName); 1771 case ELF64LEKind: 1772 return make<ObjFile<ELF64LE>>(mb, archiveName); 1773 case ELF64BEKind: 1774 return make<ObjFile<ELF64BE>>(mb, archiveName); 1775 default: 1776 llvm_unreachable("getELFKind"); 1777 } 1778 } 1779 1780 InputFile *elf::createLazyFile(MemoryBufferRef mb, StringRef archiveName, 1781 uint64_t offsetInArchive) { 1782 if (isBitcode(mb)) 1783 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/true); 1784 1785 auto *file = 1786 cast<ELFFileBase>(createObjectFile(mb, archiveName, offsetInArchive)); 1787 file->lazy = true; 1788 return file; 1789 } 1790 1791 template <class ELFT> void ObjFile<ELFT>::parseLazy() { 1792 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>(); 1793 SymbolTable &symtab = *elf::symtab; 1794 1795 symbols.resize(eSyms.size()); 1796 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1797 if (eSyms[i].st_shndx != SHN_UNDEF) 1798 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1799 1800 // Replace existing symbols with LazyObject symbols. 1801 // 1802 // resolve() may trigger this->extract() if an existing symbol is an undefined 1803 // symbol. If that happens, this function has served its purpose, and we can 1804 // exit from the loop early. 1805 for (Symbol *sym : makeArrayRef(symbols).slice(firstGlobal)) 1806 if (sym) { 1807 sym->resolve(LazyObject{*this, sym->getName()}); 1808 if (!lazy) 1809 return; 1810 } 1811 } 1812 1813 bool InputFile::shouldExtractForCommon(StringRef name) { 1814 if (isBitcode(mb)) 1815 return isBitcodeNonCommonDef(mb, name, archiveName); 1816 1817 return isNonCommonDef(mb, name, archiveName); 1818 } 1819 1820 std::string elf::replaceThinLTOSuffix(StringRef path) { 1821 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1822 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1823 1824 if (path.consume_back(suffix)) 1825 return (path + repl).str(); 1826 return std::string(path); 1827 } 1828 1829 template void BitcodeFile::parse<ELF32LE>(); 1830 template void BitcodeFile::parse<ELF32BE>(); 1831 template void BitcodeFile::parse<ELF64LE>(); 1832 template void BitcodeFile::parse<ELF64BE>(); 1833 1834 template class elf::ObjFile<ELF32LE>; 1835 template class elf::ObjFile<ELF32BE>; 1836 template class elf::ObjFile<ELF64LE>; 1837 template class elf::ObjFile<ELF64BE>; 1838 1839 template void SharedFile::parse<ELF32LE>(); 1840 template void SharedFile::parse<ELF32BE>(); 1841 template void SharedFile::parse<ELF64LE>(); 1842 template void SharedFile::parse<ELF64BE>(); 1843