1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Path.h"
29 #include "llvm/Support/TarWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::object;
35 using namespace llvm::sys;
36 using namespace llvm::sys::fs;
37 
38 using namespace lld;
39 using namespace lld::elf;
40 
41 std::vector<BinaryFile *> elf::BinaryFiles;
42 std::vector<BitcodeFile *> elf::BitcodeFiles;
43 std::vector<InputFile *> elf::ObjectFiles;
44 std::vector<InputFile *> elf::SharedFiles;
45 
46 TarWriter *elf::Tar;
47 
48 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {}
49 
50 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
51   // The --chroot option changes our virtual root directory.
52   // This is useful when you are dealing with files created by --reproduce.
53   if (!Config->Chroot.empty() && Path.startswith("/"))
54     Path = Saver.save(Config->Chroot + Path);
55 
56   log(Path);
57 
58   auto MBOrErr = MemoryBuffer::getFile(Path);
59   if (auto EC = MBOrErr.getError()) {
60     error("cannot open " + Path + ": " + EC.message());
61     return None;
62   }
63 
64   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
65   MemoryBufferRef MBRef = MB->getMemBufferRef();
66   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
67 
68   if (Tar)
69     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
70   return MBRef;
71 }
72 
73 // Concatenates arguments to construct a string representing an error location.
74 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
75   std::string Filename = path::filename(Path);
76   std::string Lineno = ":" + std::to_string(Line);
77   if (Filename == Path)
78     return Filename + Lineno;
79   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
80 }
81 
82 template <class ELFT>
83 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
84                                 InputSectionBase &Sec, uint64_t Offset) {
85   // In DWARF, functions and variables are stored to different places.
86   // First, lookup a function for a given offset.
87   if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
88     return createFileLineMsg(Info->FileName, Info->Line);
89 
90   // If it failed, lookup again as a variable.
91   if (Optional<std::pair<std::string, unsigned>> FileLine =
92           File.getVariableLoc(Sym.getName()))
93     return createFileLineMsg(FileLine->first, FileLine->second);
94 
95   // File.SourceFile contains STT_FILE symbol, and that is a last resort.
96   return File.SourceFile;
97 }
98 
99 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
100                                  uint64_t Offset) {
101   if (kind() != ObjKind)
102     return "";
103   switch (Config->EKind) {
104   default:
105     llvm_unreachable("Invalid kind");
106   case ELF32LEKind:
107     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
108   case ELF32BEKind:
109     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
110   case ELF64LEKind:
111     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
112   case ELF64BEKind:
113     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
114   }
115 }
116 
117 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
118   DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this));
119   const DWARFObject &Obj = Dwarf.getDWARFObj();
120   DwarfLine.reset(new DWARFDebugLine);
121   DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE,
122                               Config->Wordsize);
123 
124   // The second parameter is offset in .debug_line section
125   // for compilation unit (CU) of interest. We have only one
126   // CU (object file), so offset is always 0.
127   const DWARFDebugLine::LineTable *LT =
128       DwarfLine->getOrParseLineTable(LineData, 0, Dwarf, nullptr);
129   if (!LT)
130     return;
131 
132   // Return if there is no debug information about CU available.
133   if (!Dwarf.getNumCompileUnits())
134     return;
135 
136   // Loop over variable records and insert them to VariableLoc.
137   DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0);
138   for (const auto &Entry : CU->dies()) {
139     DWARFDie Die(CU, &Entry);
140     // Skip all tags that are not variables.
141     if (Die.getTag() != dwarf::DW_TAG_variable)
142       continue;
143 
144     // Skip if a local variable because we don't need them for generating error
145     // messages. In general, only non-local symbols can fail to be linked.
146     if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
147       continue;
148 
149     // Get the source filename index for the variable.
150     unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
151     if (!LT->hasFileAtIndex(File))
152       continue;
153 
154     // Get the line number on which the variable is declared.
155     unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
156 
157     // Get the name of the variable and add the collected information to
158     // VariableLoc. Usually Name is non-empty, but it can be empty if the input
159     // object file lacks some debug info.
160     StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), "");
161     if (!Name.empty())
162       VariableLoc.insert({Name, {File, Line}});
163   }
164 }
165 
166 // Returns the pair of file name and line number describing location of data
167 // object (variable, array, etc) definition.
168 template <class ELFT>
169 Optional<std::pair<std::string, unsigned>>
170 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
171   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
172 
173   // There is always only one CU so it's offset is 0.
174   const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0);
175   if (!LT)
176     return None;
177 
178   // Return if we have no debug information about data object.
179   auto It = VariableLoc.find(Name);
180   if (It == VariableLoc.end())
181     return None;
182 
183   // Take file name string from line table.
184   std::string FileName;
185   if (!LT->getFileNameByIndex(
186           It->second.first /* File */, nullptr,
187           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
188     return None;
189 
190   return std::make_pair(FileName, It->second.second /*Line*/);
191 }
192 
193 // Returns source line information for a given offset
194 // using DWARF debug info.
195 template <class ELFT>
196 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
197                                                   uint64_t Offset) {
198   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
199 
200   // The offset to CU is 0.
201   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
202   if (!Tbl)
203     return None;
204 
205   // Use fake address calcuated by adding section file offset and offset in
206   // section. See comments for ObjectInfo class.
207   DILineInfo Info;
208   Tbl->getFileLineInfoForAddress(
209       S->getOffsetInFile() + Offset, nullptr,
210       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
211   if (Info.Line == 0)
212     return None;
213   return Info;
214 }
215 
216 // Returns source line information for a given offset using DWARF debug info.
217 template <class ELFT>
218 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) {
219   if (Optional<DILineInfo> Info = getDILineInfo(S, Offset))
220     return Info->FileName + ":" + std::to_string(Info->Line);
221   return "";
222 }
223 
224 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
225 std::string lld::toString(const InputFile *F) {
226   if (!F)
227     return "<internal>";
228 
229   if (F->ToStringCache.empty()) {
230     if (F->ArchiveName.empty())
231       F->ToStringCache = F->getName();
232     else
233       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
234   }
235   return F->ToStringCache;
236 }
237 
238 template <class ELFT>
239 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
240   if (ELFT::TargetEndianness == support::little)
241     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
242   else
243     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
244 
245   EMachine = getObj().getHeader()->e_machine;
246   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
247 }
248 
249 template <class ELFT>
250 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
251   return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end());
252 }
253 
254 template <class ELFT>
255 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
256   return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this);
257 }
258 
259 template <class ELFT>
260 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
261                                    const Elf_Shdr *Symtab) {
262   FirstNonLocal = Symtab->sh_info;
263   ELFSyms = CHECK(getObj().symbols(Symtab), this);
264   if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size())
265     fatal(toString(this) + ": invalid sh_info in symbol table");
266 
267   StringTable =
268       CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this);
269 }
270 
271 template <class ELFT>
272 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
273     : ELFFileBase<ELFT>(Base::ObjKind, M) {
274   this->ArchiveName = ArchiveName;
275 }
276 
277 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
278   if (this->Symbols.empty())
279     return {};
280   return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1);
281 }
282 
283 template <class ELFT>
284 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
285   // Read section and symbol tables.
286   initializeSections(ComdatGroups);
287   initializeSymbols();
288 }
289 
290 // Sections with SHT_GROUP and comdat bits define comdat section groups.
291 // They are identified and deduplicated by group name. This function
292 // returns a group name.
293 template <class ELFT>
294 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
295                                               const Elf_Shdr &Sec) {
296   // Group signatures are stored as symbol names in object files.
297   // sh_info contains a symbol index, so we fetch a symbol and read its name.
298   if (this->ELFSyms.empty())
299     this->initSymtab(
300         Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this));
301 
302   const Elf_Sym *Sym =
303       CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this);
304   StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
305 
306   // As a special case, if a symbol is a section symbol and has no name,
307   // we use a section name as a signature.
308   //
309   // Such SHT_GROUP sections are invalid from the perspective of the ELF
310   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
311   // older produce such sections as outputs for the -r option, so we need
312   // a bug-compatibility.
313   if (Signature.empty() && Sym->getType() == STT_SECTION)
314     return getSectionName(Sec);
315   return Signature;
316 }
317 
318 template <class ELFT>
319 ArrayRef<typename ObjFile<ELFT>::Elf_Word>
320 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
321   const ELFFile<ELFT> &Obj = this->getObj();
322   ArrayRef<Elf_Word> Entries =
323       CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
324   if (Entries.empty() || Entries[0] != GRP_COMDAT)
325     fatal(toString(this) + ": unsupported SHT_GROUP format");
326   return Entries.slice(1);
327 }
328 
329 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
330   // We don't merge sections if -O0 (default is -O1). This makes sometimes
331   // the linker significantly faster, although the output will be bigger.
332   if (Config->Optimize == 0)
333     return false;
334 
335   // A mergeable section with size 0 is useless because they don't have
336   // any data to merge. A mergeable string section with size 0 can be
337   // argued as invalid because it doesn't end with a null character.
338   // We'll avoid a mess by handling them as if they were non-mergeable.
339   if (Sec.sh_size == 0)
340     return false;
341 
342   // Check for sh_entsize. The ELF spec is not clear about the zero
343   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
344   // the section does not hold a table of fixed-size entries". We know
345   // that Rust 1.13 produces a string mergeable section with a zero
346   // sh_entsize. Here we just accept it rather than being picky about it.
347   uint64_t EntSize = Sec.sh_entsize;
348   if (EntSize == 0)
349     return false;
350   if (Sec.sh_size % EntSize)
351     fatal(toString(this) +
352           ": SHF_MERGE section size must be a multiple of sh_entsize");
353 
354   uint64_t Flags = Sec.sh_flags;
355   if (!(Flags & SHF_MERGE))
356     return false;
357   if (Flags & SHF_WRITE)
358     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
359 
360   return true;
361 }
362 
363 template <class ELFT>
364 void ObjFile<ELFT>::initializeSections(
365     DenseSet<CachedHashStringRef> &ComdatGroups) {
366   const ELFFile<ELFT> &Obj = this->getObj();
367 
368   ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this);
369   uint64_t Size = ObjSections.size();
370   this->Sections.resize(Size);
371   this->SectionStringTable =
372       CHECK(Obj.getSectionStringTable(ObjSections), this);
373 
374   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
375     if (this->Sections[I] == &InputSection::Discarded)
376       continue;
377     const Elf_Shdr &Sec = ObjSections[I];
378 
379     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
380     // if -r is given, we'll let the final link discard such sections.
381     // This is compatible with GNU.
382     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
383       this->Sections[I] = &InputSection::Discarded;
384       continue;
385     }
386 
387     switch (Sec.sh_type) {
388     case SHT_GROUP: {
389       // De-duplicate section groups by their signatures.
390       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
391       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
392       this->Sections[I] = &InputSection::Discarded;
393 
394       // If it is a new section group, we want to keep group members.
395       // Group leader sections, which contain indices of group members, are
396       // discarded because they are useless beyond this point. The only
397       // exception is the -r option because in order to produce re-linkable
398       // object files, we want to pass through basically everything.
399       if (IsNew) {
400         if (Config->Relocatable)
401           this->Sections[I] = createInputSection(Sec);
402         continue;
403       }
404 
405       // Otherwise, discard group members.
406       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
407         if (SecIndex >= Size)
408           fatal(toString(this) +
409                 ": invalid section index in group: " + Twine(SecIndex));
410         this->Sections[SecIndex] = &InputSection::Discarded;
411       }
412       break;
413     }
414     case SHT_SYMTAB:
415       this->initSymtab(ObjSections, &Sec);
416       break;
417     case SHT_SYMTAB_SHNDX:
418       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
419       break;
420     case SHT_STRTAB:
421     case SHT_NULL:
422       break;
423     default:
424       this->Sections[I] = createInputSection(Sec);
425     }
426 
427     // .ARM.exidx sections have a reverse dependency on the InputSection they
428     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
429     if (Sec.sh_flags & SHF_LINK_ORDER) {
430       if (Sec.sh_link >= this->Sections.size())
431         fatal(toString(this) +
432               ": invalid sh_link index: " + Twine(Sec.sh_link));
433 
434       InputSectionBase *LinkSec = this->Sections[Sec.sh_link];
435       InputSection *IS = cast<InputSection>(this->Sections[I]);
436       LinkSec->DependentSections.push_back(IS);
437       if (!isa<InputSection>(LinkSec))
438         error("a section " + IS->Name +
439               " with SHF_LINK_ORDER should not refer a non-regular "
440               "section: " +
441               toString(LinkSec));
442     }
443   }
444 }
445 
446 // The ARM support in lld makes some use of instructions that are not available
447 // on all ARM architectures. Namely:
448 // - Use of BLX instruction for interworking between ARM and Thumb state.
449 // - Use of the extended Thumb branch encoding in relocation.
450 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
451 // The ARM Attributes section contains information about the architecture chosen
452 // at compile time. We follow the convention that if at least one input object
453 // is compiled with an architecture that supports these features then lld is
454 // permitted to use them.
455 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
456   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
457     return;
458   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
459   switch (Arch) {
460   case ARMBuildAttrs::Pre_v4:
461   case ARMBuildAttrs::v4:
462   case ARMBuildAttrs::v4T:
463     // Architectures prior to v5 do not support BLX instruction
464     break;
465   case ARMBuildAttrs::v5T:
466   case ARMBuildAttrs::v5TE:
467   case ARMBuildAttrs::v5TEJ:
468   case ARMBuildAttrs::v6:
469   case ARMBuildAttrs::v6KZ:
470   case ARMBuildAttrs::v6K:
471     Config->ARMHasBlx = true;
472     // Architectures used in pre-Cortex processors do not support
473     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
474     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
475     break;
476   default:
477     // All other Architectures have BLX and extended branch encoding
478     Config->ARMHasBlx = true;
479     Config->ARMJ1J2BranchEncoding = true;
480     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
481       // All Architectures used in Cortex processors with the exception
482       // of v6-M and v6S-M have the MOVT and MOVW instructions.
483       Config->ARMHasMovtMovw = true;
484     break;
485   }
486 }
487 
488 template <class ELFT>
489 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
490   uint32_t Idx = Sec.sh_info;
491   if (Idx >= this->Sections.size())
492     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
493   InputSectionBase *Target = this->Sections[Idx];
494 
495   // Strictly speaking, a relocation section must be included in the
496   // group of the section it relocates. However, LLVM 3.3 and earlier
497   // would fail to do so, so we gracefully handle that case.
498   if (Target == &InputSection::Discarded)
499     return nullptr;
500 
501   if (!Target)
502     fatal(toString(this) + ": unsupported relocation reference");
503   return Target;
504 }
505 
506 // Create a regular InputSection class that has the same contents
507 // as a given section.
508 static InputSection *toRegularSection(MergeInputSection *Sec) {
509   return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
510                             Sec->Data, Sec->Name);
511 }
512 
513 template <class ELFT>
514 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
515   StringRef Name = getSectionName(Sec);
516 
517   switch (Sec.sh_type) {
518   case SHT_ARM_ATTRIBUTES: {
519     if (Config->EMachine != EM_ARM)
520       break;
521     ARMAttributeParser Attributes;
522     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
523     Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
524     updateSupportedARMFeatures(Attributes);
525     // FIXME: Retain the first attribute section we see. The eglibc ARM
526     // dynamic loaders require the presence of an attribute section for dlopen
527     // to work. In a full implementation we would merge all attribute sections.
528     if (InX::ARMAttributes == nullptr) {
529       InX::ARMAttributes = make<InputSection>(*this, Sec, Name);
530       return InX::ARMAttributes;
531     }
532     return &InputSection::Discarded;
533   }
534   case SHT_RELA:
535   case SHT_REL: {
536     // Find the relocation target section and associate this
537     // section with it. Target can be discarded, for example
538     // if it is a duplicated member of SHT_GROUP section, we
539     // do not create or proccess relocatable sections then.
540     InputSectionBase *Target = getRelocTarget(Sec);
541     if (!Target)
542       return nullptr;
543 
544     // This section contains relocation information.
545     // If -r is given, we do not interpret or apply relocation
546     // but just copy relocation sections to output.
547     if (Config->Relocatable)
548       return make<InputSection>(*this, Sec, Name);
549 
550     if (Target->FirstRelocation)
551       fatal(toString(this) +
552             ": multiple relocation sections to one section are not supported");
553 
554     // Mergeable sections with relocations are tricky because relocations
555     // need to be taken into account when comparing section contents for
556     // merging. It's not worth supporting such mergeable sections because
557     // they are rare and it'd complicates the internal design (we usually
558     // have to determine if two sections are mergeable early in the link
559     // process much before applying relocations). We simply handle mergeable
560     // sections with relocations as non-mergeable.
561     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
562       Target = toRegularSection(MS);
563       this->Sections[Sec.sh_info] = Target;
564     }
565 
566     size_t NumRelocations;
567     if (Sec.sh_type == SHT_RELA) {
568       ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this);
569       Target->FirstRelocation = Rels.begin();
570       NumRelocations = Rels.size();
571       Target->AreRelocsRela = true;
572     } else {
573       ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this);
574       Target->FirstRelocation = Rels.begin();
575       NumRelocations = Rels.size();
576       Target->AreRelocsRela = false;
577     }
578     assert(isUInt<31>(NumRelocations));
579     Target->NumRelocations = NumRelocations;
580 
581     // Relocation sections processed by the linker are usually removed
582     // from the output, so returning `nullptr` for the normal case.
583     // However, if -emit-relocs is given, we need to leave them in the output.
584     // (Some post link analysis tools need this information.)
585     if (Config->EmitRelocs) {
586       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
587       // We will not emit relocation section if target was discarded.
588       Target->DependentSections.push_back(RelocSec);
589       return RelocSec;
590     }
591     return nullptr;
592   }
593   }
594 
595   // The GNU linker uses .note.GNU-stack section as a marker indicating
596   // that the code in the object file does not expect that the stack is
597   // executable (in terms of NX bit). If all input files have the marker,
598   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
599   // make the stack non-executable. Most object files have this section as
600   // of 2017.
601   //
602   // But making the stack non-executable is a norm today for security
603   // reasons. Failure to do so may result in a serious security issue.
604   // Therefore, we make LLD always add PT_GNU_STACK unless it is
605   // explicitly told to do otherwise (by -z execstack). Because the stack
606   // executable-ness is controlled solely by command line options,
607   // .note.GNU-stack sections are simply ignored.
608   if (Name == ".note.GNU-stack")
609     return &InputSection::Discarded;
610 
611   // Split stacks is a feature to support a discontiguous stack. At least
612   // as of 2017, it seems that the feature is not being used widely.
613   // Only GNU gold supports that. We don't. For the details about that,
614   // see https://gcc.gnu.org/wiki/SplitStacks
615   if (Name == ".note.GNU-split-stack") {
616     error(toString(this) +
617           ": object file compiled with -fsplit-stack is not supported");
618     return &InputSection::Discarded;
619   }
620 
621   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
622   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
623   // sections. Drop those sections to avoid duplicate symbol errors.
624   // FIXME: This is glibc PR20543, we should remove this hack once that has been
625   // fixed for a while.
626   if (Name.startswith(".gnu.linkonce."))
627     return &InputSection::Discarded;
628 
629   // If we are creating a new .build-id section, strip existing .build-id
630   // sections so that the output won't have more than one .build-id.
631   // This is not usually a problem because input object files normally don't
632   // have .build-id sections, but you can create such files by
633   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
634   if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
635     return &InputSection::Discarded;
636 
637   // The linker merges EH (exception handling) frames and creates a
638   // .eh_frame_hdr section for runtime. So we handle them with a special
639   // class. For relocatable outputs, they are just passed through.
640   if (Name == ".eh_frame" && !Config->Relocatable)
641     return make<EhInputSection>(*this, Sec, Name);
642 
643   if (shouldMerge(Sec))
644     return make<MergeInputSection>(*this, Sec, Name);
645   return make<InputSection>(*this, Sec, Name);
646 }
647 
648 template <class ELFT>
649 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
650   return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this);
651 }
652 
653 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
654   this->Symbols.reserve(this->ELFSyms.size());
655   for (const Elf_Sym &Sym : this->ELFSyms)
656     this->Symbols.push_back(createSymbol(&Sym));
657 }
658 
659 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
660   int Binding = Sym->getBinding();
661 
662   uint32_t SecIdx = this->getSectionIndex(*Sym);
663   if (SecIdx >= this->Sections.size())
664     fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
665 
666   InputSectionBase *Sec = this->Sections[SecIdx];
667   uint8_t StOther = Sym->st_other;
668   uint8_t Type = Sym->getType();
669   uint64_t Value = Sym->st_value;
670   uint64_t Size = Sym->st_size;
671 
672   if (Binding == STB_LOCAL) {
673     if (Sym->getType() == STT_FILE)
674       SourceFile = CHECK(Sym->getName(this->StringTable), this);
675 
676     if (this->StringTable.size() <= Sym->st_name)
677       fatal(toString(this) + ": invalid symbol name offset");
678 
679     StringRefZ Name = this->StringTable.data() + Sym->st_name;
680     if (Sym->st_shndx == SHN_UNDEF)
681       return make<Undefined>(this, Name, Binding, StOther, Type);
682 
683     return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
684   }
685 
686   StringRef Name = CHECK(Sym->getName(this->StringTable), this);
687 
688   switch (Sym->st_shndx) {
689   case SHN_UNDEF:
690     return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
691                                       /*CanOmitFromDynSym=*/false, this);
692   case SHN_COMMON:
693     if (Value == 0 || Value >= UINT32_MAX)
694       fatal(toString(this) + ": common symbol '" + Name +
695             "' has invalid alignment: " + Twine(Value));
696     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this);
697   }
698 
699   switch (Binding) {
700   default:
701     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
702   case STB_GLOBAL:
703   case STB_WEAK:
704   case STB_GNU_UNIQUE:
705     if (Sec == &InputSection::Discarded)
706       return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
707                                         /*CanOmitFromDynSym=*/false, this);
708     return Symtab->addRegular(Name, StOther, Type, Value, Size, Binding, Sec,
709                               this);
710   }
711 }
712 
713 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
714     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
715       File(std::move(File)) {}
716 
717 template <class ELFT> void ArchiveFile::parse() {
718   for (const Archive::Symbol &Sym : File->symbols())
719     Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym);
720 }
721 
722 // Returns a buffer pointing to a member file containing a given symbol.
723 std::pair<MemoryBufferRef, uint64_t>
724 ArchiveFile::getMember(const Archive::Symbol *Sym) {
725   Archive::Child C =
726       CHECK(Sym->getMember(), toString(this) +
727                                   ": could not get the member for symbol " +
728                                   Sym->getName());
729 
730   if (!Seen.insert(C.getChildOffset()).second)
731     return {MemoryBufferRef(), 0};
732 
733   MemoryBufferRef Ret =
734       CHECK(C.getMemoryBufferRef(),
735             toString(this) +
736                 ": could not get the buffer for the member defining symbol " +
737                 Sym->getName());
738 
739   if (C.getParent()->isThin() && Tar)
740     Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), Ret.getBuffer());
741   if (C.getParent()->isThin())
742     return {Ret, 0};
743   return {Ret, C.getChildOffset()};
744 }
745 
746 template <class ELFT>
747 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
748     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
749       IsNeeded(!Config->AsNeeded) {}
750 
751 // Partially parse the shared object file so that we can call
752 // getSoName on this object.
753 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
754   const Elf_Shdr *DynamicSec = nullptr;
755   const ELFFile<ELFT> Obj = this->getObj();
756   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
757 
758   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
759   for (const Elf_Shdr &Sec : Sections) {
760     switch (Sec.sh_type) {
761     default:
762       continue;
763     case SHT_DYNSYM:
764       this->initSymtab(Sections, &Sec);
765       break;
766     case SHT_DYNAMIC:
767       DynamicSec = &Sec;
768       break;
769     case SHT_SYMTAB_SHNDX:
770       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this);
771       break;
772     case SHT_GNU_versym:
773       this->VersymSec = &Sec;
774       break;
775     case SHT_GNU_verdef:
776       this->VerdefSec = &Sec;
777       break;
778     }
779   }
780 
781   if (this->VersymSec && this->ELFSyms.empty())
782     error("SHT_GNU_versym should be associated with symbol table");
783 
784   // Search for a DT_SONAME tag to initialize this->SoName.
785   if (!DynamicSec)
786     return;
787   ArrayRef<Elf_Dyn> Arr =
788       CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this);
789   for (const Elf_Dyn &Dyn : Arr) {
790     if (Dyn.d_tag == DT_SONAME) {
791       uint64_t Val = Dyn.getVal();
792       if (Val >= this->StringTable.size())
793         fatal(toString(this) + ": invalid DT_SONAME entry");
794       SoName = this->StringTable.data() + Val;
795       return;
796     }
797   }
798 }
799 
800 // Parse the version definitions in the object file if present. Returns a vector
801 // whose nth element contains a pointer to the Elf_Verdef for version identifier
802 // n. Version identifiers that are not definitions map to nullptr. The array
803 // always has at least length 1.
804 template <class ELFT>
805 std::vector<const typename ELFT::Verdef *>
806 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
807   std::vector<const Elf_Verdef *> Verdefs(1);
808   // We only need to process symbol versions for this DSO if it has both a
809   // versym and a verdef section, which indicates that the DSO contains symbol
810   // version definitions.
811   if (!VersymSec || !VerdefSec)
812     return Verdefs;
813 
814   // The location of the first global versym entry.
815   const char *Base = this->MB.getBuffer().data();
816   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
817            this->FirstNonLocal;
818 
819   // We cannot determine the largest verdef identifier without inspecting
820   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
821   // sequentially starting from 1, so we predict that the largest identifier
822   // will be VerdefCount.
823   unsigned VerdefCount = VerdefSec->sh_info;
824   Verdefs.resize(VerdefCount + 1);
825 
826   // Build the Verdefs array by following the chain of Elf_Verdef objects
827   // from the start of the .gnu.version_d section.
828   const char *Verdef = Base + VerdefSec->sh_offset;
829   for (unsigned I = 0; I != VerdefCount; ++I) {
830     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
831     Verdef += CurVerdef->vd_next;
832     unsigned VerdefIndex = CurVerdef->vd_ndx;
833     if (Verdefs.size() <= VerdefIndex)
834       Verdefs.resize(VerdefIndex + 1);
835     Verdefs[VerdefIndex] = CurVerdef;
836   }
837 
838   return Verdefs;
839 }
840 
841 // Fully parse the shared object file. This must be called after parseSoName().
842 template <class ELFT> void SharedFile<ELFT>::parseRest() {
843   // Create mapping from version identifiers to Elf_Verdef entries.
844   const Elf_Versym *Versym = nullptr;
845   Verdefs = parseVerdefs(Versym);
846 
847   ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this);
848 
849   // Add symbols to the symbol table.
850   Elf_Sym_Range Syms = this->getGlobalELFSyms();
851   for (const Elf_Sym &Sym : Syms) {
852     unsigned VersymIndex = VER_NDX_GLOBAL;
853     if (Versym) {
854       VersymIndex = Versym->vs_index;
855       ++Versym;
856     }
857     bool Hidden = VersymIndex & VERSYM_HIDDEN;
858     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
859 
860     StringRef Name = CHECK(Sym.getName(this->StringTable), this);
861     if (Sym.isUndefined()) {
862       Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(),
863                                              Sym.st_other, Sym.getType(),
864                                              /*CanOmitFromDynSym=*/false, this);
865       S->ExportDynamic = true;
866       continue;
867     }
868 
869     // ELF spec requires that all local symbols precede weak or global
870     // symbols in each symbol table, and the index of first non-local symbol
871     // is stored to sh_info. If a local symbol appears after some non-local
872     // symbol, that's a violation of the spec.
873     if (Sym.getBinding() == STB_LOCAL) {
874       warn("found local symbol '" + Name +
875            "' in global part of symbol table in file " + toString(this));
876       continue;
877     }
878 
879     if (Config->EMachine == EM_MIPS) {
880       // FIXME: MIPS BFD linker puts _gp_disp symbol into DSO files
881       // and incorrectly assigns VER_NDX_LOCAL to this section global
882       // symbol. Here is a workaround for this bug.
883       if (Versym && VersymIndex == VER_NDX_LOCAL && Name == "_gp_disp")
884         continue;
885     }
886 
887     const Elf_Verdef *Ver = nullptr;
888     if (VersymIndex != VER_NDX_GLOBAL) {
889       if (VersymIndex >= Verdefs.size() || VersymIndex == VER_NDX_LOCAL) {
890         error("corrupt input file: version definition index " +
891               Twine(VersymIndex) + " for symbol " + Name +
892               " is out of bounds\n>>> defined in " + toString(this));
893         continue;
894       }
895       Ver = Verdefs[VersymIndex];
896     } else {
897       VersymIndex = 0;
898     }
899 
900     // We do not usually care about alignments of data in shared object
901     // files because the loader takes care of it. However, if we promote a
902     // DSO symbol to point to .bss due to copy relocation, we need to keep
903     // the original alignment requirements. We infer it here.
904     uint64_t Alignment = 1;
905     if (Sym.st_value)
906       Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
907     if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) {
908       uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign;
909       Alignment = std::min(Alignment, SecAlign);
910     }
911     if (Alignment > UINT32_MAX)
912       error(toString(this) + ": alignment too large: " + Name);
913 
914     if (!Hidden)
915       Symtab->addShared(Name, *this, Sym, Alignment, VersymIndex);
916 
917     // Also add the symbol with the versioned name to handle undefined symbols
918     // with explicit versions.
919     if (Ver) {
920       StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name;
921       Name = Saver.save(Name + "@" + VerName);
922       Symtab->addShared(Name, *this, Sym, Alignment, VersymIndex);
923     }
924   }
925 }
926 
927 static ELFKind getBitcodeELFKind(const Triple &T) {
928   if (T.isLittleEndian())
929     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
930   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
931 }
932 
933 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
934   switch (T.getArch()) {
935   case Triple::aarch64:
936     return EM_AARCH64;
937   case Triple::arm:
938   case Triple::thumb:
939     return EM_ARM;
940   case Triple::avr:
941     return EM_AVR;
942   case Triple::mips:
943   case Triple::mipsel:
944   case Triple::mips64:
945   case Triple::mips64el:
946     return EM_MIPS;
947   case Triple::ppc:
948     return EM_PPC;
949   case Triple::ppc64:
950     return EM_PPC64;
951   case Triple::x86:
952     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
953   case Triple::x86_64:
954     return EM_X86_64;
955   default:
956     fatal(Path + ": could not infer e_machine from bitcode target triple " +
957           T.str());
958   }
959 }
960 
961 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
962                          uint64_t OffsetInArchive)
963     : InputFile(BitcodeKind, MB) {
964   this->ArchiveName = ArchiveName;
965 
966   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
967   // (the fully resolved path of the archive) + member name + offset of the
968   // member in the archive.
969   // ThinLTO uses the MemoryBufferRef identifier to access its internal
970   // data structures and if two archives define two members with the same name,
971   // this causes a collision which result in only one of the objects being
972   // taken into consideration at LTO time (which very likely causes undefined
973   // symbols later in the link stage).
974   MemoryBufferRef MBRef(MB.getBuffer(),
975                         Saver.save(ArchiveName + MB.getBufferIdentifier() +
976                                    utostr(OffsetInArchive)));
977   Obj = CHECK(lto::InputFile::create(MBRef), this);
978 
979   Triple T(Obj->getTargetTriple());
980   EKind = getBitcodeELFKind(T);
981   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
982 }
983 
984 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
985   switch (GvVisibility) {
986   case GlobalValue::DefaultVisibility:
987     return STV_DEFAULT;
988   case GlobalValue::HiddenVisibility:
989     return STV_HIDDEN;
990   case GlobalValue::ProtectedVisibility:
991     return STV_PROTECTED;
992   }
993   llvm_unreachable("unknown visibility");
994 }
995 
996 template <class ELFT>
997 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
998                                    const lto::InputFile::Symbol &ObjSym,
999                                    BitcodeFile &F) {
1000   StringRef NameRef = Saver.save(ObjSym.getName());
1001   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1002 
1003   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
1004   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
1005   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
1006 
1007   int C = ObjSym.getComdatIndex();
1008   if (C != -1 && !KeptComdats[C])
1009     return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type,
1010                                       CanOmitFromDynSym, &F);
1011 
1012   if (ObjSym.isUndefined())
1013     return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type,
1014                                       CanOmitFromDynSym, &F);
1015 
1016   if (ObjSym.isCommon())
1017     return Symtab->addCommon(NameRef, ObjSym.getCommonSize(),
1018                              ObjSym.getCommonAlignment(), Binding, Visibility,
1019                              STT_OBJECT, F);
1020 
1021   return Symtab->addBitcode(NameRef, Binding, Visibility, Type,
1022                             CanOmitFromDynSym, F);
1023 }
1024 
1025 template <class ELFT>
1026 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
1027   std::vector<bool> KeptComdats;
1028   for (StringRef S : Obj->getComdatTable())
1029     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
1030 
1031   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
1032     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
1033 }
1034 
1035 static ELFKind getELFKind(MemoryBufferRef MB) {
1036   unsigned char Size;
1037   unsigned char Endian;
1038   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
1039 
1040   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
1041     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
1042   if (Size != ELFCLASS32 && Size != ELFCLASS64)
1043     fatal(MB.getBufferIdentifier() + ": invalid file class");
1044 
1045   size_t BufSize = MB.getBuffer().size();
1046   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
1047       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
1048     fatal(MB.getBufferIdentifier() + ": file is too short");
1049 
1050   if (Size == ELFCLASS32)
1051     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
1052   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
1053 }
1054 
1055 void BinaryFile::parse() {
1056   ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer());
1057   auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1058                                      8, Data, ".data");
1059   Sections.push_back(Section);
1060 
1061   // For each input file foo that is embedded to a result as a binary
1062   // blob, we define _binary_foo_{start,end,size} symbols, so that
1063   // user programs can access blobs by name. Non-alphanumeric
1064   // characters in a filename are replaced with underscore.
1065   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1066   for (size_t I = 0; I < S.size(); ++I)
1067     if (!isAlnum(S[I]))
1068       S[I] = '_';
1069 
1070   Symtab->addRegular(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0,
1071                      STB_GLOBAL, Section, nullptr);
1072   Symtab->addRegular(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
1073                      Data.size(), 0, STB_GLOBAL, Section, nullptr);
1074   Symtab->addRegular(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
1075                      Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
1076 }
1077 
1078 static bool isBitcode(MemoryBufferRef MB) {
1079   using namespace sys::fs;
1080   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
1081 }
1082 
1083 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1084                                  uint64_t OffsetInArchive) {
1085   if (isBitcode(MB))
1086     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1087 
1088   switch (getELFKind(MB)) {
1089   case ELF32LEKind:
1090     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1091   case ELF32BEKind:
1092     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1093   case ELF64LEKind:
1094     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1095   case ELF64BEKind:
1096     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1097   default:
1098     llvm_unreachable("getELFKind");
1099   }
1100 }
1101 
1102 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1103   switch (getELFKind(MB)) {
1104   case ELF32LEKind:
1105     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1106   case ELF32BEKind:
1107     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1108   case ELF64LEKind:
1109     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1110   case ELF64BEKind:
1111     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1112   default:
1113     llvm_unreachable("getELFKind");
1114   }
1115 }
1116 
1117 MemoryBufferRef LazyObjFile::getBuffer() {
1118   if (Seen)
1119     return MemoryBufferRef();
1120   Seen = true;
1121   return MB;
1122 }
1123 
1124 InputFile *LazyObjFile::fetch() {
1125   MemoryBufferRef MBRef = getBuffer();
1126   if (MBRef.getBuffer().empty())
1127     return nullptr;
1128   return createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1129 }
1130 
1131 template <class ELFT> void LazyObjFile::parse() {
1132   // A lazy object file wraps either a bitcode file or an ELF file.
1133   if (isBitcode(this->MB)) {
1134     std::unique_ptr<lto::InputFile> Obj =
1135         CHECK(lto::InputFile::create(this->MB), this);
1136     for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1137       if (!Sym.isUndefined())
1138         Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this);
1139     return;
1140   }
1141 
1142   switch (getELFKind(this->MB)) {
1143   case ELF32LEKind:
1144     addElfSymbols<ELF32LE>();
1145     return;
1146   case ELF32BEKind:
1147     addElfSymbols<ELF32BE>();
1148     return;
1149   case ELF64LEKind:
1150     addElfSymbols<ELF64LE>();
1151     return;
1152   case ELF64BEKind:
1153     addElfSymbols<ELF64BE>();
1154     return;
1155   default:
1156     llvm_unreachable("getELFKind");
1157   }
1158 }
1159 
1160 template <class ELFT> void LazyObjFile::addElfSymbols() {
1161   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1162   ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
1163 
1164   for (const typename ELFT::Shdr &Sec : Sections) {
1165     if (Sec.sh_type != SHT_SYMTAB)
1166       continue;
1167 
1168     typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this);
1169     uint32_t FirstNonLocal = Sec.sh_info;
1170     StringRef StringTable =
1171         CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
1172 
1173     for (const typename ELFT::Sym &Sym : Syms.slice(FirstNonLocal))
1174       if (Sym.st_shndx != SHN_UNDEF)
1175         Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this),
1176                                     *this);
1177     return;
1178   }
1179 }
1180 
1181 // This is for --just-symbols.
1182 //
1183 // This option allows you to link your output against other existing
1184 // program, so that if you load both your program and the other program
1185 // into memory, your output can use program's symbols.
1186 //
1187 // What we are doing here is to read defined symbols from a given ELF
1188 // file and add them as absolute symbols.
1189 template <class ELFT> void elf::readJustSymbolsFile(MemoryBufferRef MB) {
1190   typedef typename ELFT::Shdr Elf_Shdr;
1191   typedef typename ELFT::Sym Elf_Sym;
1192   typedef typename ELFT::SymRange Elf_Sym_Range;
1193 
1194   StringRef ObjName = MB.getBufferIdentifier();
1195   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1196   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), ObjName);
1197 
1198   for (const Elf_Shdr &Sec : Sections) {
1199     if (Sec.sh_type != SHT_SYMTAB)
1200       continue;
1201 
1202     Elf_Sym_Range Syms = CHECK(Obj.symbols(&Sec), ObjName);
1203     uint32_t FirstNonLocal = Sec.sh_info;
1204     StringRef StringTable =
1205         CHECK(Obj.getStringTableForSymtab(Sec, Sections), ObjName);
1206 
1207     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
1208       if (Sym.st_shndx != SHN_UNDEF)
1209         Symtab->addRegular(CHECK(Sym.getName(StringTable), ObjName),
1210                            Sym.st_other, Sym.getType(), Sym.st_value,
1211                            Sym.st_size, Sym.getBinding(), nullptr, nullptr);
1212     return;
1213   }
1214 }
1215 
1216 template void ArchiveFile::parse<ELF32LE>();
1217 template void ArchiveFile::parse<ELF32BE>();
1218 template void ArchiveFile::parse<ELF64LE>();
1219 template void ArchiveFile::parse<ELF64BE>();
1220 
1221 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1222 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1223 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1224 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1225 
1226 template void LazyObjFile::parse<ELF32LE>();
1227 template void LazyObjFile::parse<ELF32BE>();
1228 template void LazyObjFile::parse<ELF64LE>();
1229 template void LazyObjFile::parse<ELF64BE>();
1230 
1231 template class elf::ELFFileBase<ELF32LE>;
1232 template class elf::ELFFileBase<ELF32BE>;
1233 template class elf::ELFFileBase<ELF64LE>;
1234 template class elf::ELFFileBase<ELF64BE>;
1235 
1236 template class elf::ObjFile<ELF32LE>;
1237 template class elf::ObjFile<ELF32BE>;
1238 template class elf::ObjFile<ELF64LE>;
1239 template class elf::ObjFile<ELF64BE>;
1240 
1241 template class elf::SharedFile<ELF32LE>;
1242 template class elf::SharedFile<ELF32BE>;
1243 template class elf::SharedFile<ELF64LE>;
1244 template class elf::SharedFile<ELF64BE>;
1245 
1246 template void elf::readJustSymbolsFile<ELF32LE>(MemoryBufferRef);
1247 template void elf::readJustSymbolsFile<ELF32BE>(MemoryBufferRef);
1248 template void elf::readJustSymbolsFile<ELF64LE>(MemoryBufferRef);
1249 template void elf::readJustSymbolsFile<ELF64BE>(MemoryBufferRef);
1250