1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 std::vector<ArchiveFile *> elf::archiveFiles; 47 std::vector<BinaryFile *> elf::binaryFiles; 48 std::vector<BitcodeFile *> elf::bitcodeFiles; 49 std::vector<LazyObjFile *> elf::lazyObjFiles; 50 std::vector<InputFile *> elf::objectFiles; 51 std::vector<SharedFile *> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = std::string(f->getName()); 63 else 64 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 65 } 66 return f->toStringCache; 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver.save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 119 /*RequiresNullTerminator=*/false); 120 if (auto ec = mbOrErr.getError()) { 121 error("cannot open " + path + ": " + ec.message()); 122 return None; 123 } 124 125 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 126 MemoryBufferRef mbref = mb->getMemBufferRef(); 127 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 128 129 if (tar) 130 tar->append(relativeToRoot(path), mbref.getBuffer()); 131 return mbref; 132 } 133 134 // All input object files must be for the same architecture 135 // (e.g. it does not make sense to link x86 object files with 136 // MIPS object files.) This function checks for that error. 137 static bool isCompatible(InputFile *file) { 138 if (!file->isElf() && !isa<BitcodeFile>(file)) 139 return true; 140 141 if (file->ekind == config->ekind && file->emachine == config->emachine) { 142 if (config->emachine != EM_MIPS) 143 return true; 144 if (isMipsN32Abi(file) == config->mipsN32Abi) 145 return true; 146 } 147 148 StringRef target = 149 !config->bfdname.empty() ? config->bfdname : config->emulation; 150 if (!target.empty()) { 151 error(toString(file) + " is incompatible with " + target); 152 return false; 153 } 154 155 InputFile *existing; 156 if (!objectFiles.empty()) 157 existing = objectFiles[0]; 158 else if (!sharedFiles.empty()) 159 existing = sharedFiles[0]; 160 else if (!bitcodeFiles.empty()) 161 existing = bitcodeFiles[0]; 162 else 163 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 164 "determine target emulation"); 165 166 error(toString(file) + " is incompatible with " + toString(existing)); 167 return false; 168 } 169 170 template <class ELFT> static void doParseFile(InputFile *file) { 171 if (!isCompatible(file)) 172 return; 173 174 // Binary file 175 if (auto *f = dyn_cast<BinaryFile>(file)) { 176 binaryFiles.push_back(f); 177 f->parse(); 178 return; 179 } 180 181 // .a file 182 if (auto *f = dyn_cast<ArchiveFile>(file)) { 183 archiveFiles.push_back(f); 184 f->parse(); 185 return; 186 } 187 188 // Lazy object file 189 if (auto *f = dyn_cast<LazyObjFile>(file)) { 190 lazyObjFiles.push_back(f); 191 f->parse<ELFT>(); 192 return; 193 } 194 195 if (config->trace) 196 message(toString(file)); 197 198 // .so file 199 if (auto *f = dyn_cast<SharedFile>(file)) { 200 f->parse<ELFT>(); 201 return; 202 } 203 204 // LLVM bitcode file 205 if (auto *f = dyn_cast<BitcodeFile>(file)) { 206 bitcodeFiles.push_back(f); 207 f->parse<ELFT>(); 208 return; 209 } 210 211 // Regular object file 212 objectFiles.push_back(file); 213 cast<ObjFile<ELFT>>(file)->parse(); 214 } 215 216 // Add symbols in File to the symbol table. 217 void elf::parseFile(InputFile *file) { 218 switch (config->ekind) { 219 case ELF32LEKind: 220 doParseFile<ELF32LE>(file); 221 return; 222 case ELF32BEKind: 223 doParseFile<ELF32BE>(file); 224 return; 225 case ELF64LEKind: 226 doParseFile<ELF64LE>(file); 227 return; 228 case ELF64BEKind: 229 doParseFile<ELF64BE>(file); 230 return; 231 default: 232 llvm_unreachable("unknown ELFT"); 233 } 234 } 235 236 // Concatenates arguments to construct a string representing an error location. 237 static std::string createFileLineMsg(StringRef path, unsigned line) { 238 std::string filename = std::string(path::filename(path)); 239 std::string lineno = ":" + std::to_string(line); 240 if (filename == path) 241 return filename + lineno; 242 return filename + lineno + " (" + path.str() + lineno + ")"; 243 } 244 245 template <class ELFT> 246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 247 InputSectionBase &sec, uint64_t offset) { 248 // In DWARF, functions and variables are stored to different places. 249 // First, lookup a function for a given offset. 250 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 251 return createFileLineMsg(info->FileName, info->Line); 252 253 // If it failed, lookup again as a variable. 254 if (Optional<std::pair<std::string, unsigned>> fileLine = 255 file.getVariableLoc(sym.getName())) 256 return createFileLineMsg(fileLine->first, fileLine->second); 257 258 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 259 return std::string(file.sourceFile); 260 } 261 262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 263 uint64_t offset) { 264 if (kind() != ObjKind) 265 return ""; 266 switch (config->ekind) { 267 default: 268 llvm_unreachable("Invalid kind"); 269 case ELF32LEKind: 270 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 271 case ELF32BEKind: 272 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 273 case ELF64LEKind: 274 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 275 case ELF64BEKind: 276 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 277 } 278 } 279 280 StringRef InputFile::getNameForScript() const { 281 if (archiveName.empty()) 282 return getName(); 283 284 if (nameForScriptCache.empty()) 285 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 286 287 return nameForScriptCache; 288 } 289 290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 291 llvm::call_once(initDwarf, [this]() { 292 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 293 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 294 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 295 [&](Error warning) { 296 warn(getName() + ": " + toString(std::move(warning))); 297 })); 298 }); 299 300 return dwarf.get(); 301 } 302 303 // Returns the pair of file name and line number describing location of data 304 // object (variable, array, etc) definition. 305 template <class ELFT> 306 Optional<std::pair<std::string, unsigned>> 307 ObjFile<ELFT>::getVariableLoc(StringRef name) { 308 return getDwarf()->getVariableLoc(name); 309 } 310 311 // Returns source line information for a given offset 312 // using DWARF debug info. 313 template <class ELFT> 314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 315 uint64_t offset) { 316 // Detect SectionIndex for specified section. 317 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 318 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 319 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 320 if (s == sections[curIndex]) { 321 sectionIndex = curIndex; 322 break; 323 } 324 } 325 326 return getDwarf()->getDILineInfo(offset, sectionIndex); 327 } 328 329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 330 ekind = getELFKind(mb, ""); 331 332 switch (ekind) { 333 case ELF32LEKind: 334 init<ELF32LE>(); 335 break; 336 case ELF32BEKind: 337 init<ELF32BE>(); 338 break; 339 case ELF64LEKind: 340 init<ELF64LE>(); 341 break; 342 case ELF64BEKind: 343 init<ELF64BE>(); 344 break; 345 default: 346 llvm_unreachable("getELFKind"); 347 } 348 } 349 350 template <typename Elf_Shdr> 351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 352 for (const Elf_Shdr &sec : sections) 353 if (sec.sh_type == type) 354 return &sec; 355 return nullptr; 356 } 357 358 template <class ELFT> void ELFFileBase::init() { 359 using Elf_Shdr = typename ELFT::Shdr; 360 using Elf_Sym = typename ELFT::Sym; 361 362 // Initialize trivial attributes. 363 const ELFFile<ELFT> &obj = getObj<ELFT>(); 364 emachine = obj.getHeader().e_machine; 365 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 366 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 367 368 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 369 370 // Find a symbol table. 371 bool isDSO = 372 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 373 const Elf_Shdr *symtabSec = 374 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 375 376 if (!symtabSec) 377 return; 378 379 // Initialize members corresponding to a symbol table. 380 firstGlobal = symtabSec->sh_info; 381 382 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 383 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 384 fatal(toString(this) + ": invalid sh_info in symbol table"); 385 386 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 387 numELFSyms = eSyms.size(); 388 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 389 } 390 391 template <class ELFT> 392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 393 return CHECK( 394 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 395 this); 396 } 397 398 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 399 // Read a section table. justSymbols is usually false. 400 if (this->justSymbols) 401 initializeJustSymbols(); 402 else 403 initializeSections(ignoreComdats); 404 405 // Read a symbol table. 406 initializeSymbols(); 407 } 408 409 // Sections with SHT_GROUP and comdat bits define comdat section groups. 410 // They are identified and deduplicated by group name. This function 411 // returns a group name. 412 template <class ELFT> 413 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 414 const Elf_Shdr &sec) { 415 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 416 if (sec.sh_info >= symbols.size()) 417 fatal(toString(this) + ": invalid symbol index"); 418 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 419 return CHECK(sym.getName(this->stringTable), this); 420 } 421 422 template <class ELFT> 423 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 424 if (!(sec.sh_flags & SHF_MERGE)) 425 return false; 426 427 // On a regular link we don't merge sections if -O0 (default is -O1). This 428 // sometimes makes the linker significantly faster, although the output will 429 // be bigger. 430 // 431 // Doing the same for -r would create a problem as it would combine sections 432 // with different sh_entsize. One option would be to just copy every SHF_MERGE 433 // section as is to the output. While this would produce a valid ELF file with 434 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 435 // they see two .debug_str. We could have separate logic for combining 436 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 437 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 438 // logic for -r. 439 if (config->optimize == 0 && !config->relocatable) 440 return false; 441 442 // A mergeable section with size 0 is useless because they don't have 443 // any data to merge. A mergeable string section with size 0 can be 444 // argued as invalid because it doesn't end with a null character. 445 // We'll avoid a mess by handling them as if they were non-mergeable. 446 if (sec.sh_size == 0) 447 return false; 448 449 // Check for sh_entsize. The ELF spec is not clear about the zero 450 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 451 // the section does not hold a table of fixed-size entries". We know 452 // that Rust 1.13 produces a string mergeable section with a zero 453 // sh_entsize. Here we just accept it rather than being picky about it. 454 uint64_t entSize = sec.sh_entsize; 455 if (entSize == 0) 456 return false; 457 if (sec.sh_size % entSize) 458 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 459 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 460 Twine(entSize) + ")"); 461 462 if (sec.sh_flags & SHF_WRITE) 463 fatal(toString(this) + ":(" + name + 464 "): writable SHF_MERGE section is not supported"); 465 466 return true; 467 } 468 469 // This is for --just-symbols. 470 // 471 // --just-symbols is a very minor feature that allows you to link your 472 // output against other existing program, so that if you load both your 473 // program and the other program into memory, your output can refer the 474 // other program's symbols. 475 // 476 // When the option is given, we link "just symbols". The section table is 477 // initialized with null pointers. 478 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 479 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 480 this->sections.resize(sections.size()); 481 } 482 483 // An ELF object file may contain a `.deplibs` section. If it exists, the 484 // section contains a list of library specifiers such as `m` for libm. This 485 // function resolves a given name by finding the first matching library checking 486 // the various ways that a library can be specified to LLD. This ELF extension 487 // is a form of autolinking and is called `dependent libraries`. It is currently 488 // unique to LLVM and lld. 489 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 490 if (!config->dependentLibraries) 491 return; 492 if (fs::exists(specifier)) 493 driver->addFile(specifier, /*withLOption=*/false); 494 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 495 driver->addFile(*s, /*withLOption=*/true); 496 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 497 driver->addFile(*s, /*withLOption=*/true); 498 else 499 error(toString(f) + 500 ": unable to find library from dependent library specifier: " + 501 specifier); 502 } 503 504 // Record the membership of a section group so that in the garbage collection 505 // pass, section group members are kept or discarded as a unit. 506 template <class ELFT> 507 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 508 ArrayRef<typename ELFT::Word> entries) { 509 bool hasAlloc = false; 510 for (uint32_t index : entries.slice(1)) { 511 if (index >= sections.size()) 512 return; 513 if (InputSectionBase *s = sections[index]) 514 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 515 hasAlloc = true; 516 } 517 518 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 519 // collection. See the comment in markLive(). This rule retains .debug_types 520 // and .rela.debug_types. 521 if (!hasAlloc) 522 return; 523 524 // Connect the members in a circular doubly-linked list via 525 // nextInSectionGroup. 526 InputSectionBase *head; 527 InputSectionBase *prev = nullptr; 528 for (uint32_t index : entries.slice(1)) { 529 InputSectionBase *s = sections[index]; 530 if (!s || s == &InputSection::discarded) 531 continue; 532 if (prev) 533 prev->nextInSectionGroup = s; 534 else 535 head = s; 536 prev = s; 537 } 538 if (prev) 539 prev->nextInSectionGroup = head; 540 } 541 542 template <class ELFT> 543 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 544 const ELFFile<ELFT> &obj = this->getObj(); 545 546 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 547 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 548 uint64_t size = objSections.size(); 549 this->sections.resize(size); 550 551 std::vector<ArrayRef<Elf_Word>> selectedGroups; 552 553 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 554 if (this->sections[i] == &InputSection::discarded) 555 continue; 556 const Elf_Shdr &sec = objSections[i]; 557 558 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 559 cgProfileSectionIndex = i; 560 561 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 562 // if -r is given, we'll let the final link discard such sections. 563 // This is compatible with GNU. 564 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 565 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 566 // We ignore the address-significance table if we know that the object 567 // file was created by objcopy or ld -r. This is because these tools 568 // will reorder the symbols in the symbol table, invalidating the data 569 // in the address-significance table, which refers to symbols by index. 570 if (sec.sh_link != 0) 571 this->addrsigSec = &sec; 572 else if (config->icf == ICFLevel::Safe) 573 warn(toString(this) + 574 ": --icf=safe conservatively ignores " 575 "SHT_LLVM_ADDRSIG [index " + 576 Twine(i) + 577 "] with sh_link=0 " 578 "(likely created using objcopy or ld -r)"); 579 } 580 this->sections[i] = &InputSection::discarded; 581 continue; 582 } 583 584 switch (sec.sh_type) { 585 case SHT_GROUP: { 586 // De-duplicate section groups by their signatures. 587 StringRef signature = getShtGroupSignature(objSections, sec); 588 this->sections[i] = &InputSection::discarded; 589 590 ArrayRef<Elf_Word> entries = 591 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 592 if (entries.empty()) 593 fatal(toString(this) + ": empty SHT_GROUP"); 594 595 Elf_Word flag = entries[0]; 596 if (flag && flag != GRP_COMDAT) 597 fatal(toString(this) + ": unsupported SHT_GROUP format"); 598 599 bool keepGroup = 600 (flag & GRP_COMDAT) == 0 || ignoreComdats || 601 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 602 .second; 603 if (keepGroup) { 604 if (config->relocatable) 605 this->sections[i] = createInputSection(i, sec, shstrtab); 606 selectedGroups.push_back(entries); 607 continue; 608 } 609 610 // Otherwise, discard group members. 611 for (uint32_t secIndex : entries.slice(1)) { 612 if (secIndex >= size) 613 fatal(toString(this) + 614 ": invalid section index in group: " + Twine(secIndex)); 615 this->sections[secIndex] = &InputSection::discarded; 616 } 617 break; 618 } 619 case SHT_SYMTAB_SHNDX: 620 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 621 break; 622 case SHT_SYMTAB: 623 case SHT_STRTAB: 624 case SHT_REL: 625 case SHT_RELA: 626 case SHT_NULL: 627 break; 628 default: 629 this->sections[i] = createInputSection(i, sec, shstrtab); 630 } 631 } 632 633 // We have a second loop. It is used to: 634 // 1) handle SHF_LINK_ORDER sections. 635 // 2) create SHT_REL[A] sections. In some cases the section header index of a 636 // relocation section may be smaller than that of the relocated section. In 637 // such cases, the relocation section would attempt to reference a target 638 // section that has not yet been created. For simplicity, delay creation of 639 // relocation sections until now. 640 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 641 if (this->sections[i] == &InputSection::discarded) 642 continue; 643 const Elf_Shdr &sec = objSections[i]; 644 645 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 646 this->sections[i] = createInputSection(i, sec, shstrtab); 647 648 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 649 // the flag. 650 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 651 continue; 652 653 InputSectionBase *linkSec = nullptr; 654 if (sec.sh_link < this->sections.size()) 655 linkSec = this->sections[sec.sh_link]; 656 if (!linkSec) 657 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 658 659 // A SHF_LINK_ORDER section is discarded if its linked-to section is 660 // discarded. 661 InputSection *isec = cast<InputSection>(this->sections[i]); 662 linkSec->dependentSections.push_back(isec); 663 if (!isa<InputSection>(linkSec)) 664 error("a section " + isec->name + 665 " with SHF_LINK_ORDER should not refer a non-regular section: " + 666 toString(linkSec)); 667 } 668 669 for (ArrayRef<Elf_Word> entries : selectedGroups) 670 handleSectionGroup<ELFT>(this->sections, entries); 671 } 672 673 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 674 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 675 // the input objects have been compiled. 676 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 677 const InputFile *f) { 678 Optional<unsigned> attr = 679 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 680 if (!attr.hasValue()) 681 // If an ABI tag isn't present then it is implicitly given the value of 0 682 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 683 // including some in glibc that don't use FP args (and should have value 3) 684 // don't have the attribute so we do not consider an implicit value of 0 685 // as a clash. 686 return; 687 688 unsigned vfpArgs = attr.getValue(); 689 ARMVFPArgKind arg; 690 switch (vfpArgs) { 691 case ARMBuildAttrs::BaseAAPCS: 692 arg = ARMVFPArgKind::Base; 693 break; 694 case ARMBuildAttrs::HardFPAAPCS: 695 arg = ARMVFPArgKind::VFP; 696 break; 697 case ARMBuildAttrs::ToolChainFPPCS: 698 // Tool chain specific convention that conforms to neither AAPCS variant. 699 arg = ARMVFPArgKind::ToolChain; 700 break; 701 case ARMBuildAttrs::CompatibleFPAAPCS: 702 // Object compatible with all conventions. 703 return; 704 default: 705 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 706 return; 707 } 708 // Follow ld.bfd and error if there is a mix of calling conventions. 709 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 710 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 711 else 712 config->armVFPArgs = arg; 713 } 714 715 // The ARM support in lld makes some use of instructions that are not available 716 // on all ARM architectures. Namely: 717 // - Use of BLX instruction for interworking between ARM and Thumb state. 718 // - Use of the extended Thumb branch encoding in relocation. 719 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 720 // The ARM Attributes section contains information about the architecture chosen 721 // at compile time. We follow the convention that if at least one input object 722 // is compiled with an architecture that supports these features then lld is 723 // permitted to use them. 724 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 725 Optional<unsigned> attr = 726 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 727 if (!attr.hasValue()) 728 return; 729 auto arch = attr.getValue(); 730 switch (arch) { 731 case ARMBuildAttrs::Pre_v4: 732 case ARMBuildAttrs::v4: 733 case ARMBuildAttrs::v4T: 734 // Architectures prior to v5 do not support BLX instruction 735 break; 736 case ARMBuildAttrs::v5T: 737 case ARMBuildAttrs::v5TE: 738 case ARMBuildAttrs::v5TEJ: 739 case ARMBuildAttrs::v6: 740 case ARMBuildAttrs::v6KZ: 741 case ARMBuildAttrs::v6K: 742 config->armHasBlx = true; 743 // Architectures used in pre-Cortex processors do not support 744 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 745 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 746 break; 747 default: 748 // All other Architectures have BLX and extended branch encoding 749 config->armHasBlx = true; 750 config->armJ1J2BranchEncoding = true; 751 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 752 // All Architectures used in Cortex processors with the exception 753 // of v6-M and v6S-M have the MOVT and MOVW instructions. 754 config->armHasMovtMovw = true; 755 break; 756 } 757 } 758 759 // If a source file is compiled with x86 hardware-assisted call flow control 760 // enabled, the generated object file contains feature flags indicating that 761 // fact. This function reads the feature flags and returns it. 762 // 763 // Essentially we want to read a single 32-bit value in this function, but this 764 // function is rather complicated because the value is buried deep inside a 765 // .note.gnu.property section. 766 // 767 // The section consists of one or more NOTE records. Each NOTE record consists 768 // of zero or more type-length-value fields. We want to find a field of a 769 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 770 // the ABI is unnecessarily complicated. 771 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 772 using Elf_Nhdr = typename ELFT::Nhdr; 773 using Elf_Note = typename ELFT::Note; 774 775 uint32_t featuresSet = 0; 776 ArrayRef<uint8_t> data = sec.data(); 777 auto reportFatal = [&](const uint8_t *place, const char *msg) { 778 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 779 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 780 }; 781 while (!data.empty()) { 782 // Read one NOTE record. 783 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 784 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 785 reportFatal(data.data(), "data is too short"); 786 787 Elf_Note note(*nhdr); 788 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 789 data = data.slice(nhdr->getSize()); 790 continue; 791 } 792 793 uint32_t featureAndType = config->emachine == EM_AARCH64 794 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 795 : GNU_PROPERTY_X86_FEATURE_1_AND; 796 797 // Read a body of a NOTE record, which consists of type-length-value fields. 798 ArrayRef<uint8_t> desc = note.getDesc(); 799 while (!desc.empty()) { 800 const uint8_t *place = desc.data(); 801 if (desc.size() < 8) 802 reportFatal(place, "program property is too short"); 803 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 804 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 805 desc = desc.slice(8); 806 if (desc.size() < size) 807 reportFatal(place, "program property is too short"); 808 809 if (type == featureAndType) { 810 // We found a FEATURE_1_AND field. There may be more than one of these 811 // in a .note.gnu.property section, for a relocatable object we 812 // accumulate the bits set. 813 if (size < 4) 814 reportFatal(place, "FEATURE_1_AND entry is too short"); 815 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 816 } 817 818 // Padding is present in the note descriptor, if necessary. 819 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 820 } 821 822 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 823 data = data.slice(nhdr->getSize()); 824 } 825 826 return featuresSet; 827 } 828 829 template <class ELFT> 830 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, StringRef name, 831 const Elf_Shdr &sec) { 832 uint32_t info = sec.sh_info; 833 if (info < this->sections.size()) { 834 InputSectionBase *target = this->sections[info]; 835 836 // Strictly speaking, a relocation section must be included in the 837 // group of the section it relocates. However, LLVM 3.3 and earlier 838 // would fail to do so, so we gracefully handle that case. 839 if (target == &InputSection::discarded) 840 return nullptr; 841 842 if (target != nullptr) 843 return target; 844 } 845 846 error(toString(this) + Twine(": relocation section ") + name + " (index " + 847 Twine(idx) + ") has invalid sh_info (" + Twine(info) + ")"); 848 return nullptr; 849 } 850 851 // Create a regular InputSection class that has the same contents 852 // as a given section. 853 static InputSection *toRegularSection(MergeInputSection *sec) { 854 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 855 sec->data(), sec->name); 856 } 857 858 template <class ELFT> 859 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 860 const Elf_Shdr &sec, 861 StringRef shstrtab) { 862 StringRef name = CHECK(getObj().getSectionName(sec, shstrtab), this); 863 864 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { 865 ARMAttributeParser attributes; 866 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 867 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 868 ? support::little 869 : support::big)) { 870 auto *isec = make<InputSection>(*this, sec, name); 871 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 872 } else { 873 updateSupportedARMFeatures(attributes); 874 updateARMVFPArgs(attributes, this); 875 876 // FIXME: Retain the first attribute section we see. The eglibc ARM 877 // dynamic loaders require the presence of an attribute section for dlopen 878 // to work. In a full implementation we would merge all attribute 879 // sections. 880 if (in.attributes == nullptr) { 881 in.attributes = make<InputSection>(*this, sec, name); 882 return in.attributes; 883 } 884 return &InputSection::discarded; 885 } 886 } 887 888 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { 889 RISCVAttributeParser attributes; 890 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 891 if (Error e = attributes.parse(contents, support::little)) { 892 auto *isec = make<InputSection>(*this, sec, name); 893 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 894 } else { 895 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 896 // present. 897 898 // FIXME: Retain the first attribute section we see. Tools such as 899 // llvm-objdump make use of the attribute section to determine which 900 // standard extensions to enable. In a full implementation we would merge 901 // all attribute sections. 902 if (in.attributes == nullptr) { 903 in.attributes = make<InputSection>(*this, sec, name); 904 return in.attributes; 905 } 906 return &InputSection::discarded; 907 } 908 } 909 910 switch (sec.sh_type) { 911 case SHT_LLVM_DEPENDENT_LIBRARIES: { 912 if (config->relocatable) 913 break; 914 ArrayRef<char> data = 915 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 916 if (!data.empty() && data.back() != '\0') { 917 error(toString(this) + 918 ": corrupted dependent libraries section (unterminated string): " + 919 name); 920 return &InputSection::discarded; 921 } 922 for (const char *d = data.begin(), *e = data.end(); d < e;) { 923 StringRef s(d); 924 addDependentLibrary(s, this); 925 d += s.size() + 1; 926 } 927 return &InputSection::discarded; 928 } 929 case SHT_RELA: 930 case SHT_REL: { 931 // Find a relocation target section and associate this section with that. 932 // Target may have been discarded if it is in a different section group 933 // and the group is discarded, even though it's a violation of the 934 // spec. We handle that situation gracefully by discarding dangling 935 // relocation sections. 936 InputSectionBase *target = getRelocTarget(idx, name, sec); 937 if (!target) 938 return nullptr; 939 940 // ELF spec allows mergeable sections with relocations, but they are 941 // rare, and it is in practice hard to merge such sections by contents, 942 // because applying relocations at end of linking changes section 943 // contents. So, we simply handle such sections as non-mergeable ones. 944 // Degrading like this is acceptable because section merging is optional. 945 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 946 target = toRegularSection(ms); 947 this->sections[sec.sh_info] = target; 948 } 949 950 if (target->relSecIdx != 0) 951 fatal(toString(this) + 952 ": multiple relocation sections to one section are not supported"); 953 target->relSecIdx = idx; 954 955 // Relocation sections are usually removed from the output, so return 956 // `nullptr` for the normal case. However, if -r or --emit-relocs is 957 // specified, we need to copy them to the output. (Some post link analysis 958 // tools specify --emit-relocs to obtain the information.) 959 if (!config->copyRelocs) 960 return nullptr; 961 InputSection *relocSec = make<InputSection>(*this, sec, name); 962 // If the relocated section is discarded (due to /DISCARD/ or 963 // --gc-sections), the relocation section should be discarded as well. 964 target->dependentSections.push_back(relocSec); 965 return relocSec; 966 } 967 } 968 969 // The GNU linker uses .note.GNU-stack section as a marker indicating 970 // that the code in the object file does not expect that the stack is 971 // executable (in terms of NX bit). If all input files have the marker, 972 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 973 // make the stack non-executable. Most object files have this section as 974 // of 2017. 975 // 976 // But making the stack non-executable is a norm today for security 977 // reasons. Failure to do so may result in a serious security issue. 978 // Therefore, we make LLD always add PT_GNU_STACK unless it is 979 // explicitly told to do otherwise (by -z execstack). Because the stack 980 // executable-ness is controlled solely by command line options, 981 // .note.GNU-stack sections are simply ignored. 982 if (name == ".note.GNU-stack") 983 return &InputSection::discarded; 984 985 // Object files that use processor features such as Intel Control-Flow 986 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 987 // .note.gnu.property section containing a bitfield of feature bits like the 988 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 989 // 990 // Since we merge bitmaps from multiple object files to create a new 991 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 992 // file's .note.gnu.property section. 993 if (name == ".note.gnu.property") { 994 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 995 return &InputSection::discarded; 996 } 997 998 // Split stacks is a feature to support a discontiguous stack, 999 // commonly used in the programming language Go. For the details, 1000 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1001 // for split stack will include a .note.GNU-split-stack section. 1002 if (name == ".note.GNU-split-stack") { 1003 if (config->relocatable) { 1004 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1005 return &InputSection::discarded; 1006 } 1007 this->splitStack = true; 1008 return &InputSection::discarded; 1009 } 1010 1011 // An object file cmpiled for split stack, but where some of the 1012 // functions were compiled with the no_split_stack_attribute will 1013 // include a .note.GNU-no-split-stack section. 1014 if (name == ".note.GNU-no-split-stack") { 1015 this->someNoSplitStack = true; 1016 return &InputSection::discarded; 1017 } 1018 1019 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1020 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1021 // sections. Drop those sections to avoid duplicate symbol errors. 1022 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1023 // fixed for a while. 1024 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1025 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1026 return &InputSection::discarded; 1027 1028 // Strip existing .note.gnu.build-id sections so that the output won't have 1029 // more than one build-id. This is not usually a problem because input object 1030 // files normally don't have .build-id sections, but you can create such files 1031 // by "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1032 if (name == ".note.gnu.build-id") 1033 return &InputSection::discarded; 1034 1035 // The linker merges EH (exception handling) frames and creates a 1036 // .eh_frame_hdr section for runtime. So we handle them with a special 1037 // class. For relocatable outputs, they are just passed through. 1038 if (name == ".eh_frame" && !config->relocatable) 1039 return make<EhInputSection>(*this, sec, name); 1040 1041 if (shouldMerge(sec, name)) 1042 return make<MergeInputSection>(*this, sec, name); 1043 return make<InputSection>(*this, sec, name); 1044 } 1045 1046 // Initialize this->Symbols. this->Symbols is a parallel array as 1047 // its corresponding ELF symbol table. 1048 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1049 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1050 this->symbols.resize(eSyms.size()); 1051 1052 // Fill in InputFile::symbols. Some entries have been initialized 1053 // because of LazyObjFile. 1054 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1055 if (this->symbols[i]) 1056 continue; 1057 const Elf_Sym &eSym = eSyms[i]; 1058 uint32_t secIdx = getSectionIndex(eSym); 1059 if (secIdx >= this->sections.size()) 1060 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1061 if (eSym.getBinding() != STB_LOCAL) { 1062 if (i < firstGlobal) 1063 error(toString(this) + ": non-local symbol (" + Twine(i) + 1064 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1065 ")"); 1066 this->symbols[i] = 1067 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1068 continue; 1069 } 1070 1071 // Handle local symbols. Local symbols are not added to the symbol 1072 // table because they are not visible from other object files. We 1073 // allocate symbol instances and add their pointers to symbols. 1074 if (i >= firstGlobal) 1075 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1076 ") found at index >= .symtab's sh_info (" + 1077 Twine(firstGlobal) + ")"); 1078 1079 InputSectionBase *sec = this->sections[secIdx]; 1080 uint8_t type = eSym.getType(); 1081 if (type == STT_FILE) 1082 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1083 if (this->stringTable.size() <= eSym.st_name) 1084 fatal(toString(this) + ": invalid symbol name offset"); 1085 StringRefZ name = this->stringTable.data() + eSym.st_name; 1086 1087 if (eSym.st_shndx == SHN_UNDEF) 1088 this->symbols[i] = 1089 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); 1090 else if (sec == &InputSection::discarded) 1091 this->symbols[i] = 1092 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, 1093 /*discardedSecIdx=*/secIdx); 1094 else 1095 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, 1096 type, eSym.st_value, eSym.st_size, sec); 1097 } 1098 1099 // Symbol resolution of non-local symbols. 1100 SmallVector<unsigned, 32> undefineds; 1101 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1102 const Elf_Sym &eSym = eSyms[i]; 1103 uint8_t binding = eSym.getBinding(); 1104 if (binding == STB_LOCAL) 1105 continue; // Errored above. 1106 1107 uint32_t secIdx = getSectionIndex(eSym); 1108 InputSectionBase *sec = this->sections[secIdx]; 1109 uint8_t stOther = eSym.st_other; 1110 uint8_t type = eSym.getType(); 1111 uint64_t value = eSym.st_value; 1112 uint64_t size = eSym.st_size; 1113 StringRefZ name = this->stringTable.data() + eSym.st_name; 1114 1115 // Handle global undefined symbols. 1116 if (eSym.st_shndx == SHN_UNDEF) { 1117 undefineds.push_back(i); 1118 continue; 1119 } 1120 1121 // Handle global common symbols. 1122 if (eSym.st_shndx == SHN_COMMON) { 1123 if (value == 0 || value >= UINT32_MAX) 1124 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1125 "' has invalid alignment: " + Twine(value)); 1126 this->symbols[i]->resolve( 1127 CommonSymbol{this, name, binding, stOther, type, value, size}); 1128 continue; 1129 } 1130 1131 // If a defined symbol is in a discarded section, handle it as if it 1132 // were an undefined symbol. Such symbol doesn't comply with the 1133 // standard, but in practice, a .eh_frame often directly refer 1134 // COMDAT member sections, and if a comdat group is discarded, some 1135 // defined symbol in a .eh_frame becomes dangling symbols. 1136 if (sec == &InputSection::discarded) { 1137 Undefined und{this, name, binding, stOther, type, secIdx}; 1138 Symbol *sym = this->symbols[i]; 1139 // !ArchiveFile::parsed or LazyObjFile::extracted means that the file 1140 // containing this object has not finished processing, i.e. this symbol is 1141 // a result of a lazy symbol extract. We should demote the lazy symbol to 1142 // an Undefined so that any relocations outside of the group to it will 1143 // trigger a discarded section error. 1144 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1145 !cast<ArchiveFile>(sym->file)->parsed) || 1146 (sym->symbolKind == Symbol::LazyObjectKind && 1147 cast<LazyObjFile>(sym->file)->extracted)) { 1148 sym->replace(und); 1149 // Prevent LTO from internalizing the symbol in case there is a 1150 // reference to this symbol from this file. 1151 sym->isUsedInRegularObj = true; 1152 } else 1153 sym->resolve(und); 1154 continue; 1155 } 1156 1157 // Handle global defined symbols. 1158 if (binding == STB_GLOBAL || binding == STB_WEAK || 1159 binding == STB_GNU_UNIQUE) { 1160 this->symbols[i]->resolve( 1161 Defined{this, name, binding, stOther, type, value, size, sec}); 1162 continue; 1163 } 1164 1165 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1166 } 1167 1168 // Undefined symbols (excluding those defined relative to non-prevailing 1169 // sections) can trigger recursive extract. Process defined symbols first so 1170 // that the relative order between a defined symbol and an undefined symbol 1171 // does not change the symbol resolution behavior. In addition, a set of 1172 // interconnected symbols will all be resolved to the same file, instead of 1173 // being resolved to different files. 1174 for (unsigned i : undefineds) { 1175 const Elf_Sym &eSym = eSyms[i]; 1176 StringRefZ name = this->stringTable.data() + eSym.st_name; 1177 this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(), 1178 eSym.st_other, eSym.getType()}); 1179 this->symbols[i]->referenced = true; 1180 } 1181 } 1182 1183 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1184 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1185 file(std::move(file)) {} 1186 1187 void ArchiveFile::parse() { 1188 for (const Archive::Symbol &sym : file->symbols()) 1189 symtab->addSymbol(LazyArchive{*this, sym}); 1190 1191 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1192 // archive has been processed. 1193 parsed = true; 1194 } 1195 1196 // Returns a buffer pointing to a member file containing a given symbol. 1197 void ArchiveFile::extract(const Archive::Symbol &sym) { 1198 Archive::Child c = 1199 CHECK(sym.getMember(), toString(this) + 1200 ": could not get the member for symbol " + 1201 toELFString(sym)); 1202 1203 if (!seen.insert(c.getChildOffset()).second) 1204 return; 1205 1206 MemoryBufferRef mb = 1207 CHECK(c.getMemoryBufferRef(), 1208 toString(this) + 1209 ": could not get the buffer for the member defining symbol " + 1210 toELFString(sym)); 1211 1212 if (tar && c.getParent()->isThin()) 1213 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1214 1215 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1216 file->groupId = groupId; 1217 parseFile(file); 1218 } 1219 1220 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1221 // A tentative definition will be promoted to a global definition if there are 1222 // no non-tentative definitions to dominate it. When we hold a tentative 1223 // definition to a symbol and are inspecting archive members for inclusion 1224 // there are 2 ways we can proceed: 1225 // 1226 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1227 // tentative to real definition has already happened) and not inspect 1228 // archive members for Global/Weak definitions to replace the tentative 1229 // definition. An archive member would only be included if it satisfies some 1230 // other undefined symbol. This is the behavior Gold uses. 1231 // 1232 // 2) Consider the tentative definition as still undefined (ie the promotion to 1233 // a real definition happens only after all symbol resolution is done). 1234 // The linker searches archive members for STB_GLOBAL definitions to 1235 // replace the tentative definition with. This is the behavior used by 1236 // GNU ld. 1237 // 1238 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1239 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1240 // (pre F90) FORTRAN code that is packaged into an archive. 1241 // 1242 // The following functions search archive members for definitions to replace 1243 // tentative definitions (implementing behavior 2). 1244 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1245 StringRef archiveName) { 1246 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1247 for (const irsymtab::Reader::SymbolRef &sym : 1248 symtabFile.TheReader.symbols()) { 1249 if (sym.isGlobal() && sym.getName() == symName) 1250 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1251 } 1252 return false; 1253 } 1254 1255 template <class ELFT> 1256 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1257 StringRef archiveName) { 1258 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1259 StringRef stringtable = obj->getStringTable(); 1260 1261 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1262 Expected<StringRef> name = sym.getName(stringtable); 1263 if (name && name.get() == symName) 1264 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1265 !sym.isCommon(); 1266 } 1267 return false; 1268 } 1269 1270 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1271 StringRef archiveName) { 1272 switch (getELFKind(mb, archiveName)) { 1273 case ELF32LEKind: 1274 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1275 case ELF32BEKind: 1276 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1277 case ELF64LEKind: 1278 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1279 case ELF64BEKind: 1280 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1281 default: 1282 llvm_unreachable("getELFKind"); 1283 } 1284 } 1285 1286 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) { 1287 Archive::Child c = 1288 CHECK(sym.getMember(), toString(this) + 1289 ": could not get the member for symbol " + 1290 toELFString(sym)); 1291 MemoryBufferRef mb = 1292 CHECK(c.getMemoryBufferRef(), 1293 toString(this) + 1294 ": could not get the buffer for the member defining symbol " + 1295 toELFString(sym)); 1296 1297 if (isBitcode(mb)) 1298 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1299 1300 return isNonCommonDef(mb, sym.getName(), getName()); 1301 } 1302 1303 size_t ArchiveFile::getMemberCount() const { 1304 size_t count = 0; 1305 Error err = Error::success(); 1306 for (const Archive::Child &c : file->children(err)) { 1307 (void)c; 1308 ++count; 1309 } 1310 // This function is used by --print-archive-stats=, where an error does not 1311 // really matter. 1312 consumeError(std::move(err)); 1313 return count; 1314 } 1315 1316 unsigned SharedFile::vernauxNum; 1317 1318 // Parse the version definitions in the object file if present, and return a 1319 // vector whose nth element contains a pointer to the Elf_Verdef for version 1320 // identifier n. Version identifiers that are not definitions map to nullptr. 1321 template <typename ELFT> 1322 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1323 const typename ELFT::Shdr *sec) { 1324 if (!sec) 1325 return {}; 1326 1327 // We cannot determine the largest verdef identifier without inspecting 1328 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1329 // sequentially starting from 1, so we predict that the largest identifier 1330 // will be verdefCount. 1331 unsigned verdefCount = sec->sh_info; 1332 std::vector<const void *> verdefs(verdefCount + 1); 1333 1334 // Build the Verdefs array by following the chain of Elf_Verdef objects 1335 // from the start of the .gnu.version_d section. 1336 const uint8_t *verdef = base + sec->sh_offset; 1337 for (unsigned i = 0; i != verdefCount; ++i) { 1338 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1339 verdef += curVerdef->vd_next; 1340 unsigned verdefIndex = curVerdef->vd_ndx; 1341 verdefs.resize(verdefIndex + 1); 1342 verdefs[verdefIndex] = curVerdef; 1343 } 1344 return verdefs; 1345 } 1346 1347 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1348 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1349 // implement sophisticated error checking like in llvm-readobj because the value 1350 // of such diagnostics is low. 1351 template <typename ELFT> 1352 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1353 const typename ELFT::Shdr *sec) { 1354 if (!sec) 1355 return {}; 1356 std::vector<uint32_t> verneeds; 1357 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1358 const uint8_t *verneedBuf = data.begin(); 1359 for (unsigned i = 0; i != sec->sh_info; ++i) { 1360 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1361 fatal(toString(this) + " has an invalid Verneed"); 1362 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1363 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1364 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1365 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1366 fatal(toString(this) + " has an invalid Vernaux"); 1367 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1368 if (aux->vna_name >= this->stringTable.size()) 1369 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1370 uint16_t version = aux->vna_other & VERSYM_VERSION; 1371 if (version >= verneeds.size()) 1372 verneeds.resize(version + 1); 1373 verneeds[version] = aux->vna_name; 1374 vernauxBuf += aux->vna_next; 1375 } 1376 verneedBuf += vn->vn_next; 1377 } 1378 return verneeds; 1379 } 1380 1381 // We do not usually care about alignments of data in shared object 1382 // files because the loader takes care of it. However, if we promote a 1383 // DSO symbol to point to .bss due to copy relocation, we need to keep 1384 // the original alignment requirements. We infer it in this function. 1385 template <typename ELFT> 1386 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1387 const typename ELFT::Sym &sym) { 1388 uint64_t ret = UINT64_MAX; 1389 if (sym.st_value) 1390 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1391 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1392 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1393 return (ret > UINT32_MAX) ? 0 : ret; 1394 } 1395 1396 // Fully parse the shared object file. 1397 // 1398 // This function parses symbol versions. If a DSO has version information, 1399 // the file has a ".gnu.version_d" section which contains symbol version 1400 // definitions. Each symbol is associated to one version through a table in 1401 // ".gnu.version" section. That table is a parallel array for the symbol 1402 // table, and each table entry contains an index in ".gnu.version_d". 1403 // 1404 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1405 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1406 // ".gnu.version_d". 1407 // 1408 // The file format for symbol versioning is perhaps a bit more complicated 1409 // than necessary, but you can easily understand the code if you wrap your 1410 // head around the data structure described above. 1411 template <class ELFT> void SharedFile::parse() { 1412 using Elf_Dyn = typename ELFT::Dyn; 1413 using Elf_Shdr = typename ELFT::Shdr; 1414 using Elf_Sym = typename ELFT::Sym; 1415 using Elf_Verdef = typename ELFT::Verdef; 1416 using Elf_Versym = typename ELFT::Versym; 1417 1418 ArrayRef<Elf_Dyn> dynamicTags; 1419 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1420 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1421 1422 const Elf_Shdr *versymSec = nullptr; 1423 const Elf_Shdr *verdefSec = nullptr; 1424 const Elf_Shdr *verneedSec = nullptr; 1425 1426 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1427 for (const Elf_Shdr &sec : sections) { 1428 switch (sec.sh_type) { 1429 default: 1430 continue; 1431 case SHT_DYNAMIC: 1432 dynamicTags = 1433 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1434 break; 1435 case SHT_GNU_versym: 1436 versymSec = &sec; 1437 break; 1438 case SHT_GNU_verdef: 1439 verdefSec = &sec; 1440 break; 1441 case SHT_GNU_verneed: 1442 verneedSec = &sec; 1443 break; 1444 } 1445 } 1446 1447 if (versymSec && numELFSyms == 0) { 1448 error("SHT_GNU_versym should be associated with symbol table"); 1449 return; 1450 } 1451 1452 // Search for a DT_SONAME tag to initialize this->soName. 1453 for (const Elf_Dyn &dyn : dynamicTags) { 1454 if (dyn.d_tag == DT_NEEDED) { 1455 uint64_t val = dyn.getVal(); 1456 if (val >= this->stringTable.size()) 1457 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1458 dtNeeded.push_back(this->stringTable.data() + val); 1459 } else if (dyn.d_tag == DT_SONAME) { 1460 uint64_t val = dyn.getVal(); 1461 if (val >= this->stringTable.size()) 1462 fatal(toString(this) + ": invalid DT_SONAME entry"); 1463 soName = this->stringTable.data() + val; 1464 } 1465 } 1466 1467 // DSOs are uniquified not by filename but by soname. 1468 DenseMap<StringRef, SharedFile *>::iterator it; 1469 bool wasInserted; 1470 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1471 1472 // If a DSO appears more than once on the command line with and without 1473 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1474 // user can add an extra DSO with --no-as-needed to force it to be added to 1475 // the dependency list. 1476 it->second->isNeeded |= isNeeded; 1477 if (!wasInserted) 1478 return; 1479 1480 sharedFiles.push_back(this); 1481 1482 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1483 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1484 1485 // Parse ".gnu.version" section which is a parallel array for the symbol 1486 // table. If a given file doesn't have a ".gnu.version" section, we use 1487 // VER_NDX_GLOBAL. 1488 size_t size = numELFSyms - firstGlobal; 1489 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1490 if (versymSec) { 1491 ArrayRef<Elf_Versym> versym = 1492 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1493 this) 1494 .slice(firstGlobal); 1495 for (size_t i = 0; i < size; ++i) 1496 versyms[i] = versym[i].vs_index; 1497 } 1498 1499 // System libraries can have a lot of symbols with versions. Using a 1500 // fixed buffer for computing the versions name (foo@ver) can save a 1501 // lot of allocations. 1502 SmallString<0> versionedNameBuffer; 1503 1504 // Add symbols to the symbol table. 1505 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1506 for (size_t i = 0; i < syms.size(); ++i) { 1507 const Elf_Sym &sym = syms[i]; 1508 1509 // ELF spec requires that all local symbols precede weak or global 1510 // symbols in each symbol table, and the index of first non-local symbol 1511 // is stored to sh_info. If a local symbol appears after some non-local 1512 // symbol, that's a violation of the spec. 1513 StringRef name = CHECK(sym.getName(this->stringTable), this); 1514 if (sym.getBinding() == STB_LOCAL) { 1515 warn("found local symbol '" + name + 1516 "' in global part of symbol table in file " + toString(this)); 1517 continue; 1518 } 1519 1520 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1521 if (sym.isUndefined()) { 1522 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1523 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1524 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1525 if (idx >= verneeds.size()) { 1526 error("corrupt input file: version need index " + Twine(idx) + 1527 " for symbol " + name + " is out of bounds\n>>> defined in " + 1528 toString(this)); 1529 continue; 1530 } 1531 StringRef verName = this->stringTable.data() + verneeds[idx]; 1532 versionedNameBuffer.clear(); 1533 name = 1534 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1535 } 1536 Symbol *s = symtab->addSymbol( 1537 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1538 s->exportDynamic = true; 1539 if (s->isUndefined() && sym.getBinding() != STB_WEAK && 1540 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1541 requiredSymbols.push_back(s); 1542 continue; 1543 } 1544 1545 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1546 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1547 // workaround for this bug. 1548 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1549 name == "_gp_disp") 1550 continue; 1551 1552 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1553 if (!(versyms[i] & VERSYM_HIDDEN)) { 1554 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1555 sym.st_other, sym.getType(), sym.st_value, 1556 sym.st_size, alignment, idx}); 1557 } 1558 1559 // Also add the symbol with the versioned name to handle undefined symbols 1560 // with explicit versions. 1561 if (idx == VER_NDX_GLOBAL) 1562 continue; 1563 1564 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1565 error("corrupt input file: version definition index " + Twine(idx) + 1566 " for symbol " + name + " is out of bounds\n>>> defined in " + 1567 toString(this)); 1568 continue; 1569 } 1570 1571 StringRef verName = 1572 this->stringTable.data() + 1573 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1574 versionedNameBuffer.clear(); 1575 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1576 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1577 sym.st_other, sym.getType(), sym.st_value, 1578 sym.st_size, alignment, idx}); 1579 } 1580 } 1581 1582 static ELFKind getBitcodeELFKind(const Triple &t) { 1583 if (t.isLittleEndian()) 1584 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1585 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1586 } 1587 1588 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1589 switch (t.getArch()) { 1590 case Triple::aarch64: 1591 case Triple::aarch64_be: 1592 return EM_AARCH64; 1593 case Triple::amdgcn: 1594 case Triple::r600: 1595 return EM_AMDGPU; 1596 case Triple::arm: 1597 case Triple::thumb: 1598 return EM_ARM; 1599 case Triple::avr: 1600 return EM_AVR; 1601 case Triple::hexagon: 1602 return EM_HEXAGON; 1603 case Triple::mips: 1604 case Triple::mipsel: 1605 case Triple::mips64: 1606 case Triple::mips64el: 1607 return EM_MIPS; 1608 case Triple::msp430: 1609 return EM_MSP430; 1610 case Triple::ppc: 1611 case Triple::ppcle: 1612 return EM_PPC; 1613 case Triple::ppc64: 1614 case Triple::ppc64le: 1615 return EM_PPC64; 1616 case Triple::riscv32: 1617 case Triple::riscv64: 1618 return EM_RISCV; 1619 case Triple::x86: 1620 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1621 case Triple::x86_64: 1622 return EM_X86_64; 1623 default: 1624 error(path + ": could not infer e_machine from bitcode target triple " + 1625 t.str()); 1626 return EM_NONE; 1627 } 1628 } 1629 1630 static uint8_t getOsAbi(const Triple &t) { 1631 switch (t.getOS()) { 1632 case Triple::AMDHSA: 1633 return ELF::ELFOSABI_AMDGPU_HSA; 1634 case Triple::AMDPAL: 1635 return ELF::ELFOSABI_AMDGPU_PAL; 1636 case Triple::Mesa3D: 1637 return ELF::ELFOSABI_AMDGPU_MESA3D; 1638 default: 1639 return ELF::ELFOSABI_NONE; 1640 } 1641 } 1642 1643 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1644 uint64_t offsetInArchive) 1645 : InputFile(BitcodeKind, mb) { 1646 this->archiveName = std::string(archiveName); 1647 1648 std::string path = mb.getBufferIdentifier().str(); 1649 if (config->thinLTOIndexOnly) 1650 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1651 1652 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1653 // name. If two archives define two members with the same name, this 1654 // causes a collision which result in only one of the objects being taken 1655 // into consideration at LTO time (which very likely causes undefined 1656 // symbols later in the link stage). So we append file offset to make 1657 // filename unique. 1658 StringRef name = 1659 archiveName.empty() 1660 ? saver.save(path) 1661 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1662 utostr(offsetInArchive) + ")"); 1663 MemoryBufferRef mbref(mb.getBuffer(), name); 1664 1665 obj = CHECK(lto::InputFile::create(mbref), this); 1666 1667 Triple t(obj->getTargetTriple()); 1668 ekind = getBitcodeELFKind(t); 1669 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1670 osabi = getOsAbi(t); 1671 } 1672 1673 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1674 switch (gvVisibility) { 1675 case GlobalValue::DefaultVisibility: 1676 return STV_DEFAULT; 1677 case GlobalValue::HiddenVisibility: 1678 return STV_HIDDEN; 1679 case GlobalValue::ProtectedVisibility: 1680 return STV_PROTECTED; 1681 } 1682 llvm_unreachable("unknown visibility"); 1683 } 1684 1685 template <class ELFT> 1686 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1687 const lto::InputFile::Symbol &objSym, 1688 BitcodeFile &f) { 1689 StringRef name = saver.save(objSym.getName()); 1690 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1691 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1692 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1693 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1694 1695 int c = objSym.getComdatIndex(); 1696 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1697 Undefined newSym(&f, name, binding, visibility, type); 1698 if (canOmitFromDynSym) 1699 newSym.exportDynamic = false; 1700 Symbol *ret = symtab->addSymbol(newSym); 1701 ret->referenced = true; 1702 return ret; 1703 } 1704 1705 if (objSym.isCommon()) 1706 return symtab->addSymbol( 1707 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1708 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1709 1710 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1711 if (canOmitFromDynSym) 1712 newSym.exportDynamic = false; 1713 return symtab->addSymbol(newSym); 1714 } 1715 1716 template <class ELFT> void BitcodeFile::parse() { 1717 std::vector<bool> keptComdats; 1718 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1719 keptComdats.push_back( 1720 s.second == Comdat::NoDeduplicate || 1721 symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1722 .second); 1723 } 1724 1725 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1726 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1727 1728 for (auto l : obj->getDependentLibraries()) 1729 addDependentLibrary(l, this); 1730 } 1731 1732 void BinaryFile::parse() { 1733 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1734 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1735 8, data, ".data"); 1736 sections.push_back(section); 1737 1738 // For each input file foo that is embedded to a result as a binary 1739 // blob, we define _binary_foo_{start,end,size} symbols, so that 1740 // user programs can access blobs by name. Non-alphanumeric 1741 // characters in a filename are replaced with underscore. 1742 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1743 for (size_t i = 0; i < s.size(); ++i) 1744 if (!isAlnum(s[i])) 1745 s[i] = '_'; 1746 1747 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1748 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1749 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1750 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1751 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1752 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1753 } 1754 1755 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1756 uint64_t offsetInArchive) { 1757 if (isBitcode(mb)) 1758 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1759 1760 switch (getELFKind(mb, archiveName)) { 1761 case ELF32LEKind: 1762 return make<ObjFile<ELF32LE>>(mb, archiveName); 1763 case ELF32BEKind: 1764 return make<ObjFile<ELF32BE>>(mb, archiveName); 1765 case ELF64LEKind: 1766 return make<ObjFile<ELF64LE>>(mb, archiveName); 1767 case ELF64BEKind: 1768 return make<ObjFile<ELF64BE>>(mb, archiveName); 1769 default: 1770 llvm_unreachable("getELFKind"); 1771 } 1772 } 1773 1774 void LazyObjFile::extract() { 1775 if (extracted) 1776 return; 1777 extracted = true; 1778 1779 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1780 file->groupId = groupId; 1781 1782 // Copy symbol vector so that the new InputFile doesn't have to 1783 // insert the same defined symbols to the symbol table again. 1784 file->symbols = std::move(symbols); 1785 1786 parseFile(file); 1787 } 1788 1789 template <class ELFT> void LazyObjFile::parse() { 1790 using Elf_Sym = typename ELFT::Sym; 1791 1792 // A lazy object file wraps either a bitcode file or an ELF file. 1793 if (isBitcode(this->mb)) { 1794 std::unique_ptr<lto::InputFile> obj = 1795 CHECK(lto::InputFile::create(this->mb), this); 1796 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1797 if (sym.isUndefined()) 1798 continue; 1799 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1800 } 1801 return; 1802 } 1803 1804 if (getELFKind(this->mb, archiveName) != config->ekind) { 1805 error("incompatible file: " + this->mb.getBufferIdentifier()); 1806 return; 1807 } 1808 1809 // Find a symbol table. 1810 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1811 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1812 1813 for (const typename ELFT::Shdr &sec : sections) { 1814 if (sec.sh_type != SHT_SYMTAB) 1815 continue; 1816 1817 // A symbol table is found. 1818 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1819 uint32_t firstGlobal = sec.sh_info; 1820 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1821 this->symbols.resize(eSyms.size()); 1822 1823 // Get existing symbols or insert placeholder symbols. 1824 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1825 if (eSyms[i].st_shndx != SHN_UNDEF) 1826 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1827 1828 // Replace existing symbols with LazyObject symbols. 1829 // 1830 // resolve() may trigger this->extract() if an existing symbol is an 1831 // undefined symbol. If that happens, this LazyObjFile has served 1832 // its purpose, and we can exit from the loop early. 1833 for (Symbol *sym : this->symbols) { 1834 if (!sym) 1835 continue; 1836 sym->resolve(LazyObject{*this, sym->getName()}); 1837 1838 // If extracted, stop iterating because this->symbols has been transferred 1839 // to the instantiated ObjFile. 1840 if (extracted) 1841 return; 1842 } 1843 return; 1844 } 1845 } 1846 1847 bool LazyObjFile::shouldExtractForCommon(const StringRef &name) { 1848 if (isBitcode(mb)) 1849 return isBitcodeNonCommonDef(mb, name, archiveName); 1850 1851 return isNonCommonDef(mb, name, archiveName); 1852 } 1853 1854 std::string elf::replaceThinLTOSuffix(StringRef path) { 1855 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1856 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1857 1858 if (path.consume_back(suffix)) 1859 return (path + repl).str(); 1860 return std::string(path); 1861 } 1862 1863 template void BitcodeFile::parse<ELF32LE>(); 1864 template void BitcodeFile::parse<ELF32BE>(); 1865 template void BitcodeFile::parse<ELF64LE>(); 1866 template void BitcodeFile::parse<ELF64BE>(); 1867 1868 template void LazyObjFile::parse<ELF32LE>(); 1869 template void LazyObjFile::parse<ELF32BE>(); 1870 template void LazyObjFile::parse<ELF64LE>(); 1871 template void LazyObjFile::parse<ELF64BE>(); 1872 1873 template class elf::ObjFile<ELF32LE>; 1874 template class elf::ObjFile<ELF32BE>; 1875 template class elf::ObjFile<ELF64LE>; 1876 template class elf::ObjFile<ELF64BE>; 1877 1878 template void SharedFile::parse<ELF32LE>(); 1879 template void SharedFile::parse<ELF32BE>(); 1880 template void SharedFile::parse<ELF64LE>(); 1881 template void SharedFile::parse<ELF64BE>(); 1882