1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 40 namespace lld { 41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 42 std::string toString(const elf::InputFile *f) { 43 if (!f) 44 return "<internal>"; 45 46 if (f->toStringCache.empty()) { 47 if (f->archiveName.empty()) 48 f->toStringCache = std::string(f->getName()); 49 else 50 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 51 } 52 return f->toStringCache; 53 } 54 55 namespace elf { 56 bool InputFile::isInGroup; 57 uint32_t InputFile::nextGroupId; 58 std::vector<BinaryFile *> binaryFiles; 59 std::vector<BitcodeFile *> bitcodeFiles; 60 std::vector<LazyObjFile *> lazyObjFiles; 61 std::vector<InputFile *> objectFiles; 62 std::vector<SharedFile *> sharedFiles; 63 64 std::unique_ptr<TarWriter> tar; 65 66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 67 unsigned char size; 68 unsigned char endian; 69 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 70 71 auto report = [&](StringRef msg) { 72 StringRef filename = mb.getBufferIdentifier(); 73 if (archiveName.empty()) 74 fatal(filename + ": " + msg); 75 else 76 fatal(archiveName + "(" + filename + "): " + msg); 77 }; 78 79 if (!mb.getBuffer().startswith(ElfMagic)) 80 report("not an ELF file"); 81 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 82 report("corrupted ELF file: invalid data encoding"); 83 if (size != ELFCLASS32 && size != ELFCLASS64) 84 report("corrupted ELF file: invalid file class"); 85 86 size_t bufSize = mb.getBuffer().size(); 87 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 88 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 89 report("corrupted ELF file: file is too short"); 90 91 if (size == ELFCLASS32) 92 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 93 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 94 } 95 96 InputFile::InputFile(Kind k, MemoryBufferRef m) 97 : mb(m), groupId(nextGroupId), fileKind(k) { 98 // All files within the same --{start,end}-group get the same group ID. 99 // Otherwise, a new file will get a new group ID. 100 if (!isInGroup) 101 ++nextGroupId; 102 } 103 104 Optional<MemoryBufferRef> readFile(StringRef path) { 105 // The --chroot option changes our virtual root directory. 106 // This is useful when you are dealing with files created by --reproduce. 107 if (!config->chroot.empty() && path.startswith("/")) 108 path = saver.save(config->chroot + path); 109 110 log(path); 111 112 auto mbOrErr = MemoryBuffer::getFile(path, -1, false); 113 if (auto ec = mbOrErr.getError()) { 114 error("cannot open " + path + ": " + ec.message()); 115 return None; 116 } 117 118 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 119 MemoryBufferRef mbref = mb->getMemBufferRef(); 120 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 121 122 if (tar) 123 tar->append(relativeToRoot(path), mbref.getBuffer()); 124 return mbref; 125 } 126 127 // All input object files must be for the same architecture 128 // (e.g. it does not make sense to link x86 object files with 129 // MIPS object files.) This function checks for that error. 130 static bool isCompatible(InputFile *file) { 131 if (!file->isElf() && !isa<BitcodeFile>(file)) 132 return true; 133 134 if (file->ekind == config->ekind && file->emachine == config->emachine) { 135 if (config->emachine != EM_MIPS) 136 return true; 137 if (isMipsN32Abi(file) == config->mipsN32Abi) 138 return true; 139 } 140 141 if (!config->emulation.empty()) { 142 error(toString(file) + " is incompatible with " + config->emulation); 143 return false; 144 } 145 146 InputFile *existing; 147 if (!objectFiles.empty()) 148 existing = objectFiles[0]; 149 else if (!sharedFiles.empty()) 150 existing = sharedFiles[0]; 151 else 152 existing = bitcodeFiles[0]; 153 154 error(toString(file) + " is incompatible with " + toString(existing)); 155 return false; 156 } 157 158 template <class ELFT> static void doParseFile(InputFile *file) { 159 if (!isCompatible(file)) 160 return; 161 162 // Binary file 163 if (auto *f = dyn_cast<BinaryFile>(file)) { 164 binaryFiles.push_back(f); 165 f->parse(); 166 return; 167 } 168 169 // .a file 170 if (auto *f = dyn_cast<ArchiveFile>(file)) { 171 f->parse(); 172 return; 173 } 174 175 // Lazy object file 176 if (auto *f = dyn_cast<LazyObjFile>(file)) { 177 lazyObjFiles.push_back(f); 178 f->parse<ELFT>(); 179 return; 180 } 181 182 if (config->trace) 183 message(toString(file)); 184 185 // .so file 186 if (auto *f = dyn_cast<SharedFile>(file)) { 187 f->parse<ELFT>(); 188 return; 189 } 190 191 // LLVM bitcode file 192 if (auto *f = dyn_cast<BitcodeFile>(file)) { 193 bitcodeFiles.push_back(f); 194 f->parse<ELFT>(); 195 return; 196 } 197 198 // Regular object file 199 objectFiles.push_back(file); 200 cast<ObjFile<ELFT>>(file)->parse(); 201 } 202 203 // Add symbols in File to the symbol table. 204 void parseFile(InputFile *file) { 205 switch (config->ekind) { 206 case ELF32LEKind: 207 doParseFile<ELF32LE>(file); 208 return; 209 case ELF32BEKind: 210 doParseFile<ELF32BE>(file); 211 return; 212 case ELF64LEKind: 213 doParseFile<ELF64LE>(file); 214 return; 215 case ELF64BEKind: 216 doParseFile<ELF64BE>(file); 217 return; 218 default: 219 llvm_unreachable("unknown ELFT"); 220 } 221 } 222 223 // Concatenates arguments to construct a string representing an error location. 224 static std::string createFileLineMsg(StringRef path, unsigned line) { 225 std::string filename = std::string(path::filename(path)); 226 std::string lineno = ":" + std::to_string(line); 227 if (filename == path) 228 return filename + lineno; 229 return filename + lineno + " (" + path.str() + lineno + ")"; 230 } 231 232 template <class ELFT> 233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 234 InputSectionBase &sec, uint64_t offset) { 235 // In DWARF, functions and variables are stored to different places. 236 // First, lookup a function for a given offset. 237 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 238 return createFileLineMsg(info->FileName, info->Line); 239 240 // If it failed, lookup again as a variable. 241 if (Optional<std::pair<std::string, unsigned>> fileLine = 242 file.getVariableLoc(sym.getName())) 243 return createFileLineMsg(fileLine->first, fileLine->second); 244 245 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 246 return std::string(file.sourceFile); 247 } 248 249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 250 uint64_t offset) { 251 if (kind() != ObjKind) 252 return ""; 253 switch (config->ekind) { 254 default: 255 llvm_unreachable("Invalid kind"); 256 case ELF32LEKind: 257 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 258 case ELF32BEKind: 259 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 260 case ELF64LEKind: 261 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 262 case ELF64BEKind: 263 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 264 } 265 } 266 267 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 268 llvm::call_once(initDwarf, [this]() { 269 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 270 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 271 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 272 [&](Error warning) { 273 warn(getName() + ": " + toString(std::move(warning))); 274 })); 275 }); 276 277 return dwarf.get(); 278 } 279 280 // Returns the pair of file name and line number describing location of data 281 // object (variable, array, etc) definition. 282 template <class ELFT> 283 Optional<std::pair<std::string, unsigned>> 284 ObjFile<ELFT>::getVariableLoc(StringRef name) { 285 return getDwarf()->getVariableLoc(name); 286 } 287 288 // Returns source line information for a given offset 289 // using DWARF debug info. 290 template <class ELFT> 291 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 292 uint64_t offset) { 293 // Detect SectionIndex for specified section. 294 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 295 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 296 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 297 if (s == sections[curIndex]) { 298 sectionIndex = curIndex; 299 break; 300 } 301 } 302 303 return getDwarf()->getDILineInfo(offset, sectionIndex); 304 } 305 306 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 307 ekind = getELFKind(mb, ""); 308 309 switch (ekind) { 310 case ELF32LEKind: 311 init<ELF32LE>(); 312 break; 313 case ELF32BEKind: 314 init<ELF32BE>(); 315 break; 316 case ELF64LEKind: 317 init<ELF64LE>(); 318 break; 319 case ELF64BEKind: 320 init<ELF64BE>(); 321 break; 322 default: 323 llvm_unreachable("getELFKind"); 324 } 325 } 326 327 template <typename Elf_Shdr> 328 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 329 for (const Elf_Shdr &sec : sections) 330 if (sec.sh_type == type) 331 return &sec; 332 return nullptr; 333 } 334 335 template <class ELFT> void ELFFileBase::init() { 336 using Elf_Shdr = typename ELFT::Shdr; 337 using Elf_Sym = typename ELFT::Sym; 338 339 // Initialize trivial attributes. 340 const ELFFile<ELFT> &obj = getObj<ELFT>(); 341 emachine = obj.getHeader()->e_machine; 342 osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI]; 343 abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 344 345 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 346 347 // Find a symbol table. 348 bool isDSO = 349 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 350 const Elf_Shdr *symtabSec = 351 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 352 353 if (!symtabSec) 354 return; 355 356 // Initialize members corresponding to a symbol table. 357 firstGlobal = symtabSec->sh_info; 358 359 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 360 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 361 fatal(toString(this) + ": invalid sh_info in symbol table"); 362 363 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 364 numELFSyms = eSyms.size(); 365 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 366 } 367 368 template <class ELFT> 369 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 370 return CHECK( 371 this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable), 372 this); 373 } 374 375 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 376 if (this->symbols.empty()) 377 return {}; 378 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 379 } 380 381 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 382 return makeArrayRef(this->symbols).slice(this->firstGlobal); 383 } 384 385 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 386 // Read a section table. justSymbols is usually false. 387 if (this->justSymbols) 388 initializeJustSymbols(); 389 else 390 initializeSections(ignoreComdats); 391 392 // Read a symbol table. 393 initializeSymbols(); 394 } 395 396 // Sections with SHT_GROUP and comdat bits define comdat section groups. 397 // They are identified and deduplicated by group name. This function 398 // returns a group name. 399 template <class ELFT> 400 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 401 const Elf_Shdr &sec) { 402 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 403 if (sec.sh_info >= symbols.size()) 404 fatal(toString(this) + ": invalid symbol index"); 405 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 406 StringRef signature = CHECK(sym.getName(this->stringTable), this); 407 408 // As a special case, if a symbol is a section symbol and has no name, 409 // we use a section name as a signature. 410 // 411 // Such SHT_GROUP sections are invalid from the perspective of the ELF 412 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 413 // older produce such sections as outputs for the -r option, so we need 414 // a bug-compatibility. 415 if (signature.empty() && sym.getType() == STT_SECTION) 416 return getSectionName(sec); 417 return signature; 418 } 419 420 template <class ELFT> 421 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 422 // On a regular link we don't merge sections if -O0 (default is -O1). This 423 // sometimes makes the linker significantly faster, although the output will 424 // be bigger. 425 // 426 // Doing the same for -r would create a problem as it would combine sections 427 // with different sh_entsize. One option would be to just copy every SHF_MERGE 428 // section as is to the output. While this would produce a valid ELF file with 429 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 430 // they see two .debug_str. We could have separate logic for combining 431 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 432 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 433 // logic for -r. 434 if (config->optimize == 0 && !config->relocatable) 435 return false; 436 437 // A mergeable section with size 0 is useless because they don't have 438 // any data to merge. A mergeable string section with size 0 can be 439 // argued as invalid because it doesn't end with a null character. 440 // We'll avoid a mess by handling them as if they were non-mergeable. 441 if (sec.sh_size == 0) 442 return false; 443 444 // Check for sh_entsize. The ELF spec is not clear about the zero 445 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 446 // the section does not hold a table of fixed-size entries". We know 447 // that Rust 1.13 produces a string mergeable section with a zero 448 // sh_entsize. Here we just accept it rather than being picky about it. 449 uint64_t entSize = sec.sh_entsize; 450 if (entSize == 0) 451 return false; 452 if (sec.sh_size % entSize) 453 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 454 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 455 Twine(entSize) + ")"); 456 457 uint64_t flags = sec.sh_flags; 458 if (!(flags & SHF_MERGE)) 459 return false; 460 if (flags & SHF_WRITE) 461 fatal(toString(this) + ":(" + name + 462 "): writable SHF_MERGE section is not supported"); 463 464 return true; 465 } 466 467 // This is for --just-symbols. 468 // 469 // --just-symbols is a very minor feature that allows you to link your 470 // output against other existing program, so that if you load both your 471 // program and the other program into memory, your output can refer the 472 // other program's symbols. 473 // 474 // When the option is given, we link "just symbols". The section table is 475 // initialized with null pointers. 476 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 477 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 478 this->sections.resize(sections.size()); 479 } 480 481 // An ELF object file may contain a `.deplibs` section. If it exists, the 482 // section contains a list of library specifiers such as `m` for libm. This 483 // function resolves a given name by finding the first matching library checking 484 // the various ways that a library can be specified to LLD. This ELF extension 485 // is a form of autolinking and is called `dependent libraries`. It is currently 486 // unique to LLVM and lld. 487 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 488 if (!config->dependentLibraries) 489 return; 490 if (fs::exists(specifier)) 491 driver->addFile(specifier, /*withLOption=*/false); 492 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 493 driver->addFile(*s, /*withLOption=*/true); 494 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 495 driver->addFile(*s, /*withLOption=*/true); 496 else 497 error(toString(f) + 498 ": unable to find library from dependent library specifier: " + 499 specifier); 500 } 501 502 // Record the membership of a section group so that in the garbage collection 503 // pass, section group members are kept or discarded as a unit. 504 template <class ELFT> 505 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 506 ArrayRef<typename ELFT::Word> entries) { 507 bool hasAlloc = false; 508 for (uint32_t index : entries.slice(1)) { 509 if (index >= sections.size()) 510 return; 511 if (InputSectionBase *s = sections[index]) 512 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 513 hasAlloc = true; 514 } 515 516 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 517 // collection. See the comment in markLive(). This rule retains .debug_types 518 // and .rela.debug_types. 519 if (!hasAlloc) 520 return; 521 522 // Connect the members in a circular doubly-linked list via 523 // nextInSectionGroup. 524 InputSectionBase *head; 525 InputSectionBase *prev = nullptr; 526 for (uint32_t index : entries.slice(1)) { 527 InputSectionBase *s = sections[index]; 528 if (!s || s == &InputSection::discarded) 529 continue; 530 if (prev) 531 prev->nextInSectionGroup = s; 532 else 533 head = s; 534 prev = s; 535 } 536 if (prev) 537 prev->nextInSectionGroup = head; 538 } 539 540 template <class ELFT> 541 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 542 const ELFFile<ELFT> &obj = this->getObj(); 543 544 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 545 uint64_t size = objSections.size(); 546 this->sections.resize(size); 547 this->sectionStringTable = 548 CHECK(obj.getSectionStringTable(objSections), this); 549 550 std::vector<ArrayRef<Elf_Word>> selectedGroups; 551 552 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 553 if (this->sections[i] == &InputSection::discarded) 554 continue; 555 const Elf_Shdr &sec = objSections[i]; 556 557 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 558 cgProfile = 559 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec)); 560 561 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 562 // if -r is given, we'll let the final link discard such sections. 563 // This is compatible with GNU. 564 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 565 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 566 // We ignore the address-significance table if we know that the object 567 // file was created by objcopy or ld -r. This is because these tools 568 // will reorder the symbols in the symbol table, invalidating the data 569 // in the address-significance table, which refers to symbols by index. 570 if (sec.sh_link != 0) 571 this->addrsigSec = &sec; 572 else if (config->icf == ICFLevel::Safe) 573 warn(toString(this) + ": --icf=safe is incompatible with object " 574 "files created using objcopy or ld -r"); 575 } 576 this->sections[i] = &InputSection::discarded; 577 continue; 578 } 579 580 switch (sec.sh_type) { 581 case SHT_GROUP: { 582 // De-duplicate section groups by their signatures. 583 StringRef signature = getShtGroupSignature(objSections, sec); 584 this->sections[i] = &InputSection::discarded; 585 586 587 ArrayRef<Elf_Word> entries = 588 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this); 589 if (entries.empty()) 590 fatal(toString(this) + ": empty SHT_GROUP"); 591 592 // The first word of a SHT_GROUP section contains flags. Currently, 593 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 594 // An group with the empty flag doesn't define anything; such sections 595 // are just skipped. 596 if (entries[0] == 0) 597 continue; 598 599 if (entries[0] != GRP_COMDAT) 600 fatal(toString(this) + ": unsupported SHT_GROUP format"); 601 602 bool isNew = 603 ignoreComdats || 604 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 605 .second; 606 if (isNew) { 607 if (config->relocatable) 608 this->sections[i] = createInputSection(sec); 609 selectedGroups.push_back(entries); 610 continue; 611 } 612 613 // Otherwise, discard group members. 614 for (uint32_t secIndex : entries.slice(1)) { 615 if (secIndex >= size) 616 fatal(toString(this) + 617 ": invalid section index in group: " + Twine(secIndex)); 618 this->sections[secIndex] = &InputSection::discarded; 619 } 620 break; 621 } 622 case SHT_SYMTAB_SHNDX: 623 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 624 break; 625 case SHT_SYMTAB: 626 case SHT_STRTAB: 627 case SHT_NULL: 628 break; 629 default: 630 this->sections[i] = createInputSection(sec); 631 } 632 } 633 634 // This block handles SHF_LINK_ORDER. 635 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 636 if (this->sections[i] == &InputSection::discarded) 637 continue; 638 const Elf_Shdr &sec = objSections[i]; 639 if (!(sec.sh_flags & SHF_LINK_ORDER)) 640 continue; 641 642 // .ARM.exidx sections have a reverse dependency on the InputSection they 643 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 644 InputSectionBase *linkSec = nullptr; 645 if (sec.sh_link < this->sections.size()) 646 linkSec = this->sections[sec.sh_link]; 647 if (!linkSec) 648 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 649 650 InputSection *isec = cast<InputSection>(this->sections[i]); 651 linkSec->dependentSections.push_back(isec); 652 if (!isa<InputSection>(linkSec)) 653 error("a section " + isec->name + 654 " with SHF_LINK_ORDER should not refer a non-regular section: " + 655 toString(linkSec)); 656 } 657 658 for (ArrayRef<Elf_Word> entries : selectedGroups) 659 handleSectionGroup<ELFT>(this->sections, entries); 660 } 661 662 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 663 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 664 // the input objects have been compiled. 665 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 666 const InputFile *f) { 667 if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 668 // If an ABI tag isn't present then it is implicitly given the value of 0 669 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 670 // including some in glibc that don't use FP args (and should have value 3) 671 // don't have the attribute so we do not consider an implicit value of 0 672 // as a clash. 673 return; 674 675 unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 676 ARMVFPArgKind arg; 677 switch (vfpArgs) { 678 case ARMBuildAttrs::BaseAAPCS: 679 arg = ARMVFPArgKind::Base; 680 break; 681 case ARMBuildAttrs::HardFPAAPCS: 682 arg = ARMVFPArgKind::VFP; 683 break; 684 case ARMBuildAttrs::ToolChainFPPCS: 685 // Tool chain specific convention that conforms to neither AAPCS variant. 686 arg = ARMVFPArgKind::ToolChain; 687 break; 688 case ARMBuildAttrs::CompatibleFPAAPCS: 689 // Object compatible with all conventions. 690 return; 691 default: 692 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 693 return; 694 } 695 // Follow ld.bfd and error if there is a mix of calling conventions. 696 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 697 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 698 else 699 config->armVFPArgs = arg; 700 } 701 702 // The ARM support in lld makes some use of instructions that are not available 703 // on all ARM architectures. Namely: 704 // - Use of BLX instruction for interworking between ARM and Thumb state. 705 // - Use of the extended Thumb branch encoding in relocation. 706 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 707 // The ARM Attributes section contains information about the architecture chosen 708 // at compile time. We follow the convention that if at least one input object 709 // is compiled with an architecture that supports these features then lld is 710 // permitted to use them. 711 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 712 if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 713 return; 714 auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 715 switch (arch) { 716 case ARMBuildAttrs::Pre_v4: 717 case ARMBuildAttrs::v4: 718 case ARMBuildAttrs::v4T: 719 // Architectures prior to v5 do not support BLX instruction 720 break; 721 case ARMBuildAttrs::v5T: 722 case ARMBuildAttrs::v5TE: 723 case ARMBuildAttrs::v5TEJ: 724 case ARMBuildAttrs::v6: 725 case ARMBuildAttrs::v6KZ: 726 case ARMBuildAttrs::v6K: 727 config->armHasBlx = true; 728 // Architectures used in pre-Cortex processors do not support 729 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 730 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 731 break; 732 default: 733 // All other Architectures have BLX and extended branch encoding 734 config->armHasBlx = true; 735 config->armJ1J2BranchEncoding = true; 736 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 737 // All Architectures used in Cortex processors with the exception 738 // of v6-M and v6S-M have the MOVT and MOVW instructions. 739 config->armHasMovtMovw = true; 740 break; 741 } 742 } 743 744 // If a source file is compiled with x86 hardware-assisted call flow control 745 // enabled, the generated object file contains feature flags indicating that 746 // fact. This function reads the feature flags and returns it. 747 // 748 // Essentially we want to read a single 32-bit value in this function, but this 749 // function is rather complicated because the value is buried deep inside a 750 // .note.gnu.property section. 751 // 752 // The section consists of one or more NOTE records. Each NOTE record consists 753 // of zero or more type-length-value fields. We want to find a field of a 754 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 755 // the ABI is unnecessarily complicated. 756 template <class ELFT> 757 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) { 758 using Elf_Nhdr = typename ELFT::Nhdr; 759 using Elf_Note = typename ELFT::Note; 760 761 uint32_t featuresSet = 0; 762 while (!data.empty()) { 763 // Read one NOTE record. 764 if (data.size() < sizeof(Elf_Nhdr)) 765 fatal(toString(obj) + ": .note.gnu.property: section too short"); 766 767 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 768 if (data.size() < nhdr->getSize()) 769 fatal(toString(obj) + ": .note.gnu.property: section too short"); 770 771 Elf_Note note(*nhdr); 772 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 773 data = data.slice(nhdr->getSize()); 774 continue; 775 } 776 777 uint32_t featureAndType = config->emachine == EM_AARCH64 778 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 779 : GNU_PROPERTY_X86_FEATURE_1_AND; 780 781 // Read a body of a NOTE record, which consists of type-length-value fields. 782 ArrayRef<uint8_t> desc = note.getDesc(); 783 while (!desc.empty()) { 784 if (desc.size() < 8) 785 fatal(toString(obj) + ": .note.gnu.property: section too short"); 786 787 uint32_t type = read32le(desc.data()); 788 uint32_t size = read32le(desc.data() + 4); 789 790 if (type == featureAndType) { 791 // We found a FEATURE_1_AND field. There may be more than one of these 792 // in a .note.gnu.property section, for a relocatable object we 793 // accumulate the bits set. 794 featuresSet |= read32le(desc.data() + 8); 795 } 796 797 // On 64-bit, a payload may be followed by a 4-byte padding to make its 798 // size a multiple of 8. 799 if (ELFT::Is64Bits) 800 size = alignTo(size, 8); 801 802 desc = desc.slice(size + 8); // +8 for Type and Size 803 } 804 805 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 806 data = data.slice(nhdr->getSize()); 807 } 808 809 return featuresSet; 810 } 811 812 template <class ELFT> 813 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 814 uint32_t idx = sec.sh_info; 815 if (idx >= this->sections.size()) 816 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 817 InputSectionBase *target = this->sections[idx]; 818 819 // Strictly speaking, a relocation section must be included in the 820 // group of the section it relocates. However, LLVM 3.3 and earlier 821 // would fail to do so, so we gracefully handle that case. 822 if (target == &InputSection::discarded) 823 return nullptr; 824 825 if (!target) 826 fatal(toString(this) + ": unsupported relocation reference"); 827 return target; 828 } 829 830 // Create a regular InputSection class that has the same contents 831 // as a given section. 832 static InputSection *toRegularSection(MergeInputSection *sec) { 833 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 834 sec->data(), sec->name); 835 } 836 837 template <class ELFT> 838 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 839 StringRef name = getSectionName(sec); 840 841 switch (sec.sh_type) { 842 case SHT_ARM_ATTRIBUTES: { 843 if (config->emachine != EM_ARM) 844 break; 845 ARMAttributeParser attributes; 846 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 847 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 848 ? support::little 849 : support::big)) { 850 auto *isec = make<InputSection>(*this, sec, name); 851 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 852 break; 853 } 854 updateSupportedARMFeatures(attributes); 855 updateARMVFPArgs(attributes, this); 856 857 // FIXME: Retain the first attribute section we see. The eglibc ARM 858 // dynamic loaders require the presence of an attribute section for dlopen 859 // to work. In a full implementation we would merge all attribute sections. 860 if (in.armAttributes == nullptr) { 861 in.armAttributes = make<InputSection>(*this, sec, name); 862 return in.armAttributes; 863 } 864 return &InputSection::discarded; 865 } 866 case SHT_LLVM_DEPENDENT_LIBRARIES: { 867 if (config->relocatable) 868 break; 869 ArrayRef<char> data = 870 CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this); 871 if (!data.empty() && data.back() != '\0') { 872 error(toString(this) + 873 ": corrupted dependent libraries section (unterminated string): " + 874 name); 875 return &InputSection::discarded; 876 } 877 for (const char *d = data.begin(), *e = data.end(); d < e;) { 878 StringRef s(d); 879 addDependentLibrary(s, this); 880 d += s.size() + 1; 881 } 882 return &InputSection::discarded; 883 } 884 case SHT_RELA: 885 case SHT_REL: { 886 // Find a relocation target section and associate this section with that. 887 // Target may have been discarded if it is in a different section group 888 // and the group is discarded, even though it's a violation of the 889 // spec. We handle that situation gracefully by discarding dangling 890 // relocation sections. 891 InputSectionBase *target = getRelocTarget(sec); 892 if (!target) 893 return nullptr; 894 895 // ELF spec allows mergeable sections with relocations, but they are 896 // rare, and it is in practice hard to merge such sections by contents, 897 // because applying relocations at end of linking changes section 898 // contents. So, we simply handle such sections as non-mergeable ones. 899 // Degrading like this is acceptable because section merging is optional. 900 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 901 target = toRegularSection(ms); 902 this->sections[sec.sh_info] = target; 903 } 904 905 // This section contains relocation information. 906 // If -r is given, we do not interpret or apply relocation 907 // but just copy relocation sections to output. 908 if (config->relocatable) { 909 InputSection *relocSec = make<InputSection>(*this, sec, name); 910 // We want to add a dependency to target, similar like we do for 911 // -emit-relocs below. This is useful for the case when linker script 912 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 913 // -r, but we faced it in the Linux kernel and have to handle such case 914 // and not to crash. 915 target->dependentSections.push_back(relocSec); 916 return relocSec; 917 } 918 919 if (target->firstRelocation) 920 fatal(toString(this) + 921 ": multiple relocation sections to one section are not supported"); 922 923 if (sec.sh_type == SHT_RELA) { 924 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this); 925 target->firstRelocation = rels.begin(); 926 target->numRelocations = rels.size(); 927 target->areRelocsRela = true; 928 } else { 929 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this); 930 target->firstRelocation = rels.begin(); 931 target->numRelocations = rels.size(); 932 target->areRelocsRela = false; 933 } 934 assert(isUInt<31>(target->numRelocations)); 935 936 // Relocation sections processed by the linker are usually removed 937 // from the output, so returning `nullptr` for the normal case. 938 // However, if -emit-relocs is given, we need to leave them in the output. 939 // (Some post link analysis tools need this information.) 940 if (config->emitRelocs) { 941 InputSection *relocSec = make<InputSection>(*this, sec, name); 942 // We will not emit relocation section if target was discarded. 943 target->dependentSections.push_back(relocSec); 944 return relocSec; 945 } 946 return nullptr; 947 } 948 } 949 950 // The GNU linker uses .note.GNU-stack section as a marker indicating 951 // that the code in the object file does not expect that the stack is 952 // executable (in terms of NX bit). If all input files have the marker, 953 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 954 // make the stack non-executable. Most object files have this section as 955 // of 2017. 956 // 957 // But making the stack non-executable is a norm today for security 958 // reasons. Failure to do so may result in a serious security issue. 959 // Therefore, we make LLD always add PT_GNU_STACK unless it is 960 // explicitly told to do otherwise (by -z execstack). Because the stack 961 // executable-ness is controlled solely by command line options, 962 // .note.GNU-stack sections are simply ignored. 963 if (name == ".note.GNU-stack") 964 return &InputSection::discarded; 965 966 // Object files that use processor features such as Intel Control-Flow 967 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 968 // .note.gnu.property section containing a bitfield of feature bits like the 969 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 970 // 971 // Since we merge bitmaps from multiple object files to create a new 972 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 973 // file's .note.gnu.property section. 974 if (name == ".note.gnu.property") { 975 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec)); 976 this->andFeatures = readAndFeatures(this, contents); 977 return &InputSection::discarded; 978 } 979 980 // Split stacks is a feature to support a discontiguous stack, 981 // commonly used in the programming language Go. For the details, 982 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 983 // for split stack will include a .note.GNU-split-stack section. 984 if (name == ".note.GNU-split-stack") { 985 if (config->relocatable) { 986 error("cannot mix split-stack and non-split-stack in a relocatable link"); 987 return &InputSection::discarded; 988 } 989 this->splitStack = true; 990 return &InputSection::discarded; 991 } 992 993 // An object file cmpiled for split stack, but where some of the 994 // functions were compiled with the no_split_stack_attribute will 995 // include a .note.GNU-no-split-stack section. 996 if (name == ".note.GNU-no-split-stack") { 997 this->someNoSplitStack = true; 998 return &InputSection::discarded; 999 } 1000 1001 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1002 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1003 // sections. Drop those sections to avoid duplicate symbol errors. 1004 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1005 // fixed for a while. 1006 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1007 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1008 return &InputSection::discarded; 1009 1010 // If we are creating a new .build-id section, strip existing .build-id 1011 // sections so that the output won't have more than one .build-id. 1012 // This is not usually a problem because input object files normally don't 1013 // have .build-id sections, but you can create such files by 1014 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1015 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1016 return &InputSection::discarded; 1017 1018 // The linker merges EH (exception handling) frames and creates a 1019 // .eh_frame_hdr section for runtime. So we handle them with a special 1020 // class. For relocatable outputs, they are just passed through. 1021 if (name == ".eh_frame" && !config->relocatable) 1022 return make<EhInputSection>(*this, sec, name); 1023 1024 if (shouldMerge(sec, name)) 1025 return make<MergeInputSection>(*this, sec, name); 1026 return make<InputSection>(*this, sec, name); 1027 } 1028 1029 template <class ELFT> 1030 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1031 return CHECK(getObj().getSectionName(&sec, sectionStringTable), this); 1032 } 1033 1034 // Initialize this->Symbols. this->Symbols is a parallel array as 1035 // its corresponding ELF symbol table. 1036 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1037 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1038 this->symbols.resize(eSyms.size()); 1039 1040 // Our symbol table may have already been partially initialized 1041 // because of LazyObjFile. 1042 for (size_t i = 0, end = eSyms.size(); i != end; ++i) 1043 if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL) 1044 this->symbols[i] = 1045 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1046 1047 // Fill this->Symbols. A symbol is either local or global. 1048 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1049 const Elf_Sym &eSym = eSyms[i]; 1050 1051 // Read symbol attributes. 1052 uint32_t secIdx = getSectionIndex(eSym); 1053 if (secIdx >= this->sections.size()) 1054 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1055 1056 InputSectionBase *sec = this->sections[secIdx]; 1057 uint8_t binding = eSym.getBinding(); 1058 uint8_t stOther = eSym.st_other; 1059 uint8_t type = eSym.getType(); 1060 uint64_t value = eSym.st_value; 1061 uint64_t size = eSym.st_size; 1062 StringRefZ name = this->stringTable.data() + eSym.st_name; 1063 1064 // Handle local symbols. Local symbols are not added to the symbol 1065 // table because they are not visible from other object files. We 1066 // allocate symbol instances and add their pointers to Symbols. 1067 if (binding == STB_LOCAL) { 1068 if (eSym.getType() == STT_FILE) 1069 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1070 1071 if (this->stringTable.size() <= eSym.st_name) 1072 fatal(toString(this) + ": invalid symbol name offset"); 1073 1074 if (eSym.st_shndx == SHN_UNDEF) 1075 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type); 1076 else if (sec == &InputSection::discarded) 1077 this->symbols[i] = make<Undefined>(this, name, binding, stOther, type, 1078 /*DiscardedSecIdx=*/secIdx); 1079 else 1080 this->symbols[i] = 1081 make<Defined>(this, name, binding, stOther, type, value, size, sec); 1082 continue; 1083 } 1084 1085 // Handle global undefined symbols. 1086 if (eSym.st_shndx == SHN_UNDEF) { 1087 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type}); 1088 this->symbols[i]->referenced = true; 1089 continue; 1090 } 1091 1092 // Handle global common symbols. 1093 if (eSym.st_shndx == SHN_COMMON) { 1094 if (value == 0 || value >= UINT32_MAX) 1095 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1096 "' has invalid alignment: " + Twine(value)); 1097 this->symbols[i]->resolve( 1098 CommonSymbol{this, name, binding, stOther, type, value, size}); 1099 continue; 1100 } 1101 1102 // If a defined symbol is in a discarded section, handle it as if it 1103 // were an undefined symbol. Such symbol doesn't comply with the 1104 // standard, but in practice, a .eh_frame often directly refer 1105 // COMDAT member sections, and if a comdat group is discarded, some 1106 // defined symbol in a .eh_frame becomes dangling symbols. 1107 if (sec == &InputSection::discarded) { 1108 this->symbols[i]->resolve( 1109 Undefined{this, name, binding, stOther, type, secIdx}); 1110 continue; 1111 } 1112 1113 // Handle global defined symbols. 1114 if (binding == STB_GLOBAL || binding == STB_WEAK || 1115 binding == STB_GNU_UNIQUE) { 1116 this->symbols[i]->resolve( 1117 Defined{this, name, binding, stOther, type, value, size, sec}); 1118 continue; 1119 } 1120 1121 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1122 } 1123 } 1124 1125 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1126 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1127 file(std::move(file)) {} 1128 1129 void ArchiveFile::parse() { 1130 for (const Archive::Symbol &sym : file->symbols()) 1131 symtab->addSymbol(LazyArchive{*this, sym}); 1132 } 1133 1134 // Returns a buffer pointing to a member file containing a given symbol. 1135 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1136 Archive::Child c = 1137 CHECK(sym.getMember(), toString(this) + 1138 ": could not get the member for symbol " + 1139 toELFString(sym)); 1140 1141 if (!seen.insert(c.getChildOffset()).second) 1142 return; 1143 1144 MemoryBufferRef mb = 1145 CHECK(c.getMemoryBufferRef(), 1146 toString(this) + 1147 ": could not get the buffer for the member defining symbol " + 1148 toELFString(sym)); 1149 1150 if (tar && c.getParent()->isThin()) 1151 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1152 1153 InputFile *file = createObjectFile( 1154 mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset()); 1155 file->groupId = groupId; 1156 parseFile(file); 1157 } 1158 1159 unsigned SharedFile::vernauxNum; 1160 1161 // Parse the version definitions in the object file if present, and return a 1162 // vector whose nth element contains a pointer to the Elf_Verdef for version 1163 // identifier n. Version identifiers that are not definitions map to nullptr. 1164 template <typename ELFT> 1165 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1166 const typename ELFT::Shdr *sec) { 1167 if (!sec) 1168 return {}; 1169 1170 // We cannot determine the largest verdef identifier without inspecting 1171 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1172 // sequentially starting from 1, so we predict that the largest identifier 1173 // will be verdefCount. 1174 unsigned verdefCount = sec->sh_info; 1175 std::vector<const void *> verdefs(verdefCount + 1); 1176 1177 // Build the Verdefs array by following the chain of Elf_Verdef objects 1178 // from the start of the .gnu.version_d section. 1179 const uint8_t *verdef = base + sec->sh_offset; 1180 for (unsigned i = 0; i != verdefCount; ++i) { 1181 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1182 verdef += curVerdef->vd_next; 1183 unsigned verdefIndex = curVerdef->vd_ndx; 1184 verdefs.resize(verdefIndex + 1); 1185 verdefs[verdefIndex] = curVerdef; 1186 } 1187 return verdefs; 1188 } 1189 1190 // We do not usually care about alignments of data in shared object 1191 // files because the loader takes care of it. However, if we promote a 1192 // DSO symbol to point to .bss due to copy relocation, we need to keep 1193 // the original alignment requirements. We infer it in this function. 1194 template <typename ELFT> 1195 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1196 const typename ELFT::Sym &sym) { 1197 uint64_t ret = UINT64_MAX; 1198 if (sym.st_value) 1199 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1200 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1201 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1202 return (ret > UINT32_MAX) ? 0 : ret; 1203 } 1204 1205 // Fully parse the shared object file. 1206 // 1207 // This function parses symbol versions. If a DSO has version information, 1208 // the file has a ".gnu.version_d" section which contains symbol version 1209 // definitions. Each symbol is associated to one version through a table in 1210 // ".gnu.version" section. That table is a parallel array for the symbol 1211 // table, and each table entry contains an index in ".gnu.version_d". 1212 // 1213 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1214 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1215 // ".gnu.version_d". 1216 // 1217 // The file format for symbol versioning is perhaps a bit more complicated 1218 // than necessary, but you can easily understand the code if you wrap your 1219 // head around the data structure described above. 1220 template <class ELFT> void SharedFile::parse() { 1221 using Elf_Dyn = typename ELFT::Dyn; 1222 using Elf_Shdr = typename ELFT::Shdr; 1223 using Elf_Sym = typename ELFT::Sym; 1224 using Elf_Verdef = typename ELFT::Verdef; 1225 using Elf_Versym = typename ELFT::Versym; 1226 1227 ArrayRef<Elf_Dyn> dynamicTags; 1228 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1229 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1230 1231 const Elf_Shdr *versymSec = nullptr; 1232 const Elf_Shdr *verdefSec = nullptr; 1233 1234 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1235 for (const Elf_Shdr &sec : sections) { 1236 switch (sec.sh_type) { 1237 default: 1238 continue; 1239 case SHT_DYNAMIC: 1240 dynamicTags = 1241 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this); 1242 break; 1243 case SHT_GNU_versym: 1244 versymSec = &sec; 1245 break; 1246 case SHT_GNU_verdef: 1247 verdefSec = &sec; 1248 break; 1249 } 1250 } 1251 1252 if (versymSec && numELFSyms == 0) { 1253 error("SHT_GNU_versym should be associated with symbol table"); 1254 return; 1255 } 1256 1257 // Search for a DT_SONAME tag to initialize this->soName. 1258 for (const Elf_Dyn &dyn : dynamicTags) { 1259 if (dyn.d_tag == DT_NEEDED) { 1260 uint64_t val = dyn.getVal(); 1261 if (val >= this->stringTable.size()) 1262 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1263 dtNeeded.push_back(this->stringTable.data() + val); 1264 } else if (dyn.d_tag == DT_SONAME) { 1265 uint64_t val = dyn.getVal(); 1266 if (val >= this->stringTable.size()) 1267 fatal(toString(this) + ": invalid DT_SONAME entry"); 1268 soName = this->stringTable.data() + val; 1269 } 1270 } 1271 1272 // DSOs are uniquified not by filename but by soname. 1273 DenseMap<StringRef, SharedFile *>::iterator it; 1274 bool wasInserted; 1275 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1276 1277 // If a DSO appears more than once on the command line with and without 1278 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1279 // user can add an extra DSO with --no-as-needed to force it to be added to 1280 // the dependency list. 1281 it->second->isNeeded |= isNeeded; 1282 if (!wasInserted) 1283 return; 1284 1285 sharedFiles.push_back(this); 1286 1287 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1288 1289 // Parse ".gnu.version" section which is a parallel array for the symbol 1290 // table. If a given file doesn't have a ".gnu.version" section, we use 1291 // VER_NDX_GLOBAL. 1292 size_t size = numELFSyms - firstGlobal; 1293 std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL); 1294 if (versymSec) { 1295 ArrayRef<Elf_Versym> versym = 1296 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec), 1297 this) 1298 .slice(firstGlobal); 1299 for (size_t i = 0; i < size; ++i) 1300 versyms[i] = versym[i].vs_index; 1301 } 1302 1303 // System libraries can have a lot of symbols with versions. Using a 1304 // fixed buffer for computing the versions name (foo@ver) can save a 1305 // lot of allocations. 1306 SmallString<0> versionedNameBuffer; 1307 1308 // Add symbols to the symbol table. 1309 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1310 for (size_t i = 0; i < syms.size(); ++i) { 1311 const Elf_Sym &sym = syms[i]; 1312 1313 // ELF spec requires that all local symbols precede weak or global 1314 // symbols in each symbol table, and the index of first non-local symbol 1315 // is stored to sh_info. If a local symbol appears after some non-local 1316 // symbol, that's a violation of the spec. 1317 StringRef name = CHECK(sym.getName(this->stringTable), this); 1318 if (sym.getBinding() == STB_LOCAL) { 1319 warn("found local symbol '" + name + 1320 "' in global part of symbol table in file " + toString(this)); 1321 continue; 1322 } 1323 1324 if (sym.isUndefined()) { 1325 Symbol *s = symtab->addSymbol( 1326 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1327 s->exportDynamic = true; 1328 continue; 1329 } 1330 1331 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1332 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1333 // workaround for this bug. 1334 uint32_t idx = versyms[i] & ~VERSYM_HIDDEN; 1335 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1336 name == "_gp_disp") 1337 continue; 1338 1339 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1340 if (!(versyms[i] & VERSYM_HIDDEN)) { 1341 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1342 sym.st_other, sym.getType(), sym.st_value, 1343 sym.st_size, alignment, idx}); 1344 } 1345 1346 // Also add the symbol with the versioned name to handle undefined symbols 1347 // with explicit versions. 1348 if (idx == VER_NDX_GLOBAL) 1349 continue; 1350 1351 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1352 error("corrupt input file: version definition index " + Twine(idx) + 1353 " for symbol " + name + " is out of bounds\n>>> defined in " + 1354 toString(this)); 1355 continue; 1356 } 1357 1358 StringRef verName = 1359 this->stringTable.data() + 1360 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1361 versionedNameBuffer.clear(); 1362 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1363 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1364 sym.st_other, sym.getType(), sym.st_value, 1365 sym.st_size, alignment, idx}); 1366 } 1367 } 1368 1369 static ELFKind getBitcodeELFKind(const Triple &t) { 1370 if (t.isLittleEndian()) 1371 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1372 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1373 } 1374 1375 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1376 switch (t.getArch()) { 1377 case Triple::aarch64: 1378 return EM_AARCH64; 1379 case Triple::amdgcn: 1380 case Triple::r600: 1381 return EM_AMDGPU; 1382 case Triple::arm: 1383 case Triple::thumb: 1384 return EM_ARM; 1385 case Triple::avr: 1386 return EM_AVR; 1387 case Triple::mips: 1388 case Triple::mipsel: 1389 case Triple::mips64: 1390 case Triple::mips64el: 1391 return EM_MIPS; 1392 case Triple::msp430: 1393 return EM_MSP430; 1394 case Triple::ppc: 1395 return EM_PPC; 1396 case Triple::ppc64: 1397 case Triple::ppc64le: 1398 return EM_PPC64; 1399 case Triple::riscv32: 1400 case Triple::riscv64: 1401 return EM_RISCV; 1402 case Triple::x86: 1403 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1404 case Triple::x86_64: 1405 return EM_X86_64; 1406 default: 1407 error(path + ": could not infer e_machine from bitcode target triple " + 1408 t.str()); 1409 return EM_NONE; 1410 } 1411 } 1412 1413 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1414 uint64_t offsetInArchive) 1415 : InputFile(BitcodeKind, mb) { 1416 this->archiveName = std::string(archiveName); 1417 1418 std::string path = mb.getBufferIdentifier().str(); 1419 if (config->thinLTOIndexOnly) 1420 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1421 1422 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1423 // name. If two archives define two members with the same name, this 1424 // causes a collision which result in only one of the objects being taken 1425 // into consideration at LTO time (which very likely causes undefined 1426 // symbols later in the link stage). So we append file offset to make 1427 // filename unique. 1428 StringRef name = 1429 archiveName.empty() 1430 ? saver.save(path) 1431 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1432 utostr(offsetInArchive) + ")"); 1433 MemoryBufferRef mbref(mb.getBuffer(), name); 1434 1435 obj = CHECK(lto::InputFile::create(mbref), this); 1436 1437 Triple t(obj->getTargetTriple()); 1438 ekind = getBitcodeELFKind(t); 1439 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1440 } 1441 1442 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1443 switch (gvVisibility) { 1444 case GlobalValue::DefaultVisibility: 1445 return STV_DEFAULT; 1446 case GlobalValue::HiddenVisibility: 1447 return STV_HIDDEN; 1448 case GlobalValue::ProtectedVisibility: 1449 return STV_PROTECTED; 1450 } 1451 llvm_unreachable("unknown visibility"); 1452 } 1453 1454 template <class ELFT> 1455 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1456 const lto::InputFile::Symbol &objSym, 1457 BitcodeFile &f) { 1458 StringRef name = saver.save(objSym.getName()); 1459 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1460 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1461 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1462 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1463 1464 int c = objSym.getComdatIndex(); 1465 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1466 Undefined newSym(&f, name, binding, visibility, type); 1467 if (canOmitFromDynSym) 1468 newSym.exportDynamic = false; 1469 Symbol *ret = symtab->addSymbol(newSym); 1470 ret->referenced = true; 1471 return ret; 1472 } 1473 1474 if (objSym.isCommon()) 1475 return symtab->addSymbol( 1476 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1477 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1478 1479 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1480 if (canOmitFromDynSym) 1481 newSym.exportDynamic = false; 1482 return symtab->addSymbol(newSym); 1483 } 1484 1485 template <class ELFT> void BitcodeFile::parse() { 1486 std::vector<bool> keptComdats; 1487 for (StringRef s : obj->getComdatTable()) 1488 keptComdats.push_back( 1489 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1490 1491 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1492 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1493 1494 for (auto l : obj->getDependentLibraries()) 1495 addDependentLibrary(l, this); 1496 } 1497 1498 void BinaryFile::parse() { 1499 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1500 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1501 8, data, ".data"); 1502 sections.push_back(section); 1503 1504 // For each input file foo that is embedded to a result as a binary 1505 // blob, we define _binary_foo_{start,end,size} symbols, so that 1506 // user programs can access blobs by name. Non-alphanumeric 1507 // characters in a filename are replaced with underscore. 1508 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1509 for (size_t i = 0; i < s.size(); ++i) 1510 if (!isAlnum(s[i])) 1511 s[i] = '_'; 1512 1513 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1514 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1515 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1516 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1517 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1518 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1519 } 1520 1521 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1522 uint64_t offsetInArchive) { 1523 if (isBitcode(mb)) 1524 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1525 1526 switch (getELFKind(mb, archiveName)) { 1527 case ELF32LEKind: 1528 return make<ObjFile<ELF32LE>>(mb, archiveName); 1529 case ELF32BEKind: 1530 return make<ObjFile<ELF32BE>>(mb, archiveName); 1531 case ELF64LEKind: 1532 return make<ObjFile<ELF64LE>>(mb, archiveName); 1533 case ELF64BEKind: 1534 return make<ObjFile<ELF64BE>>(mb, archiveName); 1535 default: 1536 llvm_unreachable("getELFKind"); 1537 } 1538 } 1539 1540 void LazyObjFile::fetch() { 1541 if (mb.getBuffer().empty()) 1542 return; 1543 1544 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1545 file->groupId = groupId; 1546 1547 mb = {}; 1548 1549 // Copy symbol vector so that the new InputFile doesn't have to 1550 // insert the same defined symbols to the symbol table again. 1551 file->symbols = std::move(symbols); 1552 1553 parseFile(file); 1554 } 1555 1556 template <class ELFT> void LazyObjFile::parse() { 1557 using Elf_Sym = typename ELFT::Sym; 1558 1559 // A lazy object file wraps either a bitcode file or an ELF file. 1560 if (isBitcode(this->mb)) { 1561 std::unique_ptr<lto::InputFile> obj = 1562 CHECK(lto::InputFile::create(this->mb), this); 1563 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1564 if (sym.isUndefined()) 1565 continue; 1566 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1567 } 1568 return; 1569 } 1570 1571 if (getELFKind(this->mb, archiveName) != config->ekind) { 1572 error("incompatible file: " + this->mb.getBufferIdentifier()); 1573 return; 1574 } 1575 1576 // Find a symbol table. 1577 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1578 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1579 1580 for (const typename ELFT::Shdr &sec : sections) { 1581 if (sec.sh_type != SHT_SYMTAB) 1582 continue; 1583 1584 // A symbol table is found. 1585 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1586 uint32_t firstGlobal = sec.sh_info; 1587 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1588 this->symbols.resize(eSyms.size()); 1589 1590 // Get existing symbols or insert placeholder symbols. 1591 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1592 if (eSyms[i].st_shndx != SHN_UNDEF) 1593 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1594 1595 // Replace existing symbols with LazyObject symbols. 1596 // 1597 // resolve() may trigger this->fetch() if an existing symbol is an 1598 // undefined symbol. If that happens, this LazyObjFile has served 1599 // its purpose, and we can exit from the loop early. 1600 for (Symbol *sym : this->symbols) { 1601 if (!sym) 1602 continue; 1603 sym->resolve(LazyObject{*this, sym->getName()}); 1604 1605 // MemoryBuffer is emptied if this file is instantiated as ObjFile. 1606 if (mb.getBuffer().empty()) 1607 return; 1608 } 1609 return; 1610 } 1611 } 1612 1613 std::string replaceThinLTOSuffix(StringRef path) { 1614 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1615 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1616 1617 if (path.consume_back(suffix)) 1618 return (path + repl).str(); 1619 return std::string(path); 1620 } 1621 1622 template void BitcodeFile::parse<ELF32LE>(); 1623 template void BitcodeFile::parse<ELF32BE>(); 1624 template void BitcodeFile::parse<ELF64LE>(); 1625 template void BitcodeFile::parse<ELF64BE>(); 1626 1627 template void LazyObjFile::parse<ELF32LE>(); 1628 template void LazyObjFile::parse<ELF32BE>(); 1629 template void LazyObjFile::parse<ELF64LE>(); 1630 template void LazyObjFile::parse<ELF64BE>(); 1631 1632 template class ObjFile<ELF32LE>; 1633 template class ObjFile<ELF32BE>; 1634 template class ObjFile<ELF64LE>; 1635 template class ObjFile<ELF64BE>; 1636 1637 template void SharedFile::parse<ELF32LE>(); 1638 template void SharedFile::parse<ELF32BE>(); 1639 template void SharedFile::parse<ELF64LE>(); 1640 template void SharedFile::parse<ELF64BE>(); 1641 1642 } // namespace elf 1643 } // namespace lld 1644