1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/CommonLinkerContext.h" 17 #include "lld/Common/DWARF.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/LTO/LTO.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Object/ELFObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Endian.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/RISCVAttributeParser.h" 30 #include "llvm/Support/TarWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 using namespace llvm::ELF; 35 using namespace llvm::object; 36 using namespace llvm::sys; 37 using namespace llvm::sys::fs; 38 using namespace llvm::support::endian; 39 using namespace lld; 40 using namespace lld::elf; 41 42 bool InputFile::isInGroup; 43 uint32_t InputFile::nextGroupId; 44 45 SmallVector<std::unique_ptr<MemoryBuffer>> elf::memoryBuffers; 46 SmallVector<ArchiveFile *, 0> elf::archiveFiles; 47 SmallVector<BinaryFile *, 0> elf::binaryFiles; 48 SmallVector<BitcodeFile *, 0> elf::bitcodeFiles; 49 SmallVector<BitcodeFile *, 0> elf::lazyBitcodeFiles; 50 SmallVector<ELFFileBase *, 0> elf::objectFiles; 51 SmallVector<SharedFile *, 0> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = f->getName(); 63 else 64 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache); 65 } 66 return std::string(f->toStringCache); 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver().save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 119 /*RequiresNullTerminator=*/false); 120 if (auto ec = mbOrErr.getError()) { 121 error("cannot open " + path + ": " + ec.message()); 122 return None; 123 } 124 125 MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef(); 126 memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership 127 128 if (tar) 129 tar->append(relativeToRoot(path), mbref.getBuffer()); 130 return mbref; 131 } 132 133 // All input object files must be for the same architecture 134 // (e.g. it does not make sense to link x86 object files with 135 // MIPS object files.) This function checks for that error. 136 static bool isCompatible(InputFile *file) { 137 if (!file->isElf() && !isa<BitcodeFile>(file)) 138 return true; 139 140 if (file->ekind == config->ekind && file->emachine == config->emachine) { 141 if (config->emachine != EM_MIPS) 142 return true; 143 if (isMipsN32Abi(file) == config->mipsN32Abi) 144 return true; 145 } 146 147 StringRef target = 148 !config->bfdname.empty() ? config->bfdname : config->emulation; 149 if (!target.empty()) { 150 error(toString(file) + " is incompatible with " + target); 151 return false; 152 } 153 154 InputFile *existing; 155 if (!objectFiles.empty()) 156 existing = objectFiles[0]; 157 else if (!sharedFiles.empty()) 158 existing = sharedFiles[0]; 159 else if (!bitcodeFiles.empty()) 160 existing = bitcodeFiles[0]; 161 else 162 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 163 "determine target emulation"); 164 165 error(toString(file) + " is incompatible with " + toString(existing)); 166 return false; 167 } 168 169 template <class ELFT> static void doParseFile(InputFile *file) { 170 if (!isCompatible(file)) 171 return; 172 173 // Binary file 174 if (auto *f = dyn_cast<BinaryFile>(file)) { 175 binaryFiles.push_back(f); 176 f->parse(); 177 return; 178 } 179 180 // .a file 181 if (auto *f = dyn_cast<ArchiveFile>(file)) { 182 archiveFiles.push_back(f); 183 f->parse(); 184 return; 185 } 186 187 // Lazy object file 188 if (file->lazy) { 189 if (auto *f = dyn_cast<BitcodeFile>(file)) { 190 lazyBitcodeFiles.push_back(f); 191 f->parseLazy(); 192 } else { 193 cast<ObjFile<ELFT>>(file)->parseLazy(); 194 } 195 return; 196 } 197 198 if (config->trace) 199 message(toString(file)); 200 201 // .so file 202 if (auto *f = dyn_cast<SharedFile>(file)) { 203 f->parse<ELFT>(); 204 return; 205 } 206 207 // LLVM bitcode file 208 if (auto *f = dyn_cast<BitcodeFile>(file)) { 209 bitcodeFiles.push_back(f); 210 f->parse<ELFT>(); 211 return; 212 } 213 214 // Regular object file 215 objectFiles.push_back(cast<ELFFileBase>(file)); 216 cast<ObjFile<ELFT>>(file)->parse(); 217 } 218 219 // Add symbols in File to the symbol table. 220 void elf::parseFile(InputFile *file) { 221 switch (config->ekind) { 222 case ELF32LEKind: 223 doParseFile<ELF32LE>(file); 224 return; 225 case ELF32BEKind: 226 doParseFile<ELF32BE>(file); 227 return; 228 case ELF64LEKind: 229 doParseFile<ELF64LE>(file); 230 return; 231 case ELF64BEKind: 232 doParseFile<ELF64BE>(file); 233 return; 234 default: 235 llvm_unreachable("unknown ELFT"); 236 } 237 } 238 239 // Concatenates arguments to construct a string representing an error location. 240 static std::string createFileLineMsg(StringRef path, unsigned line) { 241 std::string filename = std::string(path::filename(path)); 242 std::string lineno = ":" + std::to_string(line); 243 if (filename == path) 244 return filename + lineno; 245 return filename + lineno + " (" + path.str() + lineno + ")"; 246 } 247 248 template <class ELFT> 249 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 250 InputSectionBase &sec, uint64_t offset) { 251 // In DWARF, functions and variables are stored to different places. 252 // First, lookup a function for a given offset. 253 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 254 return createFileLineMsg(info->FileName, info->Line); 255 256 // If it failed, lookup again as a variable. 257 if (Optional<std::pair<std::string, unsigned>> fileLine = 258 file.getVariableLoc(sym.getName())) 259 return createFileLineMsg(fileLine->first, fileLine->second); 260 261 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 262 return std::string(file.sourceFile); 263 } 264 265 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 266 uint64_t offset) { 267 if (kind() != ObjKind) 268 return ""; 269 switch (config->ekind) { 270 default: 271 llvm_unreachable("Invalid kind"); 272 case ELF32LEKind: 273 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 274 case ELF32BEKind: 275 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 276 case ELF64LEKind: 277 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 278 case ELF64BEKind: 279 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 280 } 281 } 282 283 StringRef InputFile::getNameForScript() const { 284 if (archiveName.empty()) 285 return getName(); 286 287 if (nameForScriptCache.empty()) 288 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 289 290 return nameForScriptCache; 291 } 292 293 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 294 llvm::call_once(initDwarf, [this]() { 295 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 296 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 297 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 298 [&](Error warning) { 299 warn(getName() + ": " + toString(std::move(warning))); 300 })); 301 }); 302 303 return dwarf.get(); 304 } 305 306 // Returns the pair of file name and line number describing location of data 307 // object (variable, array, etc) definition. 308 template <class ELFT> 309 Optional<std::pair<std::string, unsigned>> 310 ObjFile<ELFT>::getVariableLoc(StringRef name) { 311 return getDwarf()->getVariableLoc(name); 312 } 313 314 // Returns source line information for a given offset 315 // using DWARF debug info. 316 template <class ELFT> 317 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 318 uint64_t offset) { 319 // Detect SectionIndex for specified section. 320 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 321 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 322 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 323 if (s == sections[curIndex]) { 324 sectionIndex = curIndex; 325 break; 326 } 327 } 328 329 return getDwarf()->getDILineInfo(offset, sectionIndex); 330 } 331 332 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 333 ekind = getELFKind(mb, ""); 334 335 switch (ekind) { 336 case ELF32LEKind: 337 init<ELF32LE>(); 338 break; 339 case ELF32BEKind: 340 init<ELF32BE>(); 341 break; 342 case ELF64LEKind: 343 init<ELF64LE>(); 344 break; 345 case ELF64BEKind: 346 init<ELF64BE>(); 347 break; 348 default: 349 llvm_unreachable("getELFKind"); 350 } 351 } 352 353 template <typename Elf_Shdr> 354 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 355 for (const Elf_Shdr &sec : sections) 356 if (sec.sh_type == type) 357 return &sec; 358 return nullptr; 359 } 360 361 template <class ELFT> void ELFFileBase::init() { 362 using Elf_Shdr = typename ELFT::Shdr; 363 using Elf_Sym = typename ELFT::Sym; 364 365 // Initialize trivial attributes. 366 const ELFFile<ELFT> &obj = getObj<ELFT>(); 367 emachine = obj.getHeader().e_machine; 368 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 369 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 370 371 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 372 elfShdrs = sections.data(); 373 numELFShdrs = sections.size(); 374 375 // Find a symbol table. 376 bool isDSO = 377 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 378 const Elf_Shdr *symtabSec = 379 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 380 381 if (!symtabSec) 382 return; 383 384 // Initialize members corresponding to a symbol table. 385 firstGlobal = symtabSec->sh_info; 386 387 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 388 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 389 fatal(toString(this) + ": invalid sh_info in symbol table"); 390 391 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 392 numELFSyms = uint32_t(eSyms.size()); 393 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 394 } 395 396 template <class ELFT> 397 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 398 return CHECK( 399 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 400 this); 401 } 402 403 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 404 object::ELFFile<ELFT> obj = this->getObj(); 405 // Read a section table. justSymbols is usually false. 406 if (this->justSymbols) 407 initializeJustSymbols(); 408 else 409 initializeSections(ignoreComdats, obj); 410 411 // Read a symbol table. 412 initializeSymbols(obj); 413 } 414 415 // Sections with SHT_GROUP and comdat bits define comdat section groups. 416 // They are identified and deduplicated by group name. This function 417 // returns a group name. 418 template <class ELFT> 419 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 420 const Elf_Shdr &sec) { 421 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 422 if (sec.sh_info >= symbols.size()) 423 fatal(toString(this) + ": invalid symbol index"); 424 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 425 return CHECK(sym.getName(this->stringTable), this); 426 } 427 428 template <class ELFT> 429 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 430 // On a regular link we don't merge sections if -O0 (default is -O1). This 431 // sometimes makes the linker significantly faster, although the output will 432 // be bigger. 433 // 434 // Doing the same for -r would create a problem as it would combine sections 435 // with different sh_entsize. One option would be to just copy every SHF_MERGE 436 // section as is to the output. While this would produce a valid ELF file with 437 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 438 // they see two .debug_str. We could have separate logic for combining 439 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 440 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 441 // logic for -r. 442 if (config->optimize == 0 && !config->relocatable) 443 return false; 444 445 // A mergeable section with size 0 is useless because they don't have 446 // any data to merge. A mergeable string section with size 0 can be 447 // argued as invalid because it doesn't end with a null character. 448 // We'll avoid a mess by handling them as if they were non-mergeable. 449 if (sec.sh_size == 0) 450 return false; 451 452 // Check for sh_entsize. The ELF spec is not clear about the zero 453 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 454 // the section does not hold a table of fixed-size entries". We know 455 // that Rust 1.13 produces a string mergeable section with a zero 456 // sh_entsize. Here we just accept it rather than being picky about it. 457 uint64_t entSize = sec.sh_entsize; 458 if (entSize == 0) 459 return false; 460 if (sec.sh_size % entSize) 461 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 462 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 463 Twine(entSize) + ")"); 464 465 if (sec.sh_flags & SHF_WRITE) 466 fatal(toString(this) + ":(" + name + 467 "): writable SHF_MERGE section is not supported"); 468 469 return true; 470 } 471 472 // This is for --just-symbols. 473 // 474 // --just-symbols is a very minor feature that allows you to link your 475 // output against other existing program, so that if you load both your 476 // program and the other program into memory, your output can refer the 477 // other program's symbols. 478 // 479 // When the option is given, we link "just symbols". The section table is 480 // initialized with null pointers. 481 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 482 sections.resize(numELFShdrs); 483 } 484 485 // An ELF object file may contain a `.deplibs` section. If it exists, the 486 // section contains a list of library specifiers such as `m` for libm. This 487 // function resolves a given name by finding the first matching library checking 488 // the various ways that a library can be specified to LLD. This ELF extension 489 // is a form of autolinking and is called `dependent libraries`. It is currently 490 // unique to LLVM and lld. 491 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 492 if (!config->dependentLibraries) 493 return; 494 if (Optional<std::string> s = searchLibraryBaseName(specifier)) 495 driver->addFile(*s, /*withLOption=*/true); 496 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 497 driver->addFile(*s, /*withLOption=*/true); 498 else if (fs::exists(specifier)) 499 driver->addFile(specifier, /*withLOption=*/false); 500 else 501 error(toString(f) + 502 ": unable to find library from dependent library specifier: " + 503 specifier); 504 } 505 506 // Record the membership of a section group so that in the garbage collection 507 // pass, section group members are kept or discarded as a unit. 508 template <class ELFT> 509 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 510 ArrayRef<typename ELFT::Word> entries) { 511 bool hasAlloc = false; 512 for (uint32_t index : entries.slice(1)) { 513 if (index >= sections.size()) 514 return; 515 if (InputSectionBase *s = sections[index]) 516 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 517 hasAlloc = true; 518 } 519 520 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 521 // collection. See the comment in markLive(). This rule retains .debug_types 522 // and .rela.debug_types. 523 if (!hasAlloc) 524 return; 525 526 // Connect the members in a circular doubly-linked list via 527 // nextInSectionGroup. 528 InputSectionBase *head; 529 InputSectionBase *prev = nullptr; 530 for (uint32_t index : entries.slice(1)) { 531 InputSectionBase *s = sections[index]; 532 if (!s || s == &InputSection::discarded) 533 continue; 534 if (prev) 535 prev->nextInSectionGroup = s; 536 else 537 head = s; 538 prev = s; 539 } 540 if (prev) 541 prev->nextInSectionGroup = head; 542 } 543 544 template <class ELFT> 545 void ObjFile<ELFT>::initializeSections(bool ignoreComdats, 546 const llvm::object::ELFFile<ELFT> &obj) { 547 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>(); 548 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this); 549 uint64_t size = objSections.size(); 550 this->sections.resize(size); 551 552 std::vector<ArrayRef<Elf_Word>> selectedGroups; 553 554 for (size_t i = 0; i != size; ++i) { 555 if (this->sections[i] == &InputSection::discarded) 556 continue; 557 const Elf_Shdr &sec = objSections[i]; 558 559 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 560 // if -r is given, we'll let the final link discard such sections. 561 // This is compatible with GNU. 562 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 563 if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE) 564 cgProfileSectionIndex = i; 565 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 566 // We ignore the address-significance table if we know that the object 567 // file was created by objcopy or ld -r. This is because these tools 568 // will reorder the symbols in the symbol table, invalidating the data 569 // in the address-significance table, which refers to symbols by index. 570 if (sec.sh_link != 0) 571 this->addrsigSec = &sec; 572 else if (config->icf == ICFLevel::Safe) 573 warn(toString(this) + 574 ": --icf=safe conservatively ignores " 575 "SHT_LLVM_ADDRSIG [index " + 576 Twine(i) + 577 "] with sh_link=0 " 578 "(likely created using objcopy or ld -r)"); 579 } 580 this->sections[i] = &InputSection::discarded; 581 continue; 582 } 583 584 switch (sec.sh_type) { 585 case SHT_GROUP: { 586 // De-duplicate section groups by their signatures. 587 StringRef signature = getShtGroupSignature(objSections, sec); 588 this->sections[i] = &InputSection::discarded; 589 590 ArrayRef<Elf_Word> entries = 591 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 592 if (entries.empty()) 593 fatal(toString(this) + ": empty SHT_GROUP"); 594 595 Elf_Word flag = entries[0]; 596 if (flag && flag != GRP_COMDAT) 597 fatal(toString(this) + ": unsupported SHT_GROUP format"); 598 599 bool keepGroup = 600 (flag & GRP_COMDAT) == 0 || ignoreComdats || 601 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 602 .second; 603 if (keepGroup) { 604 if (config->relocatable) 605 this->sections[i] = createInputSection( 606 i, sec, check(obj.getSectionName(sec, shstrtab))); 607 selectedGroups.push_back(entries); 608 continue; 609 } 610 611 // Otherwise, discard group members. 612 for (uint32_t secIndex : entries.slice(1)) { 613 if (secIndex >= size) 614 fatal(toString(this) + 615 ": invalid section index in group: " + Twine(secIndex)); 616 this->sections[secIndex] = &InputSection::discarded; 617 } 618 break; 619 } 620 case SHT_SYMTAB_SHNDX: 621 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 622 break; 623 case SHT_SYMTAB: 624 case SHT_STRTAB: 625 case SHT_REL: 626 case SHT_RELA: 627 case SHT_NULL: 628 break; 629 default: 630 this->sections[i] = 631 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab))); 632 } 633 } 634 635 // We have a second loop. It is used to: 636 // 1) handle SHF_LINK_ORDER sections. 637 // 2) create SHT_REL[A] sections. In some cases the section header index of a 638 // relocation section may be smaller than that of the relocated section. In 639 // such cases, the relocation section would attempt to reference a target 640 // section that has not yet been created. For simplicity, delay creation of 641 // relocation sections until now. 642 for (size_t i = 0; i != size; ++i) { 643 if (this->sections[i] == &InputSection::discarded) 644 continue; 645 const Elf_Shdr &sec = objSections[i]; 646 647 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) { 648 // Find a relocation target section and associate this section with that. 649 // Target may have been discarded if it is in a different section group 650 // and the group is discarded, even though it's a violation of the spec. 651 // We handle that situation gracefully by discarding dangling relocation 652 // sections. 653 const uint32_t info = sec.sh_info; 654 InputSectionBase *s = getRelocTarget(i, sec, info); 655 if (!s) 656 continue; 657 658 // ELF spec allows mergeable sections with relocations, but they are rare, 659 // and it is in practice hard to merge such sections by contents, because 660 // applying relocations at end of linking changes section contents. So, we 661 // simply handle such sections as non-mergeable ones. Degrading like this 662 // is acceptable because section merging is optional. 663 if (auto *ms = dyn_cast<MergeInputSection>(s)) { 664 s = make<InputSection>(ms->file, ms->flags, ms->type, ms->alignment, 665 ms->data(), ms->name); 666 sections[info] = s; 667 } 668 669 if (s->relSecIdx != 0) 670 error( 671 toString(s) + 672 ": multiple relocation sections to one section are not supported"); 673 s->relSecIdx = i; 674 675 // Relocation sections are usually removed from the output, so return 676 // `nullptr` for the normal case. However, if -r or --emit-relocs is 677 // specified, we need to copy them to the output. (Some post link analysis 678 // tools specify --emit-relocs to obtain the information.) 679 if (config->copyRelocs) { 680 auto *isec = make<InputSection>( 681 *this, sec, check(obj.getSectionName(sec, shstrtab))); 682 // If the relocated section is discarded (due to /DISCARD/ or 683 // --gc-sections), the relocation section should be discarded as well. 684 s->dependentSections.push_back(isec); 685 sections[i] = isec; 686 } 687 continue; 688 } 689 690 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 691 // the flag. 692 if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER)) 693 continue; 694 695 InputSectionBase *linkSec = nullptr; 696 if (sec.sh_link < size) 697 linkSec = this->sections[sec.sh_link]; 698 if (!linkSec) 699 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 700 701 // A SHF_LINK_ORDER section is discarded if its linked-to section is 702 // discarded. 703 InputSection *isec = cast<InputSection>(this->sections[i]); 704 linkSec->dependentSections.push_back(isec); 705 if (!isa<InputSection>(linkSec)) 706 error("a section " + isec->name + 707 " with SHF_LINK_ORDER should not refer a non-regular section: " + 708 toString(linkSec)); 709 } 710 711 for (ArrayRef<Elf_Word> entries : selectedGroups) 712 handleSectionGroup<ELFT>(this->sections, entries); 713 } 714 715 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 716 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 717 // the input objects have been compiled. 718 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 719 const InputFile *f) { 720 Optional<unsigned> attr = 721 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 722 if (!attr.hasValue()) 723 // If an ABI tag isn't present then it is implicitly given the value of 0 724 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 725 // including some in glibc that don't use FP args (and should have value 3) 726 // don't have the attribute so we do not consider an implicit value of 0 727 // as a clash. 728 return; 729 730 unsigned vfpArgs = attr.getValue(); 731 ARMVFPArgKind arg; 732 switch (vfpArgs) { 733 case ARMBuildAttrs::BaseAAPCS: 734 arg = ARMVFPArgKind::Base; 735 break; 736 case ARMBuildAttrs::HardFPAAPCS: 737 arg = ARMVFPArgKind::VFP; 738 break; 739 case ARMBuildAttrs::ToolChainFPPCS: 740 // Tool chain specific convention that conforms to neither AAPCS variant. 741 arg = ARMVFPArgKind::ToolChain; 742 break; 743 case ARMBuildAttrs::CompatibleFPAAPCS: 744 // Object compatible with all conventions. 745 return; 746 default: 747 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 748 return; 749 } 750 // Follow ld.bfd and error if there is a mix of calling conventions. 751 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 752 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 753 else 754 config->armVFPArgs = arg; 755 } 756 757 // The ARM support in lld makes some use of instructions that are not available 758 // on all ARM architectures. Namely: 759 // - Use of BLX instruction for interworking between ARM and Thumb state. 760 // - Use of the extended Thumb branch encoding in relocation. 761 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 762 // The ARM Attributes section contains information about the architecture chosen 763 // at compile time. We follow the convention that if at least one input object 764 // is compiled with an architecture that supports these features then lld is 765 // permitted to use them. 766 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 767 Optional<unsigned> attr = 768 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 769 if (!attr.hasValue()) 770 return; 771 auto arch = attr.getValue(); 772 switch (arch) { 773 case ARMBuildAttrs::Pre_v4: 774 case ARMBuildAttrs::v4: 775 case ARMBuildAttrs::v4T: 776 // Architectures prior to v5 do not support BLX instruction 777 break; 778 case ARMBuildAttrs::v5T: 779 case ARMBuildAttrs::v5TE: 780 case ARMBuildAttrs::v5TEJ: 781 case ARMBuildAttrs::v6: 782 case ARMBuildAttrs::v6KZ: 783 case ARMBuildAttrs::v6K: 784 config->armHasBlx = true; 785 // Architectures used in pre-Cortex processors do not support 786 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 787 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 788 break; 789 default: 790 // All other Architectures have BLX and extended branch encoding 791 config->armHasBlx = true; 792 config->armJ1J2BranchEncoding = true; 793 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 794 // All Architectures used in Cortex processors with the exception 795 // of v6-M and v6S-M have the MOVT and MOVW instructions. 796 config->armHasMovtMovw = true; 797 break; 798 } 799 } 800 801 // If a source file is compiled with x86 hardware-assisted call flow control 802 // enabled, the generated object file contains feature flags indicating that 803 // fact. This function reads the feature flags and returns it. 804 // 805 // Essentially we want to read a single 32-bit value in this function, but this 806 // function is rather complicated because the value is buried deep inside a 807 // .note.gnu.property section. 808 // 809 // The section consists of one or more NOTE records. Each NOTE record consists 810 // of zero or more type-length-value fields. We want to find a field of a 811 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 812 // the ABI is unnecessarily complicated. 813 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 814 using Elf_Nhdr = typename ELFT::Nhdr; 815 using Elf_Note = typename ELFT::Note; 816 817 uint32_t featuresSet = 0; 818 ArrayRef<uint8_t> data = sec.data(); 819 auto reportFatal = [&](const uint8_t *place, const char *msg) { 820 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 821 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 822 }; 823 while (!data.empty()) { 824 // Read one NOTE record. 825 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 826 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 827 reportFatal(data.data(), "data is too short"); 828 829 Elf_Note note(*nhdr); 830 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 831 data = data.slice(nhdr->getSize()); 832 continue; 833 } 834 835 uint32_t featureAndType = config->emachine == EM_AARCH64 836 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 837 : GNU_PROPERTY_X86_FEATURE_1_AND; 838 839 // Read a body of a NOTE record, which consists of type-length-value fields. 840 ArrayRef<uint8_t> desc = note.getDesc(); 841 while (!desc.empty()) { 842 const uint8_t *place = desc.data(); 843 if (desc.size() < 8) 844 reportFatal(place, "program property is too short"); 845 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 846 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 847 desc = desc.slice(8); 848 if (desc.size() < size) 849 reportFatal(place, "program property is too short"); 850 851 if (type == featureAndType) { 852 // We found a FEATURE_1_AND field. There may be more than one of these 853 // in a .note.gnu.property section, for a relocatable object we 854 // accumulate the bits set. 855 if (size < 4) 856 reportFatal(place, "FEATURE_1_AND entry is too short"); 857 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 858 } 859 860 // Padding is present in the note descriptor, if necessary. 861 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 862 } 863 864 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 865 data = data.slice(nhdr->getSize()); 866 } 867 868 return featuresSet; 869 } 870 871 template <class ELFT> 872 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, 873 const Elf_Shdr &sec, 874 uint32_t info) { 875 if (info < this->sections.size()) { 876 InputSectionBase *target = this->sections[info]; 877 878 // Strictly speaking, a relocation section must be included in the 879 // group of the section it relocates. However, LLVM 3.3 and earlier 880 // would fail to do so, so we gracefully handle that case. 881 if (target == &InputSection::discarded) 882 return nullptr; 883 884 if (target != nullptr) 885 return target; 886 } 887 888 error(toString(this) + Twine(": relocation section (index ") + Twine(idx) + 889 ") has invalid sh_info (" + Twine(info) + ")"); 890 return nullptr; 891 } 892 893 template <class ELFT> 894 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx, 895 const Elf_Shdr &sec, 896 StringRef name) { 897 if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) { 898 ARMAttributeParser attributes; 899 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 900 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 901 ? support::little 902 : support::big)) { 903 auto *isec = make<InputSection>(*this, sec, name); 904 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 905 } else { 906 updateSupportedARMFeatures(attributes); 907 updateARMVFPArgs(attributes, this); 908 909 // FIXME: Retain the first attribute section we see. The eglibc ARM 910 // dynamic loaders require the presence of an attribute section for dlopen 911 // to work. In a full implementation we would merge all attribute 912 // sections. 913 if (in.attributes == nullptr) { 914 in.attributes = std::make_unique<InputSection>(*this, sec, name); 915 return in.attributes.get(); 916 } 917 return &InputSection::discarded; 918 } 919 } 920 921 if (sec.sh_type == SHT_RISCV_ATTRIBUTES && config->emachine == EM_RISCV) { 922 RISCVAttributeParser attributes; 923 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 924 if (Error e = attributes.parse(contents, support::little)) { 925 auto *isec = make<InputSection>(*this, sec, name); 926 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 927 } else { 928 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 929 // present. 930 931 // FIXME: Retain the first attribute section we see. Tools such as 932 // llvm-objdump make use of the attribute section to determine which 933 // standard extensions to enable. In a full implementation we would merge 934 // all attribute sections. 935 if (in.attributes == nullptr) { 936 in.attributes = std::make_unique<InputSection>(*this, sec, name); 937 return in.attributes.get(); 938 } 939 return &InputSection::discarded; 940 } 941 } 942 943 if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) { 944 ArrayRef<char> data = 945 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 946 if (!data.empty() && data.back() != '\0') { 947 error(toString(this) + 948 ": corrupted dependent libraries section (unterminated string): " + 949 name); 950 return &InputSection::discarded; 951 } 952 for (const char *d = data.begin(), *e = data.end(); d < e;) { 953 StringRef s(d); 954 addDependentLibrary(s, this); 955 d += s.size() + 1; 956 } 957 return &InputSection::discarded; 958 } 959 960 if (name.startswith(".n")) { 961 // The GNU linker uses .note.GNU-stack section as a marker indicating 962 // that the code in the object file does not expect that the stack is 963 // executable (in terms of NX bit). If all input files have the marker, 964 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 965 // make the stack non-executable. Most object files have this section as 966 // of 2017. 967 // 968 // But making the stack non-executable is a norm today for security 969 // reasons. Failure to do so may result in a serious security issue. 970 // Therefore, we make LLD always add PT_GNU_STACK unless it is 971 // explicitly told to do otherwise (by -z execstack). Because the stack 972 // executable-ness is controlled solely by command line options, 973 // .note.GNU-stack sections are simply ignored. 974 if (name == ".note.GNU-stack") 975 return &InputSection::discarded; 976 977 // Object files that use processor features such as Intel Control-Flow 978 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 979 // .note.gnu.property section containing a bitfield of feature bits like the 980 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 981 // 982 // Since we merge bitmaps from multiple object files to create a new 983 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 984 // file's .note.gnu.property section. 985 if (name == ".note.gnu.property") { 986 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 987 return &InputSection::discarded; 988 } 989 990 // Split stacks is a feature to support a discontiguous stack, 991 // commonly used in the programming language Go. For the details, 992 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 993 // for split stack will include a .note.GNU-split-stack section. 994 if (name == ".note.GNU-split-stack") { 995 if (config->relocatable) { 996 error( 997 "cannot mix split-stack and non-split-stack in a relocatable link"); 998 return &InputSection::discarded; 999 } 1000 this->splitStack = true; 1001 return &InputSection::discarded; 1002 } 1003 1004 // An object file cmpiled for split stack, but where some of the 1005 // functions were compiled with the no_split_stack_attribute will 1006 // include a .note.GNU-no-split-stack section. 1007 if (name == ".note.GNU-no-split-stack") { 1008 this->someNoSplitStack = true; 1009 return &InputSection::discarded; 1010 } 1011 1012 // Strip existing .note.gnu.build-id sections so that the output won't have 1013 // more than one build-id. This is not usually a problem because input 1014 // object files normally don't have .build-id sections, but you can create 1015 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard 1016 // against it. 1017 if (name == ".note.gnu.build-id") 1018 return &InputSection::discarded; 1019 } 1020 1021 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1022 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1023 // sections. Drop those sections to avoid duplicate symbol errors. 1024 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1025 // fixed for a while. 1026 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1027 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1028 return &InputSection::discarded; 1029 1030 // The linker merges EH (exception handling) frames and creates a 1031 // .eh_frame_hdr section for runtime. So we handle them with a special 1032 // class. For relocatable outputs, they are just passed through. 1033 if (name == ".eh_frame" && !config->relocatable) 1034 return make<EhInputSection>(*this, sec, name); 1035 1036 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name)) 1037 return make<MergeInputSection>(*this, sec, name); 1038 return make<InputSection>(*this, sec, name); 1039 } 1040 1041 // Initialize this->Symbols. this->Symbols is a parallel array as 1042 // its corresponding ELF symbol table. 1043 template <class ELFT> 1044 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) { 1045 ArrayRef<InputSectionBase *> sections(this->sections); 1046 SymbolTable &symtab = *elf::symtab; 1047 1048 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1049 symbols.resize(eSyms.size()); 1050 SymbolUnion *locals = 1051 firstGlobal == 0 1052 ? nullptr 1053 : getSpecificAllocSingleton<SymbolUnion>().Allocate(firstGlobal); 1054 1055 for (size_t i = 0, end = firstGlobal; i != end; ++i) { 1056 const Elf_Sym &eSym = eSyms[i]; 1057 uint32_t secIdx = eSym.st_shndx; 1058 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1059 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1060 else if (secIdx >= SHN_LORESERVE) 1061 secIdx = 0; 1062 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1063 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1064 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL)) 1065 error(toString(this) + ": non-local symbol (" + Twine(i) + 1066 ") found at index < .symtab's sh_info (" + Twine(end) + ")"); 1067 1068 InputSectionBase *sec = sections[secIdx]; 1069 uint8_t type = eSym.getType(); 1070 if (type == STT_FILE) 1071 sourceFile = CHECK(eSym.getName(stringTable), this); 1072 if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name)) 1073 fatal(toString(this) + ": invalid symbol name offset"); 1074 StringRef name(stringTable.data() + eSym.st_name); 1075 1076 symbols[i] = reinterpret_cast<Symbol *>(locals + i); 1077 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded) 1078 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type, 1079 /*discardedSecIdx=*/secIdx); 1080 else 1081 new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type, 1082 eSym.st_value, eSym.st_size, sec); 1083 } 1084 1085 // Some entries have been filled by LazyObjFile. 1086 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1087 if (!symbols[i]) 1088 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1089 1090 // Perform symbol resolution on non-local symbols. 1091 SmallVector<unsigned, 32> undefineds; 1092 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1093 const Elf_Sym &eSym = eSyms[i]; 1094 uint8_t binding = eSym.getBinding(); 1095 if (LLVM_UNLIKELY(binding == STB_LOCAL)) { 1096 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1097 ") found at index >= .symtab's sh_info (" + 1098 Twine(firstGlobal) + ")"); 1099 continue; 1100 } 1101 uint32_t secIdx = eSym.st_shndx; 1102 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX)) 1103 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable)); 1104 else if (secIdx >= SHN_LORESERVE) 1105 secIdx = 0; 1106 if (LLVM_UNLIKELY(secIdx >= sections.size())) 1107 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1108 InputSectionBase *sec = sections[secIdx]; 1109 uint8_t stOther = eSym.st_other; 1110 uint8_t type = eSym.getType(); 1111 uint64_t value = eSym.st_value; 1112 uint64_t size = eSym.st_size; 1113 1114 if (eSym.st_shndx == SHN_UNDEF) { 1115 undefineds.push_back(i); 1116 continue; 1117 } 1118 1119 Symbol *sym = symbols[i]; 1120 const StringRef name = sym->getName(); 1121 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) { 1122 if (value == 0 || value >= UINT32_MAX) 1123 fatal(toString(this) + ": common symbol '" + name + 1124 "' has invalid alignment: " + Twine(value)); 1125 hasCommonSyms = true; 1126 sym->resolve( 1127 CommonSymbol{this, name, binding, stOther, type, value, size}); 1128 continue; 1129 } 1130 1131 // If a defined symbol is in a discarded section, handle it as if it 1132 // were an undefined symbol. Such symbol doesn't comply with the 1133 // standard, but in practice, a .eh_frame often directly refer 1134 // COMDAT member sections, and if a comdat group is discarded, some 1135 // defined symbol in a .eh_frame becomes dangling symbols. 1136 if (sec == &InputSection::discarded) { 1137 Undefined und{this, name, binding, stOther, type, secIdx}; 1138 // !ArchiveFile::parsed or !LazyObjFile::lazy means that the file 1139 // containing this object has not finished processing, i.e. this symbol is 1140 // a result of a lazy symbol extract. We should demote the lazy symbol to 1141 // an Undefined so that any relocations outside of the group to it will 1142 // trigger a discarded section error. 1143 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1144 !cast<ArchiveFile>(sym->file)->parsed) || 1145 (sym->symbolKind == Symbol::LazyObjectKind && !sym->file->lazy)) { 1146 sym->replace(und); 1147 // Prevent LTO from internalizing the symbol in case there is a 1148 // reference to this symbol from this file. 1149 sym->isUsedInRegularObj = true; 1150 } else 1151 sym->resolve(und); 1152 continue; 1153 } 1154 1155 // Handle global defined symbols. 1156 if (binding == STB_GLOBAL || binding == STB_WEAK || 1157 binding == STB_GNU_UNIQUE) { 1158 sym->resolve( 1159 Defined{this, name, binding, stOther, type, value, size, sec}); 1160 continue; 1161 } 1162 1163 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1164 } 1165 1166 // Undefined symbols (excluding those defined relative to non-prevailing 1167 // sections) can trigger recursive extract. Process defined symbols first so 1168 // that the relative order between a defined symbol and an undefined symbol 1169 // does not change the symbol resolution behavior. In addition, a set of 1170 // interconnected symbols will all be resolved to the same file, instead of 1171 // being resolved to different files. 1172 for (unsigned i : undefineds) { 1173 const Elf_Sym &eSym = eSyms[i]; 1174 Symbol *sym = symbols[i]; 1175 sym->resolve(Undefined{this, sym->getName(), eSym.getBinding(), 1176 eSym.st_other, eSym.getType()}); 1177 sym->referenced = true; 1178 } 1179 } 1180 1181 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1182 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1183 file(std::move(file)) {} 1184 1185 void ArchiveFile::parse() { 1186 SymbolTable &symtab = *elf::symtab; 1187 for (const Archive::Symbol &sym : file->symbols()) 1188 symtab.addSymbol(LazyArchive{*this, sym}); 1189 1190 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1191 // archive has been processed. 1192 parsed = true; 1193 } 1194 1195 // Returns a buffer pointing to a member file containing a given symbol. 1196 void ArchiveFile::extract(const Archive::Symbol &sym) { 1197 Archive::Child c = 1198 CHECK(sym.getMember(), toString(this) + 1199 ": could not get the member for symbol " + 1200 toELFString(sym)); 1201 1202 if (!seen.insert(c.getChildOffset()).second) 1203 return; 1204 1205 MemoryBufferRef mb = 1206 CHECK(c.getMemoryBufferRef(), 1207 toString(this) + 1208 ": could not get the buffer for the member defining symbol " + 1209 toELFString(sym)); 1210 1211 if (tar && c.getParent()->isThin()) 1212 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1213 1214 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1215 file->groupId = groupId; 1216 parseFile(file); 1217 } 1218 1219 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1220 // A tentative definition will be promoted to a global definition if there are 1221 // no non-tentative definitions to dominate it. When we hold a tentative 1222 // definition to a symbol and are inspecting archive members for inclusion 1223 // there are 2 ways we can proceed: 1224 // 1225 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1226 // tentative to real definition has already happened) and not inspect 1227 // archive members for Global/Weak definitions to replace the tentative 1228 // definition. An archive member would only be included if it satisfies some 1229 // other undefined symbol. This is the behavior Gold uses. 1230 // 1231 // 2) Consider the tentative definition as still undefined (ie the promotion to 1232 // a real definition happens only after all symbol resolution is done). 1233 // The linker searches archive members for STB_GLOBAL definitions to 1234 // replace the tentative definition with. This is the behavior used by 1235 // GNU ld. 1236 // 1237 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1238 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1239 // (pre F90) FORTRAN code that is packaged into an archive. 1240 // 1241 // The following functions search archive members for definitions to replace 1242 // tentative definitions (implementing behavior 2). 1243 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1244 StringRef archiveName) { 1245 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1246 for (const irsymtab::Reader::SymbolRef &sym : 1247 symtabFile.TheReader.symbols()) { 1248 if (sym.isGlobal() && sym.getName() == symName) 1249 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon(); 1250 } 1251 return false; 1252 } 1253 1254 template <class ELFT> 1255 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1256 StringRef archiveName) { 1257 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1258 StringRef stringtable = obj->getStringTable(); 1259 1260 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1261 Expected<StringRef> name = sym.getName(stringtable); 1262 if (name && name.get() == symName) 1263 return sym.isDefined() && sym.getBinding() == STB_GLOBAL && 1264 !sym.isCommon(); 1265 } 1266 return false; 1267 } 1268 1269 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1270 StringRef archiveName) { 1271 switch (getELFKind(mb, archiveName)) { 1272 case ELF32LEKind: 1273 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1274 case ELF32BEKind: 1275 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1276 case ELF64LEKind: 1277 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1278 case ELF64BEKind: 1279 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1280 default: 1281 llvm_unreachable("getELFKind"); 1282 } 1283 } 1284 1285 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) { 1286 Archive::Child c = 1287 CHECK(sym.getMember(), toString(this) + 1288 ": could not get the member for symbol " + 1289 toELFString(sym)); 1290 MemoryBufferRef mb = 1291 CHECK(c.getMemoryBufferRef(), 1292 toString(this) + 1293 ": could not get the buffer for the member defining symbol " + 1294 toELFString(sym)); 1295 1296 if (isBitcode(mb)) 1297 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1298 1299 return isNonCommonDef(mb, sym.getName(), getName()); 1300 } 1301 1302 size_t ArchiveFile::getMemberCount() const { 1303 size_t count = 0; 1304 Error err = Error::success(); 1305 for (const Archive::Child &c : file->children(err)) { 1306 (void)c; 1307 ++count; 1308 } 1309 // This function is used by --print-archive-stats=, where an error does not 1310 // really matter. 1311 consumeError(std::move(err)); 1312 return count; 1313 } 1314 1315 unsigned SharedFile::vernauxNum; 1316 1317 // Parse the version definitions in the object file if present, and return a 1318 // vector whose nth element contains a pointer to the Elf_Verdef for version 1319 // identifier n. Version identifiers that are not definitions map to nullptr. 1320 template <typename ELFT> 1321 static SmallVector<const void *, 0> 1322 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) { 1323 if (!sec) 1324 return {}; 1325 1326 // Build the Verdefs array by following the chain of Elf_Verdef objects 1327 // from the start of the .gnu.version_d section. 1328 SmallVector<const void *, 0> verdefs; 1329 const uint8_t *verdef = base + sec->sh_offset; 1330 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) { 1331 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1332 verdef += curVerdef->vd_next; 1333 unsigned verdefIndex = curVerdef->vd_ndx; 1334 if (verdefIndex >= verdefs.size()) 1335 verdefs.resize(verdefIndex + 1); 1336 verdefs[verdefIndex] = curVerdef; 1337 } 1338 return verdefs; 1339 } 1340 1341 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1342 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1343 // implement sophisticated error checking like in llvm-readobj because the value 1344 // of such diagnostics is low. 1345 template <typename ELFT> 1346 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1347 const typename ELFT::Shdr *sec) { 1348 if (!sec) 1349 return {}; 1350 std::vector<uint32_t> verneeds; 1351 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1352 const uint8_t *verneedBuf = data.begin(); 1353 for (unsigned i = 0; i != sec->sh_info; ++i) { 1354 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1355 fatal(toString(this) + " has an invalid Verneed"); 1356 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1357 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1358 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1359 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1360 fatal(toString(this) + " has an invalid Vernaux"); 1361 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1362 if (aux->vna_name >= this->stringTable.size()) 1363 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1364 uint16_t version = aux->vna_other & VERSYM_VERSION; 1365 if (version >= verneeds.size()) 1366 verneeds.resize(version + 1); 1367 verneeds[version] = aux->vna_name; 1368 vernauxBuf += aux->vna_next; 1369 } 1370 verneedBuf += vn->vn_next; 1371 } 1372 return verneeds; 1373 } 1374 1375 // We do not usually care about alignments of data in shared object 1376 // files because the loader takes care of it. However, if we promote a 1377 // DSO symbol to point to .bss due to copy relocation, we need to keep 1378 // the original alignment requirements. We infer it in this function. 1379 template <typename ELFT> 1380 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1381 const typename ELFT::Sym &sym) { 1382 uint64_t ret = UINT64_MAX; 1383 if (sym.st_value) 1384 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1385 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1386 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1387 return (ret > UINT32_MAX) ? 0 : ret; 1388 } 1389 1390 // Fully parse the shared object file. 1391 // 1392 // This function parses symbol versions. If a DSO has version information, 1393 // the file has a ".gnu.version_d" section which contains symbol version 1394 // definitions. Each symbol is associated to one version through a table in 1395 // ".gnu.version" section. That table is a parallel array for the symbol 1396 // table, and each table entry contains an index in ".gnu.version_d". 1397 // 1398 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1399 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1400 // ".gnu.version_d". 1401 // 1402 // The file format for symbol versioning is perhaps a bit more complicated 1403 // than necessary, but you can easily understand the code if you wrap your 1404 // head around the data structure described above. 1405 template <class ELFT> void SharedFile::parse() { 1406 using Elf_Dyn = typename ELFT::Dyn; 1407 using Elf_Shdr = typename ELFT::Shdr; 1408 using Elf_Sym = typename ELFT::Sym; 1409 using Elf_Verdef = typename ELFT::Verdef; 1410 using Elf_Versym = typename ELFT::Versym; 1411 1412 ArrayRef<Elf_Dyn> dynamicTags; 1413 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1414 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>(); 1415 1416 const Elf_Shdr *versymSec = nullptr; 1417 const Elf_Shdr *verdefSec = nullptr; 1418 const Elf_Shdr *verneedSec = nullptr; 1419 1420 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1421 for (const Elf_Shdr &sec : sections) { 1422 switch (sec.sh_type) { 1423 default: 1424 continue; 1425 case SHT_DYNAMIC: 1426 dynamicTags = 1427 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1428 break; 1429 case SHT_GNU_versym: 1430 versymSec = &sec; 1431 break; 1432 case SHT_GNU_verdef: 1433 verdefSec = &sec; 1434 break; 1435 case SHT_GNU_verneed: 1436 verneedSec = &sec; 1437 break; 1438 } 1439 } 1440 1441 if (versymSec && numELFSyms == 0) { 1442 error("SHT_GNU_versym should be associated with symbol table"); 1443 return; 1444 } 1445 1446 // Search for a DT_SONAME tag to initialize this->soName. 1447 for (const Elf_Dyn &dyn : dynamicTags) { 1448 if (dyn.d_tag == DT_NEEDED) { 1449 uint64_t val = dyn.getVal(); 1450 if (val >= this->stringTable.size()) 1451 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1452 dtNeeded.push_back(this->stringTable.data() + val); 1453 } else if (dyn.d_tag == DT_SONAME) { 1454 uint64_t val = dyn.getVal(); 1455 if (val >= this->stringTable.size()) 1456 fatal(toString(this) + ": invalid DT_SONAME entry"); 1457 soName = this->stringTable.data() + val; 1458 } 1459 } 1460 1461 // DSOs are uniquified not by filename but by soname. 1462 DenseMap<CachedHashStringRef, SharedFile *>::iterator it; 1463 bool wasInserted; 1464 std::tie(it, wasInserted) = 1465 symtab->soNames.try_emplace(CachedHashStringRef(soName), this); 1466 1467 // If a DSO appears more than once on the command line with and without 1468 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1469 // user can add an extra DSO with --no-as-needed to force it to be added to 1470 // the dependency list. 1471 it->second->isNeeded |= isNeeded; 1472 if (!wasInserted) 1473 return; 1474 1475 sharedFiles.push_back(this); 1476 1477 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1478 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1479 1480 // Parse ".gnu.version" section which is a parallel array for the symbol 1481 // table. If a given file doesn't have a ".gnu.version" section, we use 1482 // VER_NDX_GLOBAL. 1483 size_t size = numELFSyms - firstGlobal; 1484 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1485 if (versymSec) { 1486 ArrayRef<Elf_Versym> versym = 1487 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1488 this) 1489 .slice(firstGlobal); 1490 for (size_t i = 0; i < size; ++i) 1491 versyms[i] = versym[i].vs_index; 1492 } 1493 1494 // System libraries can have a lot of symbols with versions. Using a 1495 // fixed buffer for computing the versions name (foo@ver) can save a 1496 // lot of allocations. 1497 SmallString<0> versionedNameBuffer; 1498 1499 // Add symbols to the symbol table. 1500 SymbolTable &symtab = *elf::symtab; 1501 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1502 for (size_t i = 0, e = syms.size(); i != e; ++i) { 1503 const Elf_Sym &sym = syms[i]; 1504 1505 // ELF spec requires that all local symbols precede weak or global 1506 // symbols in each symbol table, and the index of first non-local symbol 1507 // is stored to sh_info. If a local symbol appears after some non-local 1508 // symbol, that's a violation of the spec. 1509 StringRef name = CHECK(sym.getName(stringTable), this); 1510 if (sym.getBinding() == STB_LOCAL) { 1511 warn("found local symbol '" + name + 1512 "' in global part of symbol table in file " + toString(this)); 1513 continue; 1514 } 1515 1516 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1517 if (sym.isUndefined()) { 1518 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1519 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1520 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1521 if (idx >= verneeds.size()) { 1522 error("corrupt input file: version need index " + Twine(idx) + 1523 " for symbol " + name + " is out of bounds\n>>> defined in " + 1524 toString(this)); 1525 continue; 1526 } 1527 StringRef verName = stringTable.data() + verneeds[idx]; 1528 versionedNameBuffer.clear(); 1529 name = saver().save( 1530 (name + "@" + verName).toStringRef(versionedNameBuffer)); 1531 } 1532 Symbol *s = symtab.addSymbol( 1533 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1534 s->exportDynamic = true; 1535 if (s->isUndefined() && sym.getBinding() != STB_WEAK && 1536 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) 1537 requiredSymbols.push_back(s); 1538 continue; 1539 } 1540 1541 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1542 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1543 // workaround for this bug. 1544 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1545 name == "_gp_disp") 1546 continue; 1547 1548 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1549 if (!(versyms[i] & VERSYM_HIDDEN)) { 1550 symtab.addSymbol(SharedSymbol{*this, name, sym.getBinding(), sym.st_other, 1551 sym.getType(), sym.st_value, sym.st_size, 1552 alignment, idx}); 1553 } 1554 1555 // Also add the symbol with the versioned name to handle undefined symbols 1556 // with explicit versions. 1557 if (idx == VER_NDX_GLOBAL) 1558 continue; 1559 1560 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1561 error("corrupt input file: version definition index " + Twine(idx) + 1562 " for symbol " + name + " is out of bounds\n>>> defined in " + 1563 toString(this)); 1564 continue; 1565 } 1566 1567 StringRef verName = 1568 stringTable.data() + 1569 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1570 versionedNameBuffer.clear(); 1571 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1572 symtab.addSymbol(SharedSymbol{*this, saver().save(name), sym.getBinding(), 1573 sym.st_other, sym.getType(), sym.st_value, 1574 sym.st_size, alignment, idx}); 1575 } 1576 } 1577 1578 static ELFKind getBitcodeELFKind(const Triple &t) { 1579 if (t.isLittleEndian()) 1580 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1581 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1582 } 1583 1584 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1585 switch (t.getArch()) { 1586 case Triple::aarch64: 1587 case Triple::aarch64_be: 1588 return EM_AARCH64; 1589 case Triple::amdgcn: 1590 case Triple::r600: 1591 return EM_AMDGPU; 1592 case Triple::arm: 1593 case Triple::thumb: 1594 return EM_ARM; 1595 case Triple::avr: 1596 return EM_AVR; 1597 case Triple::hexagon: 1598 return EM_HEXAGON; 1599 case Triple::mips: 1600 case Triple::mipsel: 1601 case Triple::mips64: 1602 case Triple::mips64el: 1603 return EM_MIPS; 1604 case Triple::msp430: 1605 return EM_MSP430; 1606 case Triple::ppc: 1607 case Triple::ppcle: 1608 return EM_PPC; 1609 case Triple::ppc64: 1610 case Triple::ppc64le: 1611 return EM_PPC64; 1612 case Triple::riscv32: 1613 case Triple::riscv64: 1614 return EM_RISCV; 1615 case Triple::x86: 1616 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1617 case Triple::x86_64: 1618 return EM_X86_64; 1619 default: 1620 error(path + ": could not infer e_machine from bitcode target triple " + 1621 t.str()); 1622 return EM_NONE; 1623 } 1624 } 1625 1626 static uint8_t getOsAbi(const Triple &t) { 1627 switch (t.getOS()) { 1628 case Triple::AMDHSA: 1629 return ELF::ELFOSABI_AMDGPU_HSA; 1630 case Triple::AMDPAL: 1631 return ELF::ELFOSABI_AMDGPU_PAL; 1632 case Triple::Mesa3D: 1633 return ELF::ELFOSABI_AMDGPU_MESA3D; 1634 default: 1635 return ELF::ELFOSABI_NONE; 1636 } 1637 } 1638 1639 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1640 uint64_t offsetInArchive, bool lazy) 1641 : InputFile(BitcodeKind, mb) { 1642 this->archiveName = archiveName; 1643 this->lazy = lazy; 1644 1645 std::string path = mb.getBufferIdentifier().str(); 1646 if (config->thinLTOIndexOnly) 1647 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1648 1649 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1650 // name. If two archives define two members with the same name, this 1651 // causes a collision which result in only one of the objects being taken 1652 // into consideration at LTO time (which very likely causes undefined 1653 // symbols later in the link stage). So we append file offset to make 1654 // filename unique. 1655 StringRef name = archiveName.empty() 1656 ? saver().save(path) 1657 : saver().save(archiveName + "(" + path::filename(path) + 1658 " at " + utostr(offsetInArchive) + ")"); 1659 MemoryBufferRef mbref(mb.getBuffer(), name); 1660 1661 obj = CHECK(lto::InputFile::create(mbref), this); 1662 1663 Triple t(obj->getTargetTriple()); 1664 ekind = getBitcodeELFKind(t); 1665 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1666 osabi = getOsAbi(t); 1667 } 1668 1669 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1670 switch (gvVisibility) { 1671 case GlobalValue::DefaultVisibility: 1672 return STV_DEFAULT; 1673 case GlobalValue::HiddenVisibility: 1674 return STV_HIDDEN; 1675 case GlobalValue::ProtectedVisibility: 1676 return STV_PROTECTED; 1677 } 1678 llvm_unreachable("unknown visibility"); 1679 } 1680 1681 template <class ELFT> 1682 static void 1683 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats, 1684 const lto::InputFile::Symbol &objSym, BitcodeFile &f) { 1685 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1686 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1687 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1688 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1689 1690 StringRef name; 1691 if (sym) { 1692 name = sym->getName(); 1693 } else { 1694 name = saver().save(objSym.getName()); 1695 sym = symtab->insert(name); 1696 } 1697 1698 int c = objSym.getComdatIndex(); 1699 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1700 Undefined newSym(&f, name, binding, visibility, type); 1701 if (canOmitFromDynSym) 1702 newSym.exportDynamic = false; 1703 sym->resolve(newSym); 1704 sym->referenced = true; 1705 return; 1706 } 1707 1708 if (objSym.isCommon()) { 1709 sym->resolve(CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1710 objSym.getCommonAlignment(), 1711 objSym.getCommonSize()}); 1712 } else { 1713 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1714 if (canOmitFromDynSym) 1715 newSym.exportDynamic = false; 1716 sym->resolve(newSym); 1717 } 1718 } 1719 1720 template <class ELFT> void BitcodeFile::parse() { 1721 std::vector<bool> keptComdats; 1722 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) { 1723 keptComdats.push_back( 1724 s.second == Comdat::NoDeduplicate || 1725 symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this) 1726 .second); 1727 } 1728 1729 symbols.resize(obj->symbols().size()); 1730 for (auto it : llvm::enumerate(obj->symbols())) { 1731 Symbol *&sym = symbols[it.index()]; 1732 createBitcodeSymbol<ELFT>(sym, keptComdats, it.value(), *this); 1733 } 1734 1735 for (auto l : obj->getDependentLibraries()) 1736 addDependentLibrary(l, this); 1737 } 1738 1739 void BitcodeFile::parseLazy() { 1740 SymbolTable &symtab = *elf::symtab; 1741 symbols.resize(obj->symbols().size()); 1742 for (auto it : llvm::enumerate(obj->symbols())) 1743 if (!it.value().isUndefined()) 1744 symbols[it.index()] = symtab.addSymbol( 1745 LazyObject{*this, saver().save(it.value().getName())}); 1746 } 1747 1748 void BinaryFile::parse() { 1749 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1750 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1751 8, data, ".data"); 1752 sections.push_back(section); 1753 1754 // For each input file foo that is embedded to a result as a binary 1755 // blob, we define _binary_foo_{start,end,size} symbols, so that 1756 // user programs can access blobs by name. Non-alphanumeric 1757 // characters in a filename are replaced with underscore. 1758 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1759 for (size_t i = 0; i < s.size(); ++i) 1760 if (!isAlnum(s[i])) 1761 s[i] = '_'; 1762 1763 llvm::StringSaver &saver = lld::saver(); 1764 1765 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1766 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1767 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1768 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1769 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1770 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1771 } 1772 1773 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1774 uint64_t offsetInArchive) { 1775 if (isBitcode(mb)) 1776 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false); 1777 1778 switch (getELFKind(mb, archiveName)) { 1779 case ELF32LEKind: 1780 return make<ObjFile<ELF32LE>>(mb, archiveName); 1781 case ELF32BEKind: 1782 return make<ObjFile<ELF32BE>>(mb, archiveName); 1783 case ELF64LEKind: 1784 return make<ObjFile<ELF64LE>>(mb, archiveName); 1785 case ELF64BEKind: 1786 return make<ObjFile<ELF64BE>>(mb, archiveName); 1787 default: 1788 llvm_unreachable("getELFKind"); 1789 } 1790 } 1791 1792 InputFile *elf::createLazyFile(MemoryBufferRef mb, StringRef archiveName, 1793 uint64_t offsetInArchive) { 1794 if (isBitcode(mb)) 1795 return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/true); 1796 1797 auto *file = 1798 cast<ELFFileBase>(createObjectFile(mb, archiveName, offsetInArchive)); 1799 file->lazy = true; 1800 return file; 1801 } 1802 1803 template <class ELFT> void ObjFile<ELFT>::parseLazy() { 1804 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>(); 1805 SymbolTable &symtab = *elf::symtab; 1806 1807 symbols.resize(eSyms.size()); 1808 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1809 if (eSyms[i].st_shndx != SHN_UNDEF) 1810 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this)); 1811 1812 // Replace existing symbols with LazyObject symbols. 1813 // 1814 // resolve() may trigger this->extract() if an existing symbol is an undefined 1815 // symbol. If that happens, this function has served its purpose, and we can 1816 // exit from the loop early. 1817 for (Symbol *sym : makeArrayRef(symbols).slice(firstGlobal)) 1818 if (sym) { 1819 sym->resolve(LazyObject{*this, sym->getName()}); 1820 if (!lazy) 1821 return; 1822 } 1823 } 1824 1825 bool InputFile::shouldExtractForCommon(StringRef name) { 1826 if (isBitcode(mb)) 1827 return isBitcodeNonCommonDef(mb, name, archiveName); 1828 1829 return isNonCommonDef(mb, name, archiveName); 1830 } 1831 1832 std::string elf::replaceThinLTOSuffix(StringRef path) { 1833 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1834 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1835 1836 if (path.consume_back(suffix)) 1837 return (path + repl).str(); 1838 return std::string(path); 1839 } 1840 1841 template void BitcodeFile::parse<ELF32LE>(); 1842 template void BitcodeFile::parse<ELF32BE>(); 1843 template void BitcodeFile::parse<ELF64LE>(); 1844 template void BitcodeFile::parse<ELF64BE>(); 1845 1846 template class elf::ObjFile<ELF32LE>; 1847 template class elf::ObjFile<ELF32BE>; 1848 template class elf::ObjFile<ELF64LE>; 1849 template class elf::ObjFile<ELF64BE>; 1850 1851 template void SharedFile::parse<ELF32LE>(); 1852 template void SharedFile::parse<ELF32BE>(); 1853 template void SharedFile::parse<ELF64LE>(); 1854 template void SharedFile::parse<ELF64BE>(); 1855