1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "ELFCreator.h" 13 #include "Error.h" 14 #include "InputSection.h" 15 #include "LinkerScript.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Path.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::sys::fs; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 std::vector<InputFile *> InputFile::Pool; 37 38 // Deletes all InputFile instances created so far. 39 void InputFile::freePool() { 40 // Files are freed in reverse order so that files created 41 // from other files (e.g. object files extracted from archives) 42 // are freed in the proper order. 43 for (int I = Pool.size() - 1; I >= 0; --I) 44 delete Pool[I]; 45 } 46 47 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 48 std::string elf::getFilename(const InputFile *F) { 49 if (!F) 50 return "(internal)"; 51 if (!F->ArchiveName.empty()) 52 return (F->ArchiveName + "(" + F->getName() + ")").str(); 53 return F->getName(); 54 } 55 56 template <class ELFT> 57 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 58 std::error_code EC; 59 ELFFile<ELFT> F(MB.getBuffer(), EC); 60 if (EC) 61 error(EC, "failed to read " + MB.getBufferIdentifier()); 62 return F; 63 } 64 65 template <class ELFT> static ELFKind getELFKind() { 66 if (ELFT::TargetEndianness == support::little) 67 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 68 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 69 } 70 71 template <class ELFT> 72 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 73 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { 74 EKind = getELFKind<ELFT>(); 75 EMachine = ELFObj.getHeader()->e_machine; 76 } 77 78 template <class ELFT> 79 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 80 if (!Symtab) 81 return Elf_Sym_Range(nullptr, nullptr); 82 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 83 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 84 uint32_t FirstNonLocal = Symtab->sh_info; 85 if (FirstNonLocal > NumSymbols) 86 fatal(getFilename(this) + ": invalid sh_info in symbol table"); 87 88 if (OnlyGlobals) 89 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 90 return makeArrayRef(Syms.begin(), Syms.end()); 91 } 92 93 template <class ELFT> 94 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 95 uint32_t I = Sym.st_shndx; 96 if (I == ELF::SHN_XINDEX) 97 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 98 if (I >= ELF::SHN_LORESERVE) 99 return 0; 100 return I; 101 } 102 103 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 104 if (!Symtab) 105 return; 106 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 107 } 108 109 template <class ELFT> 110 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 111 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 112 113 template <class ELFT> 114 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 115 if (!this->Symtab) 116 return this->SymbolBodies; 117 uint32_t FirstNonLocal = this->Symtab->sh_info; 118 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 119 } 120 121 template <class ELFT> 122 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 123 if (!this->Symtab) 124 return this->SymbolBodies; 125 uint32_t FirstNonLocal = this->Symtab->sh_info; 126 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 127 } 128 129 template <class ELFT> 130 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 131 if (!this->Symtab) 132 return this->SymbolBodies; 133 return makeArrayRef(this->SymbolBodies).slice(1); 134 } 135 136 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 137 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 138 return MipsOptions->Reginfo->ri_gp_value; 139 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 140 return MipsReginfo->Reginfo->ri_gp_value; 141 return 0; 142 } 143 144 template <class ELFT> 145 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 146 // Read section and symbol tables. 147 initializeSections(ComdatGroups); 148 initializeSymbols(); 149 } 150 151 // Sections with SHT_GROUP and comdat bits define comdat section groups. 152 // They are identified and deduplicated by group name. This function 153 // returns a group name. 154 template <class ELFT> 155 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 156 const ELFFile<ELFT> &Obj = this->ELFObj; 157 const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); 158 const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); 159 StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); 160 return check(Sym->getName(Strtab)); 161 } 162 163 template <class ELFT> 164 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 165 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 166 const ELFFile<ELFT> &Obj = this->ELFObj; 167 ArrayRef<Elf_Word> Entries = 168 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 169 if (Entries.empty() || Entries[0] != GRP_COMDAT) 170 fatal(getFilename(this) + ": unsupported SHT_GROUP format"); 171 return Entries.slice(1); 172 } 173 174 template <class ELFT> 175 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 176 // We don't merge sections if -O0 (default is -O1). This makes sometimes 177 // the linker significantly faster, although the output will be bigger. 178 if (Config->Optimize == 0) 179 return false; 180 181 // A mergeable section with size 0 is useless because they don't have 182 // any data to merge. A mergeable string section with size 0 can be 183 // argued as invalid because it doesn't end with a null character. 184 // We'll avoid a mess by handling them as if they were non-mergeable. 185 if (Sec.sh_size == 0) 186 return false; 187 188 // Check for sh_entsize. The ELF spec is not clear about the zero 189 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 190 // the section does not hold a table of fixed-size entries". We know 191 // that Rust 1.13 produces a string mergeable section with a zero 192 // sh_entsize. Here we just accept it rather than being picky about it. 193 uintX_t EntSize = Sec.sh_entsize; 194 if (EntSize == 0) 195 return false; 196 if (Sec.sh_size % EntSize) 197 fatal(getFilename(this) + 198 ": SHF_MERGE section size must be a multiple of sh_entsize"); 199 200 uintX_t Flags = Sec.sh_flags; 201 if (!(Flags & SHF_MERGE)) 202 return false; 203 if (Flags & SHF_WRITE) 204 fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); 205 206 // Don't try to merge if the alignment is larger than the sh_entsize and this 207 // is not SHF_STRINGS. 208 // 209 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 210 // It would be equivalent for the producer of the .o to just set a larger 211 // sh_entsize. 212 if (Flags & SHF_STRINGS) 213 return true; 214 215 return Sec.sh_addralign <= EntSize; 216 } 217 218 template <class ELFT> 219 void elf::ObjectFile<ELFT>::initializeSections( 220 DenseSet<StringRef> &ComdatGroups) { 221 uint64_t Size = this->ELFObj.getNumSections(); 222 Sections.resize(Size); 223 unsigned I = -1; 224 const ELFFile<ELFT> &Obj = this->ELFObj; 225 for (const Elf_Shdr &Sec : Obj.sections()) { 226 ++I; 227 if (Sections[I] == &InputSection<ELFT>::Discarded) 228 continue; 229 230 if (Sec.sh_flags & SHF_EXCLUDE) { 231 Sections[I] = &InputSection<ELFT>::Discarded; 232 continue; 233 } 234 235 switch (Sec.sh_type) { 236 case SHT_GROUP: 237 Sections[I] = &InputSection<ELFT>::Discarded; 238 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 239 continue; 240 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 241 if (SecIndex >= Size) 242 fatal(getFilename(this) + ": invalid section index in group: " + 243 Twine(SecIndex)); 244 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 245 } 246 break; 247 case SHT_SYMTAB: 248 this->Symtab = &Sec; 249 break; 250 case SHT_SYMTAB_SHNDX: 251 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 252 break; 253 case SHT_STRTAB: 254 case SHT_NULL: 255 break; 256 default: 257 Sections[I] = createInputSection(Sec); 258 } 259 } 260 } 261 262 template <class ELFT> 263 InputSectionBase<ELFT> * 264 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 265 uint32_t Idx = Sec.sh_info; 266 if (Idx >= Sections.size()) 267 fatal(getFilename(this) + ": invalid relocated section index: " + 268 Twine(Idx)); 269 InputSectionBase<ELFT> *Target = Sections[Idx]; 270 271 // Strictly speaking, a relocation section must be included in the 272 // group of the section it relocates. However, LLVM 3.3 and earlier 273 // would fail to do so, so we gracefully handle that case. 274 if (Target == &InputSection<ELFT>::Discarded) 275 return nullptr; 276 277 if (!Target) 278 fatal(getFilename(this) + ": unsupported relocation reference"); 279 return Target; 280 } 281 282 template <class ELFT> 283 InputSectionBase<ELFT> * 284 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 285 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 286 287 switch (Sec.sh_type) { 288 case SHT_ARM_ATTRIBUTES: 289 // FIXME: ARM meta-data section. At present attributes are ignored, 290 // they can be used to reason about object compatibility. 291 return &InputSection<ELFT>::Discarded; 292 case SHT_MIPS_REGINFO: 293 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name)); 294 return MipsReginfo.get(); 295 case SHT_MIPS_OPTIONS: 296 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name)); 297 return MipsOptions.get(); 298 case SHT_MIPS_ABIFLAGS: 299 MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name)); 300 return MipsAbiFlags.get(); 301 case SHT_RELA: 302 case SHT_REL: { 303 // This section contains relocation information. 304 // If -r is given, we do not interpret or apply relocation 305 // but just copy relocation sections to output. 306 if (Config->Relocatable) 307 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 308 309 // Find the relocation target section and associate this 310 // section with it. 311 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 312 if (!Target) 313 return nullptr; 314 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 315 S->RelocSections.push_back(&Sec); 316 return nullptr; 317 } 318 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 319 if (S->RelocSection) 320 fatal(getFilename(this) + 321 ": multiple relocation sections to .eh_frame are not supported"); 322 S->RelocSection = &Sec; 323 return nullptr; 324 } 325 fatal(getFilename(this) + 326 ": relocations pointing to SHF_MERGE are not supported"); 327 } 328 } 329 330 // .note.GNU-stack is a marker section to control the presence of 331 // PT_GNU_STACK segment in outputs. Since the presence of the segment 332 // is controlled only by the command line option (-z execstack) in LLD, 333 // .note.GNU-stack is ignored. 334 if (Name == ".note.GNU-stack") 335 return &InputSection<ELFT>::Discarded; 336 337 if (Name == ".note.GNU-split-stack") { 338 error("objects using splitstacks are not supported"); 339 return &InputSection<ELFT>::Discarded; 340 } 341 342 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 343 return &InputSection<ELFT>::Discarded; 344 345 // The linker merges EH (exception handling) frames and creates a 346 // .eh_frame_hdr section for runtime. So we handle them with a special 347 // class. For relocatable outputs, they are just passed through. 348 if (Name == ".eh_frame" && !Config->Relocatable) 349 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name); 350 351 if (shouldMerge(Sec)) 352 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name); 353 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 354 } 355 356 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 357 this->initStringTable(); 358 Elf_Sym_Range Syms = this->getElfSymbols(false); 359 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 360 SymbolBodies.reserve(NumSymbols); 361 for (const Elf_Sym &Sym : Syms) 362 SymbolBodies.push_back(createSymbolBody(&Sym)); 363 } 364 365 template <class ELFT> 366 InputSectionBase<ELFT> * 367 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 368 uint32_t Index = this->getSectionIndex(Sym); 369 if (Index == 0) 370 return nullptr; 371 if (Index >= Sections.size()) 372 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 373 InputSectionBase<ELFT> *S = Sections[Index]; 374 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 375 // could generate broken objects. STT_SECTION symbols can be 376 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 377 // In this case it is fine for section to be null here as we 378 // do not allocate sections of these types. 379 if (!S || S == &InputSectionBase<ELFT>::Discarded) 380 return S; 381 return S->Repl; 382 } 383 384 template <class ELFT> 385 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 386 int Binding = Sym->getBinding(); 387 InputSectionBase<ELFT> *Sec = getSection(*Sym); 388 if (Binding == STB_LOCAL) { 389 if (Sym->st_shndx == SHN_UNDEF) 390 return new (this->Alloc) 391 Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); 392 return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); 393 } 394 395 StringRef Name = check(Sym->getName(this->StringTable)); 396 397 switch (Sym->st_shndx) { 398 case SHN_UNDEF: 399 return elf::Symtab<ELFT>::X 400 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 401 /*CanOmitFromDynSym*/ false, this) 402 ->body(); 403 case SHN_COMMON: 404 return elf::Symtab<ELFT>::X 405 ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other, 406 Sym->getType(), this) 407 ->body(); 408 } 409 410 switch (Binding) { 411 default: 412 fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); 413 case STB_GLOBAL: 414 case STB_WEAK: 415 case STB_GNU_UNIQUE: 416 if (Sec == &InputSection<ELFT>::Discarded) 417 return elf::Symtab<ELFT>::X 418 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 419 /*CanOmitFromDynSym*/ false, this) 420 ->body(); 421 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 422 } 423 } 424 425 template <class ELFT> void ArchiveFile::parse() { 426 File = check(Archive::create(MB), "failed to parse archive"); 427 428 // Read the symbol table to construct Lazy objects. 429 for (const Archive::Symbol &Sym : File->symbols()) 430 Symtab<ELFT>::X->addLazyArchive(this, Sym); 431 } 432 433 // Returns a buffer pointing to a member file containing a given symbol. 434 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) { 435 Archive::Child C = 436 check(Sym->getMember(), 437 "could not get the member for symbol " + Sym->getName()); 438 439 if (!Seen.insert(C.getChildOffset()).second) 440 return MemoryBufferRef(); 441 442 MemoryBufferRef Ret = 443 check(C.getMemoryBufferRef(), 444 "could not get the buffer for the member defining symbol " + 445 Sym->getName()); 446 447 if (C.getParent()->isThin() && Driver->Cpio) 448 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 449 Ret.getBuffer()); 450 451 return Ret; 452 } 453 454 template <class ELFT> 455 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 456 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 457 458 template <class ELFT> 459 const typename ELFT::Shdr * 460 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 461 uint32_t Index = this->getSectionIndex(Sym); 462 if (Index == 0) 463 return nullptr; 464 return check(this->ELFObj.getSection(Index)); 465 } 466 467 // Partially parse the shared object file so that we can call 468 // getSoName on this object. 469 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 470 typedef typename ELFT::Dyn Elf_Dyn; 471 typedef typename ELFT::uint uintX_t; 472 const Elf_Shdr *DynamicSec = nullptr; 473 474 const ELFFile<ELFT> Obj = this->ELFObj; 475 for (const Elf_Shdr &Sec : Obj.sections()) { 476 switch (Sec.sh_type) { 477 default: 478 continue; 479 case SHT_DYNSYM: 480 this->Symtab = &Sec; 481 break; 482 case SHT_DYNAMIC: 483 DynamicSec = &Sec; 484 break; 485 case SHT_SYMTAB_SHNDX: 486 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 487 break; 488 case SHT_GNU_versym: 489 this->VersymSec = &Sec; 490 break; 491 case SHT_GNU_verdef: 492 this->VerdefSec = &Sec; 493 break; 494 } 495 } 496 497 this->initStringTable(); 498 499 // DSOs are identified by soname, and they usually contain 500 // DT_SONAME tag in their header. But if they are missing, 501 // filenames are used as default sonames. 502 SoName = sys::path::filename(this->getName()); 503 504 if (!DynamicSec) 505 return; 506 auto *Begin = 507 reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset); 508 const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn); 509 510 for (const Elf_Dyn &Dyn : make_range(Begin, End)) { 511 if (Dyn.d_tag == DT_SONAME) { 512 uintX_t Val = Dyn.getVal(); 513 if (Val >= this->StringTable.size()) 514 fatal(getFilename(this) + ": invalid DT_SONAME entry"); 515 SoName = StringRef(this->StringTable.data() + Val); 516 return; 517 } 518 } 519 } 520 521 // Parse the version definitions in the object file if present. Returns a vector 522 // whose nth element contains a pointer to the Elf_Verdef for version identifier 523 // n. Version identifiers that are not definitions map to nullptr. The array 524 // always has at least length 1. 525 template <class ELFT> 526 std::vector<const typename ELFT::Verdef *> 527 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 528 std::vector<const Elf_Verdef *> Verdefs(1); 529 // We only need to process symbol versions for this DSO if it has both a 530 // versym and a verdef section, which indicates that the DSO contains symbol 531 // version definitions. 532 if (!VersymSec || !VerdefSec) 533 return Verdefs; 534 535 // The location of the first global versym entry. 536 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 537 VersymSec->sh_offset) + 538 this->Symtab->sh_info; 539 540 // We cannot determine the largest verdef identifier without inspecting 541 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 542 // sequentially starting from 1, so we predict that the largest identifier 543 // will be VerdefCount. 544 unsigned VerdefCount = VerdefSec->sh_info; 545 Verdefs.resize(VerdefCount + 1); 546 547 // Build the Verdefs array by following the chain of Elf_Verdef objects 548 // from the start of the .gnu.version_d section. 549 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 550 for (unsigned I = 0; I != VerdefCount; ++I) { 551 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 552 Verdef += CurVerdef->vd_next; 553 unsigned VerdefIndex = CurVerdef->vd_ndx; 554 if (Verdefs.size() <= VerdefIndex) 555 Verdefs.resize(VerdefIndex + 1); 556 Verdefs[VerdefIndex] = CurVerdef; 557 } 558 559 return Verdefs; 560 } 561 562 // Fully parse the shared object file. This must be called after parseSoName(). 563 template <class ELFT> void SharedFile<ELFT>::parseRest() { 564 // Create mapping from version identifiers to Elf_Verdef entries. 565 const Elf_Versym *Versym = nullptr; 566 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 567 568 Elf_Sym_Range Syms = this->getElfSymbols(true); 569 for (const Elf_Sym &Sym : Syms) { 570 unsigned VersymIndex = 0; 571 if (Versym) { 572 VersymIndex = Versym->vs_index; 573 ++Versym; 574 } 575 576 StringRef Name = check(Sym.getName(this->StringTable)); 577 if (Sym.isUndefined()) { 578 Undefs.push_back(Name); 579 continue; 580 } 581 582 if (Versym) { 583 // Ignore local symbols and non-default versions. 584 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 585 continue; 586 } 587 588 const Elf_Verdef *V = 589 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 590 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 591 } 592 } 593 594 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 595 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 596 if (T.isLittleEndian()) 597 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 598 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 599 } 600 601 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 602 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 603 switch (T.getArch()) { 604 case Triple::aarch64: 605 return EM_AARCH64; 606 case Triple::arm: 607 return EM_ARM; 608 case Triple::mips: 609 case Triple::mipsel: 610 case Triple::mips64: 611 case Triple::mips64el: 612 return EM_MIPS; 613 case Triple::ppc: 614 return EM_PPC; 615 case Triple::ppc64: 616 return EM_PPC64; 617 case Triple::x86: 618 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 619 case Triple::x86_64: 620 return EM_X86_64; 621 default: 622 fatal(MB.getBufferIdentifier() + 623 ": could not infer e_machine from bitcode target triple " + T.str()); 624 } 625 } 626 627 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 628 EKind = getBitcodeELFKind(MB); 629 EMachine = getBitcodeMachineKind(MB); 630 } 631 632 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 633 switch (GvVisibility) { 634 case GlobalValue::DefaultVisibility: 635 return STV_DEFAULT; 636 case GlobalValue::HiddenVisibility: 637 return STV_HIDDEN; 638 case GlobalValue::ProtectedVisibility: 639 return STV_PROTECTED; 640 } 641 llvm_unreachable("unknown visibility"); 642 } 643 644 template <class ELFT> 645 static Symbol *createBitcodeSymbol(const DenseSet<const Comdat *> &KeptComdats, 646 const lto::InputFile::Symbol &ObjSym, 647 StringSaver &Saver, BitcodeFile *F) { 648 StringRef NameRef = Saver.save(ObjSym.getName()); 649 uint32_t Flags = ObjSym.getFlags(); 650 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 651 652 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 653 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 654 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 655 656 if (const Comdat *C = check(ObjSym.getComdat())) 657 if (!KeptComdats.count(C)) 658 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 659 CanOmitFromDynSym, F); 660 661 if (Flags & BasicSymbolRef::SF_Undefined) 662 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 663 CanOmitFromDynSym, F); 664 665 if (Flags & BasicSymbolRef::SF_Common) 666 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 667 ObjSym.getCommonAlignment(), Binding, 668 Visibility, STT_OBJECT, F); 669 670 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 671 CanOmitFromDynSym, F); 672 } 673 674 template <class ELFT> 675 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 676 Obj = check(lto::InputFile::create(MB)); 677 DenseSet<const Comdat *> KeptComdats; 678 for (const auto &P : Obj->getComdatSymbolTable()) { 679 StringRef N = Saver.save(P.first()); 680 if (ComdatGroups.insert(N).second) 681 KeptComdats.insert(&P.second); 682 } 683 684 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 685 Symbols.push_back( 686 createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, Saver, this)); 687 } 688 689 template <template <class> class T> 690 static InputFile *createELFFile(MemoryBufferRef MB) { 691 unsigned char Size; 692 unsigned char Endian; 693 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 694 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 695 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 696 697 InputFile *Obj; 698 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 699 Obj = new T<ELF32LE>(MB); 700 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 701 Obj = new T<ELF32BE>(MB); 702 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 703 Obj = new T<ELF64LE>(MB); 704 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 705 Obj = new T<ELF64BE>(MB); 706 else 707 fatal("invalid file class: " + MB.getBufferIdentifier()); 708 709 if (!Config->FirstElf) 710 Config->FirstElf = Obj; 711 return Obj; 712 } 713 714 // Wraps a binary blob with an ELF header and footer 715 // so that we can link it as a regular ELF file. 716 template <class ELFT> InputFile *BinaryFile::createELF() { 717 // Fill the ELF file header. 718 ELFCreator<ELFT> ELF(ET_REL, Config->EMachine); 719 auto DataSec = ELF.addSection(".data"); 720 DataSec.Header->sh_flags = SHF_ALLOC; 721 DataSec.Header->sh_size = MB.getBufferSize(); 722 DataSec.Header->sh_type = SHT_PROGBITS; 723 DataSec.Header->sh_addralign = 8; 724 725 // Replace non-alphanumeric characters with '_'. 726 std::string Filepath = MB.getBufferIdentifier(); 727 std::transform(Filepath.begin(), Filepath.end(), Filepath.begin(), 728 [](char C) { return isalnum(C) ? C : '_'; }); 729 730 // Add _start, _end and _size symbols. 731 std::string StartSym = "_binary_" + Filepath + "_start"; 732 auto SSym = ELF.addSymbol(StartSym); 733 SSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 734 SSym.Sym->st_shndx = DataSec.Index; 735 736 std::string EndSym = "_binary_" + Filepath + "_end"; 737 auto ESym = ELF.addSymbol(EndSym); 738 ESym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 739 ESym.Sym->st_shndx = DataSec.Index; 740 ESym.Sym->st_value = MB.getBufferSize(); 741 742 std::string SizeSym = "_binary_" + Filepath + "_size"; 743 auto SZSym = ELF.addSymbol(SizeSym); 744 SZSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 745 SZSym.Sym->st_shndx = SHN_ABS; 746 SZSym.Sym->st_value = MB.getBufferSize(); 747 748 // Fix the ELF file layout and write it down to ELFData uint8_t vector. 749 std::size_t Size = ELF.layout(); 750 ELFData.resize(Size); 751 ELF.write(ELFData.data()); 752 753 // Fill .data section with actual data. 754 std::copy(MB.getBufferStart(), MB.getBufferEnd(), 755 ELFData.data() + DataSec.Header->sh_offset); 756 757 return createELFFile<ObjectFile>(MemoryBufferRef( 758 StringRef((char *)ELFData.data(), Size), MB.getBufferIdentifier())); 759 } 760 761 static bool isBitcode(MemoryBufferRef MB) { 762 using namespace sys::fs; 763 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 764 } 765 766 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName) { 767 InputFile *F = 768 isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB); 769 F->ArchiveName = ArchiveName; 770 return F; 771 } 772 773 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 774 return createELFFile<SharedFile>(MB); 775 } 776 777 MemoryBufferRef LazyObjectFile::getBuffer() { 778 if (Seen) 779 return MemoryBufferRef(); 780 Seen = true; 781 return MB; 782 } 783 784 template <class ELFT> 785 void LazyObjectFile::parse() { 786 for (StringRef Sym : getSymbols()) 787 Symtab<ELFT>::X->addLazyObject(Sym, *this); 788 } 789 790 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 791 typedef typename ELFT::Shdr Elf_Shdr; 792 typedef typename ELFT::Sym Elf_Sym; 793 typedef typename ELFT::SymRange Elf_Sym_Range; 794 795 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 796 for (const Elf_Shdr &Sec : Obj.sections()) { 797 if (Sec.sh_type != SHT_SYMTAB) 798 continue; 799 Elf_Sym_Range Syms = Obj.symbols(&Sec); 800 uint32_t FirstNonLocal = Sec.sh_info; 801 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 802 std::vector<StringRef> V; 803 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 804 if (Sym.st_shndx != SHN_UNDEF) 805 V.push_back(check(Sym.getName(StringTable))); 806 return V; 807 } 808 return {}; 809 } 810 811 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 812 std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); 813 std::vector<StringRef> V; 814 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 815 if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) 816 V.push_back(Saver.save(Sym.getName())); 817 return V; 818 } 819 820 // Returns a vector of globally-visible defined symbol names. 821 std::vector<StringRef> LazyObjectFile::getSymbols() { 822 if (isBitcode(this->MB)) 823 return getBitcodeSymbols(); 824 825 unsigned char Size; 826 unsigned char Endian; 827 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 828 if (Size == ELFCLASS32) { 829 if (Endian == ELFDATA2LSB) 830 return getElfSymbols<ELF32LE>(); 831 return getElfSymbols<ELF32BE>(); 832 } 833 if (Endian == ELFDATA2LSB) 834 return getElfSymbols<ELF64LE>(); 835 return getElfSymbols<ELF64BE>(); 836 } 837 838 template void ArchiveFile::parse<ELF32LE>(); 839 template void ArchiveFile::parse<ELF32BE>(); 840 template void ArchiveFile::parse<ELF64LE>(); 841 template void ArchiveFile::parse<ELF64BE>(); 842 843 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); 844 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); 845 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); 846 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); 847 848 template void LazyObjectFile::parse<ELF32LE>(); 849 template void LazyObjectFile::parse<ELF32BE>(); 850 template void LazyObjectFile::parse<ELF64LE>(); 851 template void LazyObjectFile::parse<ELF64BE>(); 852 853 template class elf::ELFFileBase<ELF32LE>; 854 template class elf::ELFFileBase<ELF32BE>; 855 template class elf::ELFFileBase<ELF64LE>; 856 template class elf::ELFFileBase<ELF64BE>; 857 858 template class elf::ObjectFile<ELF32LE>; 859 template class elf::ObjectFile<ELF32BE>; 860 template class elf::ObjectFile<ELF64LE>; 861 template class elf::ObjectFile<ELF64BE>; 862 863 template class elf::SharedFile<ELF32LE>; 864 template class elf::SharedFile<ELF32BE>; 865 template class elf::SharedFile<ELF64LE>; 866 template class elf::SharedFile<ELF64BE>; 867 868 template InputFile *BinaryFile::createELF<ELF32LE>(); 869 template InputFile *BinaryFile::createELF<ELF32BE>(); 870 template InputFile *BinaryFile::createELF<ELF64LE>(); 871 template InputFile *BinaryFile::createELF<ELF64BE>(); 872