1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Path.h"
29 #include "llvm/Support/TarWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::object;
35 using namespace llvm::sys;
36 using namespace llvm::sys::fs;
37 
38 using namespace lld;
39 using namespace lld::elf;
40 
41 bool InputFile::IsInGroup;
42 uint32_t InputFile::NextGroupId;
43 std::vector<BinaryFile *> elf::BinaryFiles;
44 std::vector<BitcodeFile *> elf::BitcodeFiles;
45 std::vector<LazyObjFile *> elf::LazyObjFiles;
46 std::vector<InputFile *> elf::ObjectFiles;
47 std::vector<InputFile *> elf::SharedFiles;
48 
49 TarWriter *elf::Tar;
50 
51 InputFile::InputFile(Kind K, MemoryBufferRef M)
52     : MB(M), GroupId(NextGroupId), FileKind(K) {
53   // All files within the same --{start,end}-group get the same group ID.
54   // Otherwise, a new file will get a new group ID.
55   if (!IsInGroup)
56     ++NextGroupId;
57 }
58 
59 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
60   // The --chroot option changes our virtual root directory.
61   // This is useful when you are dealing with files created by --reproduce.
62   if (!Config->Chroot.empty() && Path.startswith("/"))
63     Path = Saver.save(Config->Chroot + Path);
64 
65   log(Path);
66 
67   auto MBOrErr = MemoryBuffer::getFile(Path, -1, false);
68   if (auto EC = MBOrErr.getError()) {
69     error("cannot open " + Path + ": " + EC.message());
70     return None;
71   }
72 
73   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
74   MemoryBufferRef MBRef = MB->getMemBufferRef();
75   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
76 
77   if (Tar)
78     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
79   return MBRef;
80 }
81 
82 // Concatenates arguments to construct a string representing an error location.
83 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
84   std::string Filename = path::filename(Path);
85   std::string Lineno = ":" + std::to_string(Line);
86   if (Filename == Path)
87     return Filename + Lineno;
88   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
89 }
90 
91 template <class ELFT>
92 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
93                                 InputSectionBase &Sec, uint64_t Offset) {
94   // In DWARF, functions and variables are stored to different places.
95   // First, lookup a function for a given offset.
96   if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
97     return createFileLineMsg(Info->FileName, Info->Line);
98 
99   // If it failed, lookup again as a variable.
100   if (Optional<std::pair<std::string, unsigned>> FileLine =
101           File.getVariableLoc(Sym.getName()))
102     return createFileLineMsg(FileLine->first, FileLine->second);
103 
104   // File.SourceFile contains STT_FILE symbol, and that is a last resort.
105   return File.SourceFile;
106 }
107 
108 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
109                                  uint64_t Offset) {
110   if (kind() != ObjKind)
111     return "";
112   switch (Config->EKind) {
113   default:
114     llvm_unreachable("Invalid kind");
115   case ELF32LEKind:
116     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
117   case ELF32BEKind:
118     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
119   case ELF64LEKind:
120     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
121   case ELF64BEKind:
122     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
123   }
124 }
125 
126 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
127   Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this));
128   const DWARFObject &Obj = Dwarf->getDWARFObj();
129   DwarfLine.reset(new DWARFDebugLine);
130   DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE,
131                               Config->Wordsize);
132 
133   for (std::unique_ptr<DWARFCompileUnit> &CU : Dwarf->compile_units()) {
134     auto Report = [](Error Err) {
135       handleAllErrors(std::move(Err),
136                       [](ErrorInfoBase &Info) { warn(Info.message()); });
137     };
138     Expected<const DWARFDebugLine::LineTable *> ExpectedLT =
139         Dwarf->getLineTableForUnit(CU.get(), Report);
140     const DWARFDebugLine::LineTable *LT = nullptr;
141     if (ExpectedLT)
142       LT = *ExpectedLT;
143     else
144       Report(ExpectedLT.takeError());
145     if (!LT)
146       continue;
147     LineTables.push_back(LT);
148 
149     // Loop over variable records and insert them to VariableLoc.
150     for (const auto &Entry : CU->dies()) {
151       DWARFDie Die(CU.get(), &Entry);
152       // Skip all tags that are not variables.
153       if (Die.getTag() != dwarf::DW_TAG_variable)
154         continue;
155 
156       // Skip if a local variable because we don't need them for generating
157       // error messages. In general, only non-local symbols can fail to be
158       // linked.
159       if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
160         continue;
161 
162       // Get the source filename index for the variable.
163       unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
164       if (!LT->hasFileAtIndex(File))
165         continue;
166 
167       // Get the line number on which the variable is declared.
168       unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
169 
170       // Here we want to take the variable name to add it into VariableLoc.
171       // Variable can have regular and linkage name associated. At first, we try
172       // to get linkage name as it can be different, for example when we have
173       // two variables in different namespaces of the same object. Use common
174       // name otherwise, but handle the case when it also absent in case if the
175       // input object file lacks some debug info.
176       StringRef Name =
177           dwarf::toString(Die.find(dwarf::DW_AT_linkage_name),
178                           dwarf::toString(Die.find(dwarf::DW_AT_name), ""));
179       if (!Name.empty())
180         VariableLoc.insert({Name, {LT, File, Line}});
181     }
182   }
183 }
184 
185 // Returns the pair of file name and line number describing location of data
186 // object (variable, array, etc) definition.
187 template <class ELFT>
188 Optional<std::pair<std::string, unsigned>>
189 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
190   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
191 
192   // Return if we have no debug information about data object.
193   auto It = VariableLoc.find(Name);
194   if (It == VariableLoc.end())
195     return None;
196 
197   // Take file name string from line table.
198   std::string FileName;
199   if (!It->second.LT->getFileNameByIndex(
200           It->second.File, nullptr,
201           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
202     return None;
203 
204   return std::make_pair(FileName, It->second.Line);
205 }
206 
207 // Returns source line information for a given offset
208 // using DWARF debug info.
209 template <class ELFT>
210 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
211                                                   uint64_t Offset) {
212   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
213 
214   // Use fake address calcuated by adding section file offset and offset in
215   // section. See comments for ObjectInfo class.
216   DILineInfo Info;
217   for (const llvm::DWARFDebugLine::LineTable *LT : LineTables)
218     if (LT->getFileLineInfoForAddress(
219             S->getOffsetInFile() + Offset, nullptr,
220             DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info))
221       return Info;
222   return None;
223 }
224 
225 // Returns source line information for a given offset using DWARF debug info.
226 template <class ELFT>
227 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) {
228   if (Optional<DILineInfo> Info = getDILineInfo(S, Offset))
229     return Info->FileName + ":" + std::to_string(Info->Line);
230   return "";
231 }
232 
233 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
234 std::string lld::toString(const InputFile *F) {
235   if (!F)
236     return "<internal>";
237 
238   if (F->ToStringCache.empty()) {
239     if (F->ArchiveName.empty())
240       F->ToStringCache = F->getName();
241     else
242       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
243   }
244   return F->ToStringCache;
245 }
246 
247 template <class ELFT>
248 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
249   if (ELFT::TargetEndianness == support::little)
250     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
251   else
252     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
253 
254   EMachine = getObj().getHeader()->e_machine;
255   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
256 }
257 
258 template <class ELFT>
259 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
260   return makeArrayRef(ELFSyms.begin() + FirstGlobal, ELFSyms.end());
261 }
262 
263 template <class ELFT>
264 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
265   return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this);
266 }
267 
268 template <class ELFT>
269 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
270                                    const Elf_Shdr *Symtab) {
271   FirstGlobal = Symtab->sh_info;
272   ELFSyms = CHECK(getObj().symbols(Symtab), this);
273   if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size())
274     fatal(toString(this) + ": invalid sh_info in symbol table");
275 
276   StringTable =
277       CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this);
278 }
279 
280 template <class ELFT>
281 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
282     : ELFFileBase<ELFT>(Base::ObjKind, M) {
283   this->ArchiveName = ArchiveName;
284 }
285 
286 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
287   if (this->Symbols.empty())
288     return {};
289   return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1);
290 }
291 
292 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
293   return makeArrayRef(this->Symbols).slice(this->FirstGlobal);
294 }
295 
296 template <class ELFT>
297 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
298   // Read a section table. JustSymbols is usually false.
299   if (this->JustSymbols)
300     initializeJustSymbols();
301   else
302     initializeSections(ComdatGroups);
303 
304   // Read a symbol table.
305   initializeSymbols();
306 }
307 
308 // Sections with SHT_GROUP and comdat bits define comdat section groups.
309 // They are identified and deduplicated by group name. This function
310 // returns a group name.
311 template <class ELFT>
312 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
313                                               const Elf_Shdr &Sec) {
314   // Group signatures are stored as symbol names in object files.
315   // sh_info contains a symbol index, so we fetch a symbol and read its name.
316   if (this->ELFSyms.empty())
317     this->initSymtab(
318         Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this));
319 
320   const Elf_Sym *Sym =
321       CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this);
322   StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
323 
324   // As a special case, if a symbol is a section symbol and has no name,
325   // we use a section name as a signature.
326   //
327   // Such SHT_GROUP sections are invalid from the perspective of the ELF
328   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
329   // older produce such sections as outputs for the -r option, so we need
330   // a bug-compatibility.
331   if (Signature.empty() && Sym->getType() == STT_SECTION)
332     return getSectionName(Sec);
333   return Signature;
334 }
335 
336 template <class ELFT>
337 ArrayRef<typename ObjFile<ELFT>::Elf_Word>
338 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
339   const ELFFile<ELFT> &Obj = this->getObj();
340   ArrayRef<Elf_Word> Entries =
341       CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
342   if (Entries.empty() || Entries[0] != GRP_COMDAT)
343     fatal(toString(this) + ": unsupported SHT_GROUP format");
344   return Entries.slice(1);
345 }
346 
347 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
348   // On a regular link we don't merge sections if -O0 (default is -O1). This
349   // sometimes makes the linker significantly faster, although the output will
350   // be bigger.
351   //
352   // Doing the same for -r would create a problem as it would combine sections
353   // with different sh_entsize. One option would be to just copy every SHF_MERGE
354   // section as is to the output. While this would produce a valid ELF file with
355   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
356   // they see two .debug_str. We could have separate logic for combining
357   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
358   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
359   // logic for -r.
360   if (Config->Optimize == 0 && !Config->Relocatable)
361     return false;
362 
363   // A mergeable section with size 0 is useless because they don't have
364   // any data to merge. A mergeable string section with size 0 can be
365   // argued as invalid because it doesn't end with a null character.
366   // We'll avoid a mess by handling them as if they were non-mergeable.
367   if (Sec.sh_size == 0)
368     return false;
369 
370   // Check for sh_entsize. The ELF spec is not clear about the zero
371   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
372   // the section does not hold a table of fixed-size entries". We know
373   // that Rust 1.13 produces a string mergeable section with a zero
374   // sh_entsize. Here we just accept it rather than being picky about it.
375   uint64_t EntSize = Sec.sh_entsize;
376   if (EntSize == 0)
377     return false;
378   if (Sec.sh_size % EntSize)
379     fatal(toString(this) +
380           ": SHF_MERGE section size must be a multiple of sh_entsize");
381 
382   uint64_t Flags = Sec.sh_flags;
383   if (!(Flags & SHF_MERGE))
384     return false;
385   if (Flags & SHF_WRITE)
386     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
387 
388   return true;
389 }
390 
391 // This is for --just-symbols.
392 //
393 // --just-symbols is a very minor feature that allows you to link your
394 // output against other existing program, so that if you load both your
395 // program and the other program into memory, your output can refer the
396 // other program's symbols.
397 //
398 // When the option is given, we link "just symbols". The section table is
399 // initialized with null pointers.
400 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
401   ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this);
402   this->Sections.resize(ObjSections.size());
403 
404   for (const Elf_Shdr &Sec : ObjSections) {
405     if (Sec.sh_type != SHT_SYMTAB)
406       continue;
407     this->initSymtab(ObjSections, &Sec);
408     return;
409   }
410 }
411 
412 template <class ELFT>
413 void ObjFile<ELFT>::initializeSections(
414     DenseSet<CachedHashStringRef> &ComdatGroups) {
415   const ELFFile<ELFT> &Obj = this->getObj();
416 
417   ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this);
418   uint64_t Size = ObjSections.size();
419   this->Sections.resize(Size);
420   this->SectionStringTable =
421       CHECK(Obj.getSectionStringTable(ObjSections), this);
422 
423   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
424     if (this->Sections[I] == &InputSection::Discarded)
425       continue;
426     const Elf_Shdr &Sec = ObjSections[I];
427 
428     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
429     // if -r is given, we'll let the final link discard such sections.
430     // This is compatible with GNU.
431     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
432       this->Sections[I] = &InputSection::Discarded;
433       continue;
434     }
435 
436     switch (Sec.sh_type) {
437     case SHT_GROUP: {
438       // De-duplicate section groups by their signatures.
439       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
440       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
441       this->Sections[I] = &InputSection::Discarded;
442 
443       // If it is a new section group, we want to keep group members.
444       // Group leader sections, which contain indices of group members, are
445       // discarded because they are useless beyond this point. The only
446       // exception is the -r option because in order to produce re-linkable
447       // object files, we want to pass through basically everything.
448       if (IsNew) {
449         if (Config->Relocatable)
450           this->Sections[I] = createInputSection(Sec);
451         continue;
452       }
453 
454       // Otherwise, discard group members.
455       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
456         if (SecIndex >= Size)
457           fatal(toString(this) +
458                 ": invalid section index in group: " + Twine(SecIndex));
459         this->Sections[SecIndex] = &InputSection::Discarded;
460       }
461       break;
462     }
463     case SHT_SYMTAB:
464       this->initSymtab(ObjSections, &Sec);
465       break;
466     case SHT_SYMTAB_SHNDX:
467       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
468       break;
469     case SHT_STRTAB:
470     case SHT_NULL:
471       break;
472     default:
473       this->Sections[I] = createInputSection(Sec);
474     }
475 
476     // .ARM.exidx sections have a reverse dependency on the InputSection they
477     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
478     if (Sec.sh_flags & SHF_LINK_ORDER) {
479       if (Sec.sh_link >= this->Sections.size())
480         fatal(toString(this) +
481               ": invalid sh_link index: " + Twine(Sec.sh_link));
482 
483       InputSectionBase *LinkSec = this->Sections[Sec.sh_link];
484       InputSection *IS = cast<InputSection>(this->Sections[I]);
485       LinkSec->DependentSections.push_back(IS);
486       if (!isa<InputSection>(LinkSec))
487         error("a section " + IS->Name +
488               " with SHF_LINK_ORDER should not refer a non-regular "
489               "section: " +
490               toString(LinkSec));
491     }
492   }
493 }
494 
495 // The ARM support in lld makes some use of instructions that are not available
496 // on all ARM architectures. Namely:
497 // - Use of BLX instruction for interworking between ARM and Thumb state.
498 // - Use of the extended Thumb branch encoding in relocation.
499 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
500 // The ARM Attributes section contains information about the architecture chosen
501 // at compile time. We follow the convention that if at least one input object
502 // is compiled with an architecture that supports these features then lld is
503 // permitted to use them.
504 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
505   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
506     return;
507   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
508   switch (Arch) {
509   case ARMBuildAttrs::Pre_v4:
510   case ARMBuildAttrs::v4:
511   case ARMBuildAttrs::v4T:
512     // Architectures prior to v5 do not support BLX instruction
513     break;
514   case ARMBuildAttrs::v5T:
515   case ARMBuildAttrs::v5TE:
516   case ARMBuildAttrs::v5TEJ:
517   case ARMBuildAttrs::v6:
518   case ARMBuildAttrs::v6KZ:
519   case ARMBuildAttrs::v6K:
520     Config->ARMHasBlx = true;
521     // Architectures used in pre-Cortex processors do not support
522     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
523     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
524     break;
525   default:
526     // All other Architectures have BLX and extended branch encoding
527     Config->ARMHasBlx = true;
528     Config->ARMJ1J2BranchEncoding = true;
529     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
530       // All Architectures used in Cortex processors with the exception
531       // of v6-M and v6S-M have the MOVT and MOVW instructions.
532       Config->ARMHasMovtMovw = true;
533     break;
534   }
535 }
536 
537 template <class ELFT>
538 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
539   uint32_t Idx = Sec.sh_info;
540   if (Idx >= this->Sections.size())
541     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
542   InputSectionBase *Target = this->Sections[Idx];
543 
544   // Strictly speaking, a relocation section must be included in the
545   // group of the section it relocates. However, LLVM 3.3 and earlier
546   // would fail to do so, so we gracefully handle that case.
547   if (Target == &InputSection::Discarded)
548     return nullptr;
549 
550   if (!Target)
551     fatal(toString(this) + ": unsupported relocation reference");
552   return Target;
553 }
554 
555 // Create a regular InputSection class that has the same contents
556 // as a given section.
557 static InputSection *toRegularSection(MergeInputSection *Sec) {
558   return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
559                             Sec->Data, Sec->Name);
560 }
561 
562 template <class ELFT>
563 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
564   StringRef Name = getSectionName(Sec);
565 
566   switch (Sec.sh_type) {
567   case SHT_ARM_ATTRIBUTES: {
568     if (Config->EMachine != EM_ARM)
569       break;
570     ARMAttributeParser Attributes;
571     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
572     Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
573     updateSupportedARMFeatures(Attributes);
574     // FIXME: Retain the first attribute section we see. The eglibc ARM
575     // dynamic loaders require the presence of an attribute section for dlopen
576     // to work. In a full implementation we would merge all attribute sections.
577     if (InX::ARMAttributes == nullptr) {
578       InX::ARMAttributes = make<InputSection>(*this, Sec, Name);
579       return InX::ARMAttributes;
580     }
581     return &InputSection::Discarded;
582   }
583   case SHT_RELA:
584   case SHT_REL: {
585     // Find a relocation target section and associate this section with that.
586     // Target may have been discarded if it is in a different section group
587     // and the group is discarded, even though it's a violation of the
588     // spec. We handle that situation gracefully by discarding dangling
589     // relocation sections.
590     InputSectionBase *Target = getRelocTarget(Sec);
591     if (!Target)
592       return nullptr;
593 
594     // This section contains relocation information.
595     // If -r is given, we do not interpret or apply relocation
596     // but just copy relocation sections to output.
597     if (Config->Relocatable)
598       return make<InputSection>(*this, Sec, Name);
599 
600     if (Target->FirstRelocation)
601       fatal(toString(this) +
602             ": multiple relocation sections to one section are not supported");
603 
604     // ELF spec allows mergeable sections with relocations, but they are
605     // rare, and it is in practice hard to merge such sections by contents,
606     // because applying relocations at end of linking changes section
607     // contents. So, we simply handle such sections as non-mergeable ones.
608     // Degrading like this is acceptable because section merging is optional.
609     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
610       Target = toRegularSection(MS);
611       this->Sections[Sec.sh_info] = Target;
612     }
613 
614     if (Sec.sh_type == SHT_RELA) {
615       ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this);
616       Target->FirstRelocation = Rels.begin();
617       Target->NumRelocations = Rels.size();
618       Target->AreRelocsRela = true;
619     } else {
620       ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this);
621       Target->FirstRelocation = Rels.begin();
622       Target->NumRelocations = Rels.size();
623       Target->AreRelocsRela = false;
624     }
625     assert(isUInt<31>(Target->NumRelocations));
626 
627     // Relocation sections processed by the linker are usually removed
628     // from the output, so returning `nullptr` for the normal case.
629     // However, if -emit-relocs is given, we need to leave them in the output.
630     // (Some post link analysis tools need this information.)
631     if (Config->EmitRelocs) {
632       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
633       // We will not emit relocation section if target was discarded.
634       Target->DependentSections.push_back(RelocSec);
635       return RelocSec;
636     }
637     return nullptr;
638   }
639   }
640 
641   // The GNU linker uses .note.GNU-stack section as a marker indicating
642   // that the code in the object file does not expect that the stack is
643   // executable (in terms of NX bit). If all input files have the marker,
644   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
645   // make the stack non-executable. Most object files have this section as
646   // of 2017.
647   //
648   // But making the stack non-executable is a norm today for security
649   // reasons. Failure to do so may result in a serious security issue.
650   // Therefore, we make LLD always add PT_GNU_STACK unless it is
651   // explicitly told to do otherwise (by -z execstack). Because the stack
652   // executable-ness is controlled solely by command line options,
653   // .note.GNU-stack sections are simply ignored.
654   if (Name == ".note.GNU-stack")
655     return &InputSection::Discarded;
656 
657   // Split stacks is a feature to support a discontiguous stack. At least
658   // as of 2017, it seems that the feature is not being used widely.
659   // Only GNU gold supports that. We don't. For the details about that,
660   // see https://gcc.gnu.org/wiki/SplitStacks
661   if (Name == ".note.GNU-split-stack") {
662     error(toString(this) +
663           ": object file compiled with -fsplit-stack is not supported");
664     return &InputSection::Discarded;
665   }
666 
667   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
668   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
669   // sections. Drop those sections to avoid duplicate symbol errors.
670   // FIXME: This is glibc PR20543, we should remove this hack once that has been
671   // fixed for a while.
672   if (Name.startswith(".gnu.linkonce."))
673     return &InputSection::Discarded;
674 
675   // If we are creating a new .build-id section, strip existing .build-id
676   // sections so that the output won't have more than one .build-id.
677   // This is not usually a problem because input object files normally don't
678   // have .build-id sections, but you can create such files by
679   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
680   if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
681     return &InputSection::Discarded;
682 
683   // The linker merges EH (exception handling) frames and creates a
684   // .eh_frame_hdr section for runtime. So we handle them with a special
685   // class. For relocatable outputs, they are just passed through.
686   if (Name == ".eh_frame" && !Config->Relocatable)
687     return make<EhInputSection>(*this, Sec, Name);
688 
689   if (shouldMerge(Sec))
690     return make<MergeInputSection>(*this, Sec, Name);
691   return make<InputSection>(*this, Sec, Name);
692 }
693 
694 template <class ELFT>
695 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
696   return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this);
697 }
698 
699 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
700   this->Symbols.reserve(this->ELFSyms.size());
701   for (const Elf_Sym &Sym : this->ELFSyms)
702     this->Symbols.push_back(createSymbol(&Sym));
703 }
704 
705 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
706   int Binding = Sym->getBinding();
707 
708   uint32_t SecIdx = this->getSectionIndex(*Sym);
709   if (SecIdx >= this->Sections.size())
710     fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
711 
712   InputSectionBase *Sec = this->Sections[SecIdx];
713   uint8_t StOther = Sym->st_other;
714   uint8_t Type = Sym->getType();
715   uint64_t Value = Sym->st_value;
716   uint64_t Size = Sym->st_size;
717 
718   if (Binding == STB_LOCAL) {
719     if (Sym->getType() == STT_FILE)
720       SourceFile = CHECK(Sym->getName(this->StringTable), this);
721 
722     if (this->StringTable.size() <= Sym->st_name)
723       fatal(toString(this) + ": invalid symbol name offset");
724 
725     StringRefZ Name = this->StringTable.data() + Sym->st_name;
726     if (Sym->st_shndx == SHN_UNDEF)
727       return make<Undefined>(this, Name, Binding, StOther, Type);
728 
729     return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
730   }
731 
732   StringRef Name = CHECK(Sym->getName(this->StringTable), this);
733 
734   switch (Sym->st_shndx) {
735   case SHN_UNDEF:
736     return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
737                                       /*CanOmitFromDynSym=*/false, this);
738   case SHN_COMMON:
739     if (Value == 0 || Value >= UINT32_MAX)
740       fatal(toString(this) + ": common symbol '" + Name +
741             "' has invalid alignment: " + Twine(Value));
742     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this);
743   }
744 
745   switch (Binding) {
746   default:
747     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
748   case STB_GLOBAL:
749   case STB_WEAK:
750   case STB_GNU_UNIQUE:
751     if (Sec == &InputSection::Discarded)
752       return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
753                                         /*CanOmitFromDynSym=*/false, this);
754     return Symtab->addRegular(Name, StOther, Type, Value, Size, Binding, Sec,
755                               this);
756   }
757 }
758 
759 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
760     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
761       File(std::move(File)) {}
762 
763 template <class ELFT> void ArchiveFile::parse() {
764   for (const Archive::Symbol &Sym : File->symbols())
765     Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym);
766 }
767 
768 // Returns a buffer pointing to a member file containing a given symbol.
769 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) {
770   Archive::Child C =
771       CHECK(Sym.getMember(), toString(this) +
772                                  ": could not get the member for symbol " +
773                                  Sym.getName());
774 
775   if (!Seen.insert(C.getChildOffset()).second)
776     return nullptr;
777 
778   MemoryBufferRef MB =
779       CHECK(C.getMemoryBufferRef(),
780             toString(this) +
781                 ": could not get the buffer for the member defining symbol " +
782                 Sym.getName());
783 
784   if (Tar && C.getParent()->isThin())
785     Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer());
786 
787   InputFile *File = createObjectFile(
788       MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset());
789   File->GroupId = GroupId;
790   return File;
791 }
792 
793 template <class ELFT>
794 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
795     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
796       IsNeeded(!Config->AsNeeded) {}
797 
798 // Partially parse the shared object file so that we can call
799 // getSoName on this object.
800 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
801   const Elf_Shdr *DynamicSec = nullptr;
802   const ELFFile<ELFT> Obj = this->getObj();
803   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
804 
805   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
806   for (const Elf_Shdr &Sec : Sections) {
807     switch (Sec.sh_type) {
808     default:
809       continue;
810     case SHT_DYNSYM:
811       this->initSymtab(Sections, &Sec);
812       break;
813     case SHT_DYNAMIC:
814       DynamicSec = &Sec;
815       break;
816     case SHT_SYMTAB_SHNDX:
817       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this);
818       break;
819     case SHT_GNU_versym:
820       this->VersymSec = &Sec;
821       break;
822     case SHT_GNU_verdef:
823       this->VerdefSec = &Sec;
824       break;
825     }
826   }
827 
828   if (this->VersymSec && this->ELFSyms.empty())
829     error("SHT_GNU_versym should be associated with symbol table");
830 
831   // Search for a DT_SONAME tag to initialize this->SoName.
832   if (!DynamicSec)
833     return;
834   ArrayRef<Elf_Dyn> Arr =
835       CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this);
836   for (const Elf_Dyn &Dyn : Arr) {
837     if (Dyn.d_tag == DT_SONAME) {
838       uint64_t Val = Dyn.getVal();
839       if (Val >= this->StringTable.size())
840         fatal(toString(this) + ": invalid DT_SONAME entry");
841       SoName = this->StringTable.data() + Val;
842       return;
843     }
844   }
845 }
846 
847 // Parses ".gnu.version" section which is a parallel array for the symbol table.
848 // If a given file doesn't have ".gnu.version" section, returns VER_NDX_GLOBAL.
849 template <class ELFT> std::vector<uint32_t> SharedFile<ELFT>::parseVersyms() {
850   size_t Size = this->ELFSyms.size() - this->FirstGlobal;
851   if (!VersymSec)
852     return std::vector<uint32_t>(Size, VER_NDX_GLOBAL);
853 
854   const char *Base = this->MB.getBuffer().data();
855   const Elf_Versym *Versym =
856       reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
857       this->FirstGlobal;
858 
859   std::vector<uint32_t> Ret(Size);
860   for (size_t I = 0; I < Size; ++I)
861     Ret[I] = Versym[I].vs_index;
862   return Ret;
863 }
864 
865 // Parse the version definitions in the object file if present. Returns a vector
866 // whose nth element contains a pointer to the Elf_Verdef for version identifier
867 // n. Version identifiers that are not definitions map to nullptr.
868 template <class ELFT>
869 std::vector<const typename ELFT::Verdef *> SharedFile<ELFT>::parseVerdefs() {
870   if (!VerdefSec)
871     return {};
872 
873   // We cannot determine the largest verdef identifier without inspecting
874   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
875   // sequentially starting from 1, so we predict that the largest identifier
876   // will be VerdefCount.
877   unsigned VerdefCount = VerdefSec->sh_info;
878   std::vector<const Elf_Verdef *> Verdefs(VerdefCount + 1);
879 
880   // Build the Verdefs array by following the chain of Elf_Verdef objects
881   // from the start of the .gnu.version_d section.
882   const char *Base = this->MB.getBuffer().data();
883   const char *Verdef = Base + VerdefSec->sh_offset;
884   for (unsigned I = 0; I != VerdefCount; ++I) {
885     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
886     Verdef += CurVerdef->vd_next;
887     unsigned VerdefIndex = CurVerdef->vd_ndx;
888     if (Verdefs.size() <= VerdefIndex)
889       Verdefs.resize(VerdefIndex + 1);
890     Verdefs[VerdefIndex] = CurVerdef;
891   }
892 
893   return Verdefs;
894 }
895 
896 // We do not usually care about alignments of data in shared object
897 // files because the loader takes care of it. However, if we promote a
898 // DSO symbol to point to .bss due to copy relocation, we need to keep
899 // the original alignment requirements. We infer it in this function.
900 template <class ELFT>
901 uint32_t SharedFile<ELFT>::getAlignment(ArrayRef<Elf_Shdr> Sections,
902                                         const Elf_Sym &Sym) {
903   uint64_t Ret = UINT64_MAX;
904   if (Sym.st_value)
905     Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
906   if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size())
907     Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign);
908   return (Ret > UINT32_MAX) ? 0 : Ret;
909 }
910 
911 // Fully parse the shared object file. This must be called after parseSoName().
912 //
913 // This function parses symbol versions. If a DSO has version information,
914 // the file has a ".gnu.version_d" section which contains symbol version
915 // definitions. Each symbol is associated to one version through a table in
916 // ".gnu.version" section. That table is a parallel array for the symbol
917 // table, and each table entry contains an index in ".gnu.version_d".
918 //
919 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
920 // VER_NDX_GLOBAL. There's no table entry for these special versions in
921 // ".gnu.version_d".
922 //
923 // The file format for symbol versioning is perhaps a bit more complicated
924 // than necessary, but you can easily understand the code if you wrap your
925 // head around the data structure described above.
926 template <class ELFT> void SharedFile<ELFT>::parseRest() {
927   Verdefs = parseVerdefs();                       // parse .gnu.version_d
928   std::vector<uint32_t> Versyms = parseVersyms(); // parse .gnu.version
929   ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this);
930 
931   // System libraries can have a lot of symbols with versions. Using a
932   // fixed buffer for computing the versions name (foo@ver) can save a
933   // lot of allocations.
934   SmallString<0> VersionedNameBuffer;
935 
936   // Add symbols to the symbol table.
937   ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms();
938   for (size_t I = 0; I < Syms.size(); ++I) {
939     const Elf_Sym &Sym = Syms[I];
940 
941     StringRef Name = CHECK(Sym.getName(this->StringTable), this);
942     if (Sym.isUndefined()) {
943       Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(),
944                                              Sym.st_other, Sym.getType(),
945                                              /*CanOmitFromDynSym=*/false, this);
946       S->ExportDynamic = true;
947       continue;
948     }
949 
950     // ELF spec requires that all local symbols precede weak or global
951     // symbols in each symbol table, and the index of first non-local symbol
952     // is stored to sh_info. If a local symbol appears after some non-local
953     // symbol, that's a violation of the spec.
954     if (Sym.getBinding() == STB_LOCAL) {
955       warn("found local symbol '" + Name +
956            "' in global part of symbol table in file " + toString(this));
957       continue;
958     }
959 
960     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
961     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
962     // workaround for this bug.
963     uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN;
964     if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL &&
965         Name == "_gp_disp")
966       continue;
967 
968     uint64_t Alignment = getAlignment(Sections, Sym);
969     if (!(Versyms[I] & VERSYM_HIDDEN))
970       Symtab->addShared(Name, *this, Sym, Alignment, Idx);
971 
972     // Also add the symbol with the versioned name to handle undefined symbols
973     // with explicit versions.
974     if (Idx == VER_NDX_GLOBAL)
975       continue;
976 
977     if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) {
978       error("corrupt input file: version definition index " + Twine(Idx) +
979             " for symbol " + Name + " is out of bounds\n>>> defined in " +
980             toString(this));
981       continue;
982     }
983 
984     StringRef VerName =
985         this->StringTable.data() + Verdefs[Idx]->getAux()->vda_name;
986     VersionedNameBuffer.clear();
987     Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer);
988     Symtab->addShared(Saver.save(Name), *this, Sym, Alignment, Idx);
989   }
990 }
991 
992 static ELFKind getBitcodeELFKind(const Triple &T) {
993   if (T.isLittleEndian())
994     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
995   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
996 }
997 
998 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
999   switch (T.getArch()) {
1000   case Triple::aarch64:
1001     return EM_AARCH64;
1002   case Triple::arm:
1003   case Triple::thumb:
1004     return EM_ARM;
1005   case Triple::avr:
1006     return EM_AVR;
1007   case Triple::mips:
1008   case Triple::mipsel:
1009   case Triple::mips64:
1010   case Triple::mips64el:
1011     return EM_MIPS;
1012   case Triple::ppc:
1013     return EM_PPC;
1014   case Triple::ppc64:
1015     return EM_PPC64;
1016   case Triple::x86:
1017     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
1018   case Triple::x86_64:
1019     return EM_X86_64;
1020   default:
1021     error(Path + ": could not infer e_machine from bitcode target triple " +
1022           T.str());
1023     return EM_NONE;
1024   }
1025 }
1026 
1027 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
1028                          uint64_t OffsetInArchive)
1029     : InputFile(BitcodeKind, MB) {
1030   this->ArchiveName = ArchiveName;
1031 
1032   std::string Path = MB.getBufferIdentifier().str();
1033   if (Config->ThinLTOIndexOnly)
1034     Path = replaceThinLTOSuffix(MB.getBufferIdentifier());
1035 
1036   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1037   // name. If two archives define two members with the same name, this
1038   // causes a collision which result in only one of the objects being taken
1039   // into consideration at LTO time (which very likely causes undefined
1040   // symbols later in the link stage). So we append file offset to make
1041   // filename unique.
1042   MemoryBufferRef MBRef(
1043       MB.getBuffer(),
1044       Saver.save(ArchiveName + Path +
1045                  (ArchiveName.empty() ? "" : utostr(OffsetInArchive))));
1046 
1047   Obj = CHECK(lto::InputFile::create(MBRef), this);
1048 
1049   Triple T(Obj->getTargetTriple());
1050   EKind = getBitcodeELFKind(T);
1051   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
1052 }
1053 
1054 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
1055   switch (GvVisibility) {
1056   case GlobalValue::DefaultVisibility:
1057     return STV_DEFAULT;
1058   case GlobalValue::HiddenVisibility:
1059     return STV_HIDDEN;
1060   case GlobalValue::ProtectedVisibility:
1061     return STV_PROTECTED;
1062   }
1063   llvm_unreachable("unknown visibility");
1064 }
1065 
1066 template <class ELFT>
1067 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
1068                                    const lto::InputFile::Symbol &ObjSym,
1069                                    BitcodeFile &F) {
1070   StringRef Name = Saver.save(ObjSym.getName());
1071   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1072 
1073   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
1074   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
1075   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
1076 
1077   int C = ObjSym.getComdatIndex();
1078   if (C != -1 && !KeptComdats[C])
1079     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1080                                       CanOmitFromDynSym, &F);
1081 
1082   if (ObjSym.isUndefined())
1083     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1084                                       CanOmitFromDynSym, &F);
1085 
1086   if (ObjSym.isCommon())
1087     return Symtab->addCommon(Name, ObjSym.getCommonSize(),
1088                              ObjSym.getCommonAlignment(), Binding, Visibility,
1089                              STT_OBJECT, F);
1090 
1091   return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym,
1092                             F);
1093 }
1094 
1095 template <class ELFT>
1096 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
1097   std::vector<bool> KeptComdats;
1098   for (StringRef S : Obj->getComdatTable())
1099     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
1100 
1101   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
1102     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
1103 }
1104 
1105 static ELFKind getELFKind(MemoryBufferRef MB) {
1106   unsigned char Size;
1107   unsigned char Endian;
1108   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
1109 
1110   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
1111     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
1112   if (Size != ELFCLASS32 && Size != ELFCLASS64)
1113     fatal(MB.getBufferIdentifier() + ": invalid file class");
1114 
1115   size_t BufSize = MB.getBuffer().size();
1116   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
1117       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
1118     fatal(MB.getBufferIdentifier() + ": file is too short");
1119 
1120   if (Size == ELFCLASS32)
1121     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
1122   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
1123 }
1124 
1125 void BinaryFile::parse() {
1126   ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer());
1127   auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1128                                      8, Data, ".data");
1129   Sections.push_back(Section);
1130 
1131   // For each input file foo that is embedded to a result as a binary
1132   // blob, we define _binary_foo_{start,end,size} symbols, so that
1133   // user programs can access blobs by name. Non-alphanumeric
1134   // characters in a filename are replaced with underscore.
1135   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1136   for (size_t I = 0; I < S.size(); ++I)
1137     if (!isAlnum(S[I]))
1138       S[I] = '_';
1139 
1140   Symtab->addRegular(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0,
1141                      STB_GLOBAL, Section, nullptr);
1142   Symtab->addRegular(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
1143                      Data.size(), 0, STB_GLOBAL, Section, nullptr);
1144   Symtab->addRegular(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
1145                      Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
1146 }
1147 
1148 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1149                                  uint64_t OffsetInArchive) {
1150   if (isBitcode(MB))
1151     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1152 
1153   switch (getELFKind(MB)) {
1154   case ELF32LEKind:
1155     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1156   case ELF32BEKind:
1157     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1158   case ELF64LEKind:
1159     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1160   case ELF64BEKind:
1161     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1162   default:
1163     llvm_unreachable("getELFKind");
1164   }
1165 }
1166 
1167 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1168   switch (getELFKind(MB)) {
1169   case ELF32LEKind:
1170     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1171   case ELF32BEKind:
1172     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1173   case ELF64LEKind:
1174     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1175   case ELF64BEKind:
1176     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1177   default:
1178     llvm_unreachable("getELFKind");
1179   }
1180 }
1181 
1182 MemoryBufferRef LazyObjFile::getBuffer() {
1183   if (AddedToLink)
1184     return MemoryBufferRef();
1185   AddedToLink = true;
1186   return MB;
1187 }
1188 
1189 InputFile *LazyObjFile::fetch() {
1190   MemoryBufferRef MBRef = getBuffer();
1191   if (MBRef.getBuffer().empty())
1192     return nullptr;
1193 
1194   InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1195   File->GroupId = GroupId;
1196   return File;
1197 }
1198 
1199 template <class ELFT> void LazyObjFile::parse() {
1200   // A lazy object file wraps either a bitcode file or an ELF file.
1201   if (isBitcode(this->MB)) {
1202     std::unique_ptr<lto::InputFile> Obj =
1203         CHECK(lto::InputFile::create(this->MB), this);
1204     for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1205       if (!Sym.isUndefined())
1206         Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this);
1207     return;
1208   }
1209 
1210   switch (getELFKind(this->MB)) {
1211   case ELF32LEKind:
1212     addElfSymbols<ELF32LE>();
1213     return;
1214   case ELF32BEKind:
1215     addElfSymbols<ELF32BE>();
1216     return;
1217   case ELF64LEKind:
1218     addElfSymbols<ELF64LE>();
1219     return;
1220   case ELF64BEKind:
1221     addElfSymbols<ELF64BE>();
1222     return;
1223   default:
1224     llvm_unreachable("getELFKind");
1225   }
1226 }
1227 
1228 template <class ELFT> void LazyObjFile::addElfSymbols() {
1229   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1230   ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
1231 
1232   for (const typename ELFT::Shdr &Sec : Sections) {
1233     if (Sec.sh_type != SHT_SYMTAB)
1234       continue;
1235 
1236     typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this);
1237     uint32_t FirstGlobal = Sec.sh_info;
1238     StringRef StringTable =
1239         CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
1240 
1241     for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal))
1242       if (Sym.st_shndx != SHN_UNDEF)
1243         Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this),
1244                                     *this);
1245     return;
1246   }
1247 }
1248 
1249 std::string elf::replaceThinLTOSuffix(StringRef Path) {
1250   StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first;
1251   StringRef Repl = Config->ThinLTOObjectSuffixReplace.second;
1252 
1253   if (!Path.endswith(Suffix)) {
1254     error("-thinlto-object-suffix-replace=" + Suffix + ";" + Repl +
1255           " was given, but " + Path + " does not end with the suffix");
1256     return "";
1257   }
1258   return (Path.drop_back(Suffix.size()) + Repl).str();
1259 }
1260 
1261 template void ArchiveFile::parse<ELF32LE>();
1262 template void ArchiveFile::parse<ELF32BE>();
1263 template void ArchiveFile::parse<ELF64LE>();
1264 template void ArchiveFile::parse<ELF64BE>();
1265 
1266 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1267 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1268 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1269 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1270 
1271 template void LazyObjFile::parse<ELF32LE>();
1272 template void LazyObjFile::parse<ELF32BE>();
1273 template void LazyObjFile::parse<ELF64LE>();
1274 template void LazyObjFile::parse<ELF64BE>();
1275 
1276 template class elf::ELFFileBase<ELF32LE>;
1277 template class elf::ELFFileBase<ELF32BE>;
1278 template class elf::ELFFileBase<ELF64LE>;
1279 template class elf::ELFFileBase<ELF64BE>;
1280 
1281 template class elf::ObjFile<ELF32LE>;
1282 template class elf::ObjFile<ELF32BE>;
1283 template class elf::ObjFile<ELF64LE>;
1284 template class elf::ObjFile<ELF64BE>;
1285 
1286 template class elf::SharedFile<ELF32LE>;
1287 template class elf::SharedFile<ELF32BE>;
1288 template class elf::SharedFile<ELF64LE>;
1289 template class elf::SharedFile<ELF64BE>;
1290