1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "Error.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "Memory.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/LTO/LTO.h"
25 #include "llvm/MC/StringTableBuilder.h"
26 #include "llvm/Object/ELFObjectFile.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 using namespace llvm::ELF;
32 using namespace llvm::object;
33 using namespace llvm::sys::fs;
34 
35 using namespace lld;
36 using namespace lld::elf;
37 
38 std::vector<InputFile *> InputFile::Pool;
39 
40 namespace {
41 // In ELF object file all section addresses are zero. If we have multiple
42 // .text sections (when using -ffunction-section or comdat group) then
43 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless
44 // we assign each section some unique address. This callback method assigns
45 // each section an address equal to its offset in ELF object file.
46 class ObjectInfo : public LoadedObjectInfo {
47 public:
48   uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override {
49     return static_cast<const ELFSectionRef &>(Sec).getOffset();
50   }
51   std::unique_ptr<LoadedObjectInfo> clone() const override {
52     return std::unique_ptr<LoadedObjectInfo>();
53   }
54 };
55 }
56 
57 template <class ELFT> DIHelper<ELFT>::DIHelper(InputFile *F) {
58   Expected<std::unique_ptr<object::ObjectFile>> Obj =
59       object::ObjectFile::createObjectFile(F->MB);
60   if (!Obj)
61     return;
62 
63   ObjectInfo ObjInfo;
64   DWARFContextInMemory Dwarf(*Obj.get(), &ObjInfo);
65   DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs));
66   DataExtractor LineData(Dwarf.getLineSection().Data,
67                          ELFT::TargetEndianness == support::little,
68                          ELFT::Is64Bits ? 8 : 4);
69   // The second parameter is offset in .debug_line section
70   // for compilation unit (CU) of interest. We have only one
71   // CU (object file), so offset is always 0.
72   DwarfLine->getOrParseLineTable(LineData, 0);
73 }
74 
75 template <class ELFT> DIHelper<ELFT>::~DIHelper() {}
76 
77 template <class ELFT>
78 std::string DIHelper<ELFT>::getLineInfo(InputSectionBase<ELFT> *S,
79                                         uintX_t Offset) {
80   if (!DwarfLine)
81     return "";
82 
83   DILineInfo LineInfo;
84   DILineInfoSpecifier Spec;
85   // The offset to CU is 0 (see DIHelper constructor).
86   const DWARFDebugLine::LineTable *LineTbl = DwarfLine->getLineTable(0);
87   if (!LineTbl)
88     return "";
89 
90   // Use fake address calcuated by adding section file offset and offset in
91   // section.
92   // See comments for ObjectInfo class
93   LineTbl->getFileLineInfoForAddress(S->Offset + Offset, nullptr, Spec.FLIKind,
94                                      LineInfo);
95   return LineInfo.Line != 0
96              ? LineInfo.FileName + " (" + std::to_string(LineInfo.Line) + ")"
97              : "";
98 }
99 
100 // Deletes all InputFile instances created so far.
101 void InputFile::freePool() {
102   // Files are freed in reverse order so that files created
103   // from other files (e.g. object files extracted from archives)
104   // are freed in the proper order.
105   for (int I = Pool.size() - 1; I >= 0; --I)
106     delete Pool[I];
107 }
108 
109 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
110 std::string elf::getFilename(const InputFile *F) {
111   if (!F)
112     return "(internal)";
113   if (!F->ArchiveName.empty())
114     return (F->ArchiveName + "(" + F->getName() + ")").str();
115   return F->getName();
116 }
117 
118 template <class ELFT> static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
119   std::error_code EC;
120   ELFFile<ELFT> F(MB.getBuffer(), EC);
121   if (EC)
122     fatal(EC, "failed to read " + MB.getBufferIdentifier());
123   return F;
124 }
125 
126 template <class ELFT> static ELFKind getELFKind() {
127   if (ELFT::TargetEndianness == support::little)
128     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
129   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
130 }
131 
132 template <class ELFT>
133 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
134     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {
135   EKind = getELFKind<ELFT>();
136   EMachine = ELFObj.getHeader()->e_machine;
137   OSABI = ELFObj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
138 }
139 
140 template <class ELFT>
141 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
142   if (!Symtab)
143     return Elf_Sym_Range(nullptr, nullptr);
144   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
145   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
146   uint32_t FirstNonLocal = Symtab->sh_info;
147   if (FirstNonLocal == 0 || FirstNonLocal > NumSymbols)
148     fatal(getFilename(this) + ": invalid sh_info in symbol table");
149 
150   if (OnlyGlobals)
151     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
152   return makeArrayRef(Syms.begin(), Syms.end());
153 }
154 
155 template <class ELFT>
156 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
157   uint32_t I = Sym.st_shndx;
158   if (I == ELF::SHN_XINDEX)
159     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
160   if (I >= ELF::SHN_LORESERVE)
161     return 0;
162   return I;
163 }
164 
165 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
166   if (!Symtab)
167     return;
168   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
169 }
170 
171 template <class ELFT>
172 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
173     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
174 
175 template <class ELFT>
176 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
177   if (!this->Symtab)
178     return this->SymbolBodies;
179   uint32_t FirstNonLocal = this->Symtab->sh_info;
180   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
181 }
182 
183 template <class ELFT>
184 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
185   if (!this->Symtab)
186     return this->SymbolBodies;
187   uint32_t FirstNonLocal = this->Symtab->sh_info;
188   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
189 }
190 
191 template <class ELFT>
192 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
193   if (!this->Symtab)
194     return this->SymbolBodies;
195   return makeArrayRef(this->SymbolBodies).slice(1);
196 }
197 
198 template <class ELFT> DIHelper<ELFT> *elf::ObjectFile<ELFT>::getDIHelper() {
199   if (!DIH)
200     DIH.reset(new DIHelper<ELFT>(this));
201 
202   return DIH.get();
203 }
204 
205 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
206   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
207     return MipsOptions->Reginfo->ri_gp_value;
208   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
209     return MipsReginfo->Reginfo->ri_gp_value;
210   return 0;
211 }
212 
213 template <class ELFT>
214 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
215   // Read section and symbol tables.
216   initializeSections(ComdatGroups);
217   initializeSymbols();
218   if (Config->GcSections && Config->EMachine == EM_ARM)
219     initializeReverseDependencies();
220 }
221 
222 // Sections with SHT_GROUP and comdat bits define comdat section groups.
223 // They are identified and deduplicated by group name. This function
224 // returns a group name.
225 template <class ELFT>
226 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
227   const ELFFile<ELFT> &Obj = this->ELFObj;
228   const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link));
229   const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info);
230   StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab));
231   return check(Sym->getName(Strtab));
232 }
233 
234 template <class ELFT>
235 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
236 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
237   const ELFFile<ELFT> &Obj = this->ELFObj;
238   ArrayRef<Elf_Word> Entries =
239       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
240   if (Entries.empty() || Entries[0] != GRP_COMDAT)
241     fatal(getFilename(this) + ": unsupported SHT_GROUP format");
242   return Entries.slice(1);
243 }
244 
245 template <class ELFT>
246 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
247   // We don't merge sections if -O0 (default is -O1). This makes sometimes
248   // the linker significantly faster, although the output will be bigger.
249   if (Config->Optimize == 0)
250     return false;
251 
252   // Do not merge sections if generating a relocatable object. It makes
253   // the code simpler because we do not need to update relocation addends
254   // to reflect changes introduced by merging. Instead of that we write
255   // such "merge" sections into separate OutputSections and keep SHF_MERGE
256   // / SHF_STRINGS flags and sh_entsize value to be able to perform merging
257   // later during a final linking.
258   if (Config->Relocatable)
259     return false;
260 
261   // A mergeable section with size 0 is useless because they don't have
262   // any data to merge. A mergeable string section with size 0 can be
263   // argued as invalid because it doesn't end with a null character.
264   // We'll avoid a mess by handling them as if they were non-mergeable.
265   if (Sec.sh_size == 0)
266     return false;
267 
268   // Check for sh_entsize. The ELF spec is not clear about the zero
269   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
270   // the section does not hold a table of fixed-size entries". We know
271   // that Rust 1.13 produces a string mergeable section with a zero
272   // sh_entsize. Here we just accept it rather than being picky about it.
273   uintX_t EntSize = Sec.sh_entsize;
274   if (EntSize == 0)
275     return false;
276   if (Sec.sh_size % EntSize)
277     fatal(getFilename(this) +
278           ": SHF_MERGE section size must be a multiple of sh_entsize");
279 
280   uintX_t Flags = Sec.sh_flags;
281   if (!(Flags & SHF_MERGE))
282     return false;
283   if (Flags & SHF_WRITE)
284     fatal(getFilename(this) + ": writable SHF_MERGE section is not supported");
285 
286   // Don't try to merge if the alignment is larger than the sh_entsize and this
287   // is not SHF_STRINGS.
288   //
289   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
290   // It would be equivalent for the producer of the .o to just set a larger
291   // sh_entsize.
292   if (Flags & SHF_STRINGS)
293     return true;
294 
295   return Sec.sh_addralign <= EntSize;
296 }
297 
298 template <class ELFT>
299 void elf::ObjectFile<ELFT>::initializeSections(
300     DenseSet<CachedHashStringRef> &ComdatGroups) {
301   uint64_t Size = this->ELFObj.getNumSections();
302   Sections.resize(Size);
303   unsigned I = -1;
304   const ELFFile<ELFT> &Obj = this->ELFObj;
305   for (const Elf_Shdr &Sec : Obj.sections()) {
306     ++I;
307     if (Sections[I] == &InputSection<ELFT>::Discarded)
308       continue;
309 
310     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
311     // if -r is given, we'll let the final link discard such sections.
312     // This is compatible with GNU.
313     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
314       Sections[I] = &InputSection<ELFT>::Discarded;
315       continue;
316     }
317 
318     switch (Sec.sh_type) {
319     case SHT_GROUP:
320       Sections[I] = &InputSection<ELFT>::Discarded;
321       if (ComdatGroups.insert(CachedHashStringRef(getShtGroupSignature(Sec)))
322               .second)
323         continue;
324       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
325         if (SecIndex >= Size)
326           fatal(getFilename(this) + ": invalid section index in group: " +
327                 Twine(SecIndex));
328         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
329       }
330       break;
331     case SHT_SYMTAB:
332       this->Symtab = &Sec;
333       break;
334     case SHT_SYMTAB_SHNDX:
335       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
336       break;
337     case SHT_STRTAB:
338     case SHT_NULL:
339       break;
340     default:
341       Sections[I] = createInputSection(Sec);
342     }
343   }
344 }
345 
346 // .ARM.exidx sections have a reverse dependency on the InputSection they
347 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
348 template <class ELFT>
349 void elf::ObjectFile<ELFT>::initializeReverseDependencies() {
350   unsigned I = -1;
351   for (const Elf_Shdr &Sec : this->ELFObj.sections()) {
352     ++I;
353     if ((Sections[I] == &InputSection<ELFT>::Discarded) ||
354         !(Sec.sh_flags & SHF_LINK_ORDER))
355       continue;
356     if (Sec.sh_link >= Sections.size())
357       fatal(getFilename(this) + ": invalid sh_link index: " +
358             Twine(Sec.sh_link));
359     auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]);
360     IS->DependentSection = Sections[I];
361   }
362 }
363 
364 template <class ELFT>
365 InputSectionBase<ELFT> *
366 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
367   uint32_t Idx = Sec.sh_info;
368   if (Idx >= Sections.size())
369     fatal(getFilename(this) + ": invalid relocated section index: " +
370           Twine(Idx));
371   InputSectionBase<ELFT> *Target = Sections[Idx];
372 
373   // Strictly speaking, a relocation section must be included in the
374   // group of the section it relocates. However, LLVM 3.3 and earlier
375   // would fail to do so, so we gracefully handle that case.
376   if (Target == &InputSection<ELFT>::Discarded)
377     return nullptr;
378 
379   if (!Target)
380     fatal(getFilename(this) + ": unsupported relocation reference");
381   return Target;
382 }
383 
384 template <class ELFT>
385 InputSectionBase<ELFT> *
386 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
387   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
388 
389   switch (Sec.sh_type) {
390   case SHT_ARM_ATTRIBUTES:
391     // FIXME: ARM meta-data section. At present attributes are ignored,
392     // they can be used to reason about object compatibility.
393     return &InputSection<ELFT>::Discarded;
394   case SHT_MIPS_REGINFO:
395     if (MipsReginfo)
396       fatal(getFilename(this) +
397             ": multiple SHT_MIPS_REGINFO sections are not allowed");
398     MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name));
399     return MipsReginfo.get();
400   case SHT_MIPS_OPTIONS:
401     if (MipsOptions)
402       fatal(getFilename(this) +
403             ": multiple SHT_MIPS_OPTIONS sections are not allowed");
404     MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name));
405     return MipsOptions.get();
406   case SHT_MIPS_ABIFLAGS:
407     if (MipsAbiFlags)
408       fatal(getFilename(this) +
409             ": multiple SHT_MIPS_ABIFLAGS sections are not allowed");
410     MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name));
411     return MipsAbiFlags.get();
412   case SHT_RELA:
413   case SHT_REL: {
414     // This section contains relocation information.
415     // If -r is given, we do not interpret or apply relocation
416     // but just copy relocation sections to output.
417     if (Config->Relocatable)
418       return new (GAlloc<ELFT>::IAlloc.Allocate())
419           InputSection<ELFT>(this, &Sec, Name);
420 
421     // Find the relocation target section and associate this
422     // section with it.
423     InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
424     if (!Target)
425       return nullptr;
426     if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
427       S->RelocSections.push_back(&Sec);
428       return nullptr;
429     }
430     if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
431       if (S->RelocSection)
432         fatal(getFilename(this) +
433               ": multiple relocation sections to .eh_frame are not supported");
434       S->RelocSection = &Sec;
435       return nullptr;
436     }
437     fatal(getFilename(this) +
438           ": relocations pointing to SHF_MERGE are not supported");
439   }
440   }
441 
442   // .note.GNU-stack is a marker section to control the presence of
443   // PT_GNU_STACK segment in outputs. Since the presence of the segment
444   // is controlled only by the command line option (-z execstack) in LLD,
445   // .note.GNU-stack is ignored.
446   if (Name == ".note.GNU-stack")
447     return &InputSection<ELFT>::Discarded;
448 
449   if (Name == ".note.GNU-split-stack") {
450     error("objects using splitstacks are not supported");
451     return &InputSection<ELFT>::Discarded;
452   }
453 
454   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
455     return &InputSection<ELFT>::Discarded;
456 
457   // The linker merges EH (exception handling) frames and creates a
458   // .eh_frame_hdr section for runtime. So we handle them with a special
459   // class. For relocatable outputs, they are just passed through.
460   if (Name == ".eh_frame" && !Config->Relocatable)
461     return new (GAlloc<ELFT>::EHAlloc.Allocate())
462         EhInputSection<ELFT>(this, &Sec, Name);
463 
464   if (shouldMerge(Sec))
465     return new (GAlloc<ELFT>::MAlloc.Allocate())
466         MergeInputSection<ELFT>(this, &Sec, Name);
467   return new (GAlloc<ELFT>::IAlloc.Allocate())
468       InputSection<ELFT>(this, &Sec, Name);
469 }
470 
471 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
472   this->initStringTable();
473   Elf_Sym_Range Syms = this->getElfSymbols(false);
474   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
475   SymbolBodies.reserve(NumSymbols);
476   for (const Elf_Sym &Sym : Syms)
477     SymbolBodies.push_back(createSymbolBody(&Sym));
478 }
479 
480 template <class ELFT>
481 InputSectionBase<ELFT> *
482 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
483   uint32_t Index = this->getSectionIndex(Sym);
484   if (Index >= Sections.size())
485     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
486   InputSectionBase<ELFT> *S = Sections[Index];
487 
488   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03
489   // could generate broken objects. STT_SECTION symbols can be
490   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
491   // In this case it is fine for section to be null here as we
492   // do not allocate sections of these types.
493   if (!S) {
494     if (Index == 0 || Sym.getType() == STT_SECTION)
495       return nullptr;
496     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
497   }
498 
499   if (S == &InputSectionBase<ELFT>::Discarded)
500     return S;
501   return S->Repl;
502 }
503 
504 template <class ELFT>
505 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
506   int Binding = Sym->getBinding();
507   InputSectionBase<ELFT> *Sec = getSection(*Sym);
508   if (Binding == STB_LOCAL) {
509     if (Sym->getType() == STT_FILE)
510       SourceFile = check(Sym->getName(this->StringTable));
511     if (Sym->st_shndx == SHN_UNDEF)
512       return new (BAlloc)
513           Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this);
514     return new (BAlloc) DefinedRegular<ELFT>(*Sym, Sec);
515   }
516 
517   StringRef Name = check(Sym->getName(this->StringTable));
518 
519   switch (Sym->st_shndx) {
520   case SHN_UNDEF:
521     return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other,
522                                               Sym->getType(),
523                                               /*CanOmitFromDynSym*/ false, this)
524         ->body();
525   case SHN_COMMON:
526     if (Sym->st_value == 0 || Sym->st_value >= UINT32_MAX)
527       fatal(getFilename(this) + ": common symbol '" + Name +
528             "' has invalid alignment: " + Twine(Sym->st_value));
529     return elf::Symtab<ELFT>::X->addCommon(Name, Sym->st_size, Sym->st_value,
530                                            Binding, Sym->st_other,
531                                            Sym->getType(), this)
532         ->body();
533   }
534 
535   switch (Binding) {
536   default:
537     fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding));
538   case STB_GLOBAL:
539   case STB_WEAK:
540   case STB_GNU_UNIQUE:
541     if (Sec == &InputSection<ELFT>::Discarded)
542       return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other,
543                                                 Sym->getType(),
544                                                 /*CanOmitFromDynSym*/ false,
545                                                 this)
546           ->body();
547     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
548   }
549 }
550 
551 template <class ELFT> void ArchiveFile::parse() {
552   File = check(Archive::create(MB), "failed to parse archive");
553 
554   // Read the symbol table to construct Lazy objects.
555   for (const Archive::Symbol &Sym : File->symbols())
556     Symtab<ELFT>::X->addLazyArchive(this, Sym);
557 }
558 
559 // Returns a buffer pointing to a member file containing a given symbol.
560 std::pair<MemoryBufferRef, uint64_t>
561 ArchiveFile::getMember(const Archive::Symbol *Sym) {
562   Archive::Child C =
563       check(Sym->getMember(),
564             "could not get the member for symbol " + Sym->getName());
565 
566   if (!Seen.insert(C.getChildOffset()).second)
567     return {MemoryBufferRef(), 0};
568 
569   MemoryBufferRef Ret =
570       check(C.getMemoryBufferRef(),
571             "could not get the buffer for the member defining symbol " +
572                 Sym->getName());
573 
574   if (C.getParent()->isThin() && Driver->Cpio)
575     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
576                          Ret.getBuffer());
577   if (C.getParent()->isThin())
578     return {Ret, 0};
579   return {Ret, C.getChildOffset()};
580 }
581 
582 template <class ELFT>
583 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
584     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
585 
586 template <class ELFT>
587 const typename ELFT::Shdr *
588 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
589   uint32_t Index = this->getSectionIndex(Sym);
590   if (Index == 0)
591     return nullptr;
592   return check(this->ELFObj.getSection(Index));
593 }
594 
595 // Partially parse the shared object file so that we can call
596 // getSoName on this object.
597 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
598   typedef typename ELFT::Dyn Elf_Dyn;
599   typedef typename ELFT::uint uintX_t;
600   const Elf_Shdr *DynamicSec = nullptr;
601 
602   const ELFFile<ELFT> Obj = this->ELFObj;
603   for (const Elf_Shdr &Sec : Obj.sections()) {
604     switch (Sec.sh_type) {
605     default:
606       continue;
607     case SHT_DYNSYM:
608       this->Symtab = &Sec;
609       break;
610     case SHT_DYNAMIC:
611       DynamicSec = &Sec;
612       break;
613     case SHT_SYMTAB_SHNDX:
614       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
615       break;
616     case SHT_GNU_versym:
617       this->VersymSec = &Sec;
618       break;
619     case SHT_GNU_verdef:
620       this->VerdefSec = &Sec;
621       break;
622     }
623   }
624 
625   this->initStringTable();
626 
627   // DSOs are identified by soname, and they usually contain
628   // DT_SONAME tag in their header. But if they are missing,
629   // filenames are used as default sonames.
630   SoName = sys::path::filename(this->getName());
631 
632   if (!DynamicSec)
633     return;
634 
635   ArrayRef<Elf_Dyn> Arr =
636       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
637             getFilename(this) + ": getSectionContentsAsArray failed");
638   for (const Elf_Dyn &Dyn : Arr) {
639     if (Dyn.d_tag == DT_SONAME) {
640       uintX_t Val = Dyn.getVal();
641       if (Val >= this->StringTable.size())
642         fatal(getFilename(this) + ": invalid DT_SONAME entry");
643       SoName = StringRef(this->StringTable.data() + Val);
644       return;
645     }
646   }
647 }
648 
649 // Parse the version definitions in the object file if present. Returns a vector
650 // whose nth element contains a pointer to the Elf_Verdef for version identifier
651 // n. Version identifiers that are not definitions map to nullptr. The array
652 // always has at least length 1.
653 template <class ELFT>
654 std::vector<const typename ELFT::Verdef *>
655 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
656   std::vector<const Elf_Verdef *> Verdefs(1);
657   // We only need to process symbol versions for this DSO if it has both a
658   // versym and a verdef section, which indicates that the DSO contains symbol
659   // version definitions.
660   if (!VersymSec || !VerdefSec)
661     return Verdefs;
662 
663   // The location of the first global versym entry.
664   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
665                                                 VersymSec->sh_offset) +
666            this->Symtab->sh_info;
667 
668   // We cannot determine the largest verdef identifier without inspecting
669   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
670   // sequentially starting from 1, so we predict that the largest identifier
671   // will be VerdefCount.
672   unsigned VerdefCount = VerdefSec->sh_info;
673   Verdefs.resize(VerdefCount + 1);
674 
675   // Build the Verdefs array by following the chain of Elf_Verdef objects
676   // from the start of the .gnu.version_d section.
677   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
678   for (unsigned I = 0; I != VerdefCount; ++I) {
679     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
680     Verdef += CurVerdef->vd_next;
681     unsigned VerdefIndex = CurVerdef->vd_ndx;
682     if (Verdefs.size() <= VerdefIndex)
683       Verdefs.resize(VerdefIndex + 1);
684     Verdefs[VerdefIndex] = CurVerdef;
685   }
686 
687   return Verdefs;
688 }
689 
690 // Fully parse the shared object file. This must be called after parseSoName().
691 template <class ELFT> void SharedFile<ELFT>::parseRest() {
692   // Create mapping from version identifiers to Elf_Verdef entries.
693   const Elf_Versym *Versym = nullptr;
694   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
695 
696   Elf_Sym_Range Syms = this->getElfSymbols(true);
697   for (const Elf_Sym &Sym : Syms) {
698     unsigned VersymIndex = 0;
699     if (Versym) {
700       VersymIndex = Versym->vs_index;
701       ++Versym;
702     }
703 
704     StringRef Name = check(Sym.getName(this->StringTable));
705     if (Sym.isUndefined()) {
706       Undefs.push_back(Name);
707       continue;
708     }
709 
710     if (Versym) {
711       // Ignore local symbols and non-default versions.
712       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
713         continue;
714     }
715 
716     const Elf_Verdef *V =
717         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
718     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
719   }
720 }
721 
722 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
723   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
724   if (T.isLittleEndian())
725     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
726   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
727 }
728 
729 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
730   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
731   switch (T.getArch()) {
732   case Triple::aarch64:
733     return EM_AARCH64;
734   case Triple::arm:
735     return EM_ARM;
736   case Triple::mips:
737   case Triple::mipsel:
738   case Triple::mips64:
739   case Triple::mips64el:
740     return EM_MIPS;
741   case Triple::ppc:
742     return EM_PPC;
743   case Triple::ppc64:
744     return EM_PPC64;
745   case Triple::x86:
746     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
747   case Triple::x86_64:
748     return EM_X86_64;
749   default:
750     fatal(MB.getBufferIdentifier() +
751           ": could not infer e_machine from bitcode target triple " + T.str());
752   }
753 }
754 
755 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) {
756   EKind = getBitcodeELFKind(MB);
757   EMachine = getBitcodeMachineKind(MB);
758 }
759 
760 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
761   switch (GvVisibility) {
762   case GlobalValue::DefaultVisibility:
763     return STV_DEFAULT;
764   case GlobalValue::HiddenVisibility:
765     return STV_HIDDEN;
766   case GlobalValue::ProtectedVisibility:
767     return STV_PROTECTED;
768   }
769   llvm_unreachable("unknown visibility");
770 }
771 
772 template <class ELFT>
773 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
774                                    const lto::InputFile::Symbol &ObjSym,
775                                    BitcodeFile *F) {
776   StringRef NameRef = Saver.save(ObjSym.getName());
777   uint32_t Flags = ObjSym.getFlags();
778   uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL;
779 
780   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
781   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
782   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
783 
784   int C = check(ObjSym.getComdatIndex());
785   if (C != -1 && !KeptComdats[C])
786     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
787                                          CanOmitFromDynSym, F);
788 
789   if (Flags & BasicSymbolRef::SF_Undefined)
790     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
791                                          CanOmitFromDynSym, F);
792 
793   if (Flags & BasicSymbolRef::SF_Common)
794     return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(),
795                                       ObjSym.getCommonAlignment(), Binding,
796                                       Visibility, STT_OBJECT, F);
797 
798   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
799                                      CanOmitFromDynSym, F);
800 }
801 
802 template <class ELFT>
803 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
804 
805   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
806   // (the fully resolved path of the archive) + member name + offset of the
807   // member in the archive.
808   // ThinLTO uses the MemoryBufferRef identifier to access its internal
809   // data structures and if two archives define two members with the same name,
810   // this causes a collision which result in only one of the objects being
811   // taken into consideration at LTO time (which very likely causes undefined
812   // symbols later in the link stage).
813   Obj = check(lto::InputFile::create(MemoryBufferRef(
814       MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() +
815                                  utostr(OffsetInArchive)))));
816 
817   std::vector<bool> KeptComdats;
818   for (StringRef S : Obj->getComdatTable()) {
819     StringRef N = Saver.save(S);
820     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second);
821   }
822 
823   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
824     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
825 }
826 
827 template <template <class> class T>
828 static InputFile *createELFFile(MemoryBufferRef MB) {
829   unsigned char Size;
830   unsigned char Endian;
831   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
832   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
833     fatal("invalid data encoding: " + MB.getBufferIdentifier());
834 
835   InputFile *Obj;
836   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
837     Obj = new T<ELF32LE>(MB);
838   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
839     Obj = new T<ELF32BE>(MB);
840   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
841     Obj = new T<ELF64LE>(MB);
842   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
843     Obj = new T<ELF64BE>(MB);
844   else
845     fatal("invalid file class: " + MB.getBufferIdentifier());
846 
847   if (!Config->FirstElf)
848     Config->FirstElf = Obj;
849   return Obj;
850 }
851 
852 template <class ELFT> void BinaryFile::parse() {
853   StringRef Buf = MB.getBuffer();
854   ArrayRef<uint8_t> Data =
855       makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size());
856 
857   std::string Filename = MB.getBufferIdentifier();
858   std::transform(Filename.begin(), Filename.end(), Filename.begin(),
859                  [](char C) { return isalnum(C) ? C : '_'; });
860   Filename = "_binary_" + Filename;
861   StringRef StartName = Saver.save(Twine(Filename) + "_start");
862   StringRef EndName = Saver.save(Twine(Filename) + "_end");
863   StringRef SizeName = Saver.save(Twine(Filename) + "_size");
864 
865   auto *Section =
866       new InputSection<ELFT>(SHF_ALLOC, SHT_PROGBITS, 8, Data, ".data");
867   Sections.push_back(Section);
868 
869   elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, Section, STB_GLOBAL,
870                                    STT_OBJECT, 0);
871   elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, Section, STB_GLOBAL,
872                                    STT_OBJECT, Data.size());
873   elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, nullptr, STB_GLOBAL,
874                                    STT_OBJECT, Data.size());
875 }
876 
877 static bool isBitcode(MemoryBufferRef MB) {
878   using namespace sys::fs;
879   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
880 }
881 
882 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
883                                  uint64_t OffsetInArchive) {
884   InputFile *F =
885       isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB);
886   F->ArchiveName = ArchiveName;
887   F->OffsetInArchive = OffsetInArchive;
888   return F;
889 }
890 
891 InputFile *elf::createSharedFile(MemoryBufferRef MB) {
892   return createELFFile<SharedFile>(MB);
893 }
894 
895 MemoryBufferRef LazyObjectFile::getBuffer() {
896   if (Seen)
897     return MemoryBufferRef();
898   Seen = true;
899   return MB;
900 }
901 
902 template <class ELFT> void LazyObjectFile::parse() {
903   for (StringRef Sym : getSymbols())
904     Symtab<ELFT>::X->addLazyObject(Sym, *this);
905 }
906 
907 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
908   typedef typename ELFT::Shdr Elf_Shdr;
909   typedef typename ELFT::Sym Elf_Sym;
910   typedef typename ELFT::SymRange Elf_Sym_Range;
911 
912   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
913   for (const Elf_Shdr &Sec : Obj.sections()) {
914     if (Sec.sh_type != SHT_SYMTAB)
915       continue;
916     Elf_Sym_Range Syms = Obj.symbols(&Sec);
917     uint32_t FirstNonLocal = Sec.sh_info;
918     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
919     std::vector<StringRef> V;
920     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
921       if (Sym.st_shndx != SHN_UNDEF)
922         V.push_back(check(Sym.getName(StringTable)));
923     return V;
924   }
925   return {};
926 }
927 
928 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
929   std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB));
930   std::vector<StringRef> V;
931   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
932     if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined))
933       V.push_back(Saver.save(Sym.getName()));
934   return V;
935 }
936 
937 // Returns a vector of globally-visible defined symbol names.
938 std::vector<StringRef> LazyObjectFile::getSymbols() {
939   if (isBitcode(this->MB))
940     return getBitcodeSymbols();
941 
942   unsigned char Size;
943   unsigned char Endian;
944   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
945   if (Size == ELFCLASS32) {
946     if (Endian == ELFDATA2LSB)
947       return getElfSymbols<ELF32LE>();
948     return getElfSymbols<ELF32BE>();
949   }
950   if (Endian == ELFDATA2LSB)
951     return getElfSymbols<ELF64LE>();
952   return getElfSymbols<ELF64BE>();
953 }
954 
955 template void ArchiveFile::parse<ELF32LE>();
956 template void ArchiveFile::parse<ELF32BE>();
957 template void ArchiveFile::parse<ELF64LE>();
958 template void ArchiveFile::parse<ELF64BE>();
959 
960 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
961 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
962 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
963 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
964 
965 template void LazyObjectFile::parse<ELF32LE>();
966 template void LazyObjectFile::parse<ELF32BE>();
967 template void LazyObjectFile::parse<ELF64LE>();
968 template void LazyObjectFile::parse<ELF64BE>();
969 
970 template class elf::ELFFileBase<ELF32LE>;
971 template class elf::ELFFileBase<ELF32BE>;
972 template class elf::ELFFileBase<ELF64LE>;
973 template class elf::ELFFileBase<ELF64BE>;
974 
975 template class elf::ObjectFile<ELF32LE>;
976 template class elf::ObjectFile<ELF32BE>;
977 template class elf::ObjectFile<ELF64LE>;
978 template class elf::ObjectFile<ELF64BE>;
979 
980 template class elf::SharedFile<ELF32LE>;
981 template class elf::SharedFile<ELF32BE>;
982 template class elf::SharedFile<ELF64LE>;
983 template class elf::SharedFile<ELF64BE>;
984 
985 template void BinaryFile::parse<ELF32LE>();
986 template void BinaryFile::parse<ELF32BE>();
987 template void BinaryFile::parse<ELF64LE>();
988 template void BinaryFile::parse<ELF64BE>();
989 
990 template class elf::DIHelper<ELF32LE>;
991 template class elf::DIHelper<ELF32BE>;
992 template class elf::DIHelper<ELF64LE>;
993 template class elf::DIHelper<ELF64BE>;
994