1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Error.h" 12 #include "InputSection.h" 13 #include "LinkerScript.h" 14 #include "Memory.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Bitcode/BitcodeReader.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/LTO/LTO.h" 25 #include "llvm/MC/StringTableBuilder.h" 26 #include "llvm/Object/ELFObjectFile.h" 27 #include "llvm/Support/Path.h" 28 #include "llvm/Support/TarWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::sys::fs; 35 36 using namespace lld; 37 using namespace lld::elf; 38 39 TarWriter *elf::Tar; 40 41 namespace { 42 // In ELF object file all section addresses are zero. If we have multiple 43 // .text sections (when using -ffunction-section or comdat group) then 44 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless 45 // we assign each section some unique address. This callback method assigns 46 // each section an address equal to its offset in ELF object file. 47 class ObjectInfo : public LoadedObjectInfo { 48 public: 49 uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override { 50 return static_cast<const ELFSectionRef &>(Sec).getOffset(); 51 } 52 std::unique_ptr<LoadedObjectInfo> clone() const override { 53 return std::unique_ptr<LoadedObjectInfo>(); 54 } 55 }; 56 } 57 58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 59 if (Config->Verbose) 60 outs() << Path << "\n"; 61 62 auto MBOrErr = MemoryBuffer::getFile(Path); 63 if (auto EC = MBOrErr.getError()) { 64 error("cannot open " + Path + ": " + EC.message()); 65 return None; 66 } 67 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 68 MemoryBufferRef MBRef = MB->getMemBufferRef(); 69 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 70 71 if (Tar) 72 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 73 return MBRef; 74 } 75 76 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() { 77 std::unique_ptr<object::ObjectFile> Obj = 78 check(object::ObjectFile::createObjectFile(this->MB), 79 "createObjectFile failed"); 80 81 ObjectInfo ObjInfo; 82 DWARFContextInMemory Dwarf(*Obj, &ObjInfo); 83 DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs)); 84 DataExtractor LineData(Dwarf.getLineSection().Data, 85 ELFT::TargetEndianness == support::little, 86 ELFT::Is64Bits ? 8 : 4); 87 88 // The second parameter is offset in .debug_line section 89 // for compilation unit (CU) of interest. We have only one 90 // CU (object file), so offset is always 0. 91 DwarfLine->getOrParseLineTable(LineData, 0); 92 } 93 94 // Returns source line information for a given offset 95 // using DWARF debug info. 96 template <class ELFT> 97 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase<ELFT> *S, 98 uintX_t Offset) { 99 if (!DwarfLine) 100 initializeDwarfLine(); 101 102 // The offset to CU is 0. 103 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 104 if (!Tbl) 105 return ""; 106 107 // Use fake address calcuated by adding section file offset and offset in 108 // section. See comments for ObjectInfo class. 109 DILineInfo Info; 110 Tbl->getFileLineInfoForAddress( 111 S->Offset + Offset, nullptr, 112 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 113 if (Info.Line == 0) 114 return ""; 115 return Info.FileName + ":" + std::to_string(Info.Line); 116 } 117 118 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 119 std::string lld::toString(const InputFile *F) { 120 if (!F) 121 return "(internal)"; 122 if (!F->ArchiveName.empty()) 123 return (F->ArchiveName + "(" + F->getName() + ")").str(); 124 return F->getName(); 125 } 126 127 template <class ELFT> static ELFKind getELFKind() { 128 if (ELFT::TargetEndianness == support::little) 129 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 130 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 131 } 132 133 template <class ELFT> 134 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 135 EKind = getELFKind<ELFT>(); 136 EMachine = getObj().getHeader()->e_machine; 137 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 138 } 139 140 template <class ELFT> 141 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() { 142 return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end()); 143 } 144 145 template <class ELFT> 146 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 147 return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX)); 148 } 149 150 template <class ELFT> 151 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 152 const Elf_Shdr *Symtab) { 153 FirstNonLocal = Symtab->sh_info; 154 Symbols = check(getObj().symbols(Symtab)); 155 if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size()) 156 fatal(toString(this) + ": invalid sh_info in symbol table"); 157 158 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections)); 159 } 160 161 template <class ELFT> 162 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 163 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 164 165 template <class ELFT> 166 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 167 return makeArrayRef(this->SymbolBodies).slice(this->FirstNonLocal); 168 } 169 170 template <class ELFT> 171 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 172 if (this->SymbolBodies.empty()) 173 return this->SymbolBodies; 174 return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1); 175 } 176 177 template <class ELFT> 178 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 179 if (this->SymbolBodies.empty()) 180 return this->SymbolBodies; 181 return makeArrayRef(this->SymbolBodies).slice(1); 182 } 183 184 template <class ELFT> 185 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 186 // Read section and symbol tables. 187 initializeSections(ComdatGroups); 188 initializeSymbols(); 189 } 190 191 // Sections with SHT_GROUP and comdat bits define comdat section groups. 192 // They are identified and deduplicated by group name. This function 193 // returns a group name. 194 template <class ELFT> 195 StringRef 196 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 197 const Elf_Shdr &Sec) { 198 if (this->Symbols.empty()) 199 this->initSymtab(Sections, 200 check(object::getSection<ELFT>(Sections, Sec.sh_link))); 201 const Elf_Sym *Sym = 202 check(object::getSymbol<ELFT>(this->Symbols, Sec.sh_info)); 203 return check(Sym->getName(this->StringTable)); 204 } 205 206 template <class ELFT> 207 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 208 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 209 const ELFFile<ELFT> &Obj = this->getObj(); 210 ArrayRef<Elf_Word> Entries = 211 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 212 if (Entries.empty() || Entries[0] != GRP_COMDAT) 213 fatal(toString(this) + ": unsupported SHT_GROUP format"); 214 return Entries.slice(1); 215 } 216 217 template <class ELFT> 218 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 219 // We don't merge sections if -O0 (default is -O1). This makes sometimes 220 // the linker significantly faster, although the output will be bigger. 221 if (Config->Optimize == 0) 222 return false; 223 224 // Do not merge sections if generating a relocatable object. It makes 225 // the code simpler because we do not need to update relocation addends 226 // to reflect changes introduced by merging. Instead of that we write 227 // such "merge" sections into separate OutputSections and keep SHF_MERGE 228 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 229 // later during a final linking. 230 if (Config->Relocatable) 231 return false; 232 233 // A mergeable section with size 0 is useless because they don't have 234 // any data to merge. A mergeable string section with size 0 can be 235 // argued as invalid because it doesn't end with a null character. 236 // We'll avoid a mess by handling them as if they were non-mergeable. 237 if (Sec.sh_size == 0) 238 return false; 239 240 // Check for sh_entsize. The ELF spec is not clear about the zero 241 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 242 // the section does not hold a table of fixed-size entries". We know 243 // that Rust 1.13 produces a string mergeable section with a zero 244 // sh_entsize. Here we just accept it rather than being picky about it. 245 uintX_t EntSize = Sec.sh_entsize; 246 if (EntSize == 0) 247 return false; 248 if (Sec.sh_size % EntSize) 249 fatal(toString(this) + 250 ": SHF_MERGE section size must be a multiple of sh_entsize"); 251 252 uintX_t Flags = Sec.sh_flags; 253 if (!(Flags & SHF_MERGE)) 254 return false; 255 if (Flags & SHF_WRITE) 256 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 257 258 // Don't try to merge if the alignment is larger than the sh_entsize and this 259 // is not SHF_STRINGS. 260 // 261 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 262 // It would be equivalent for the producer of the .o to just set a larger 263 // sh_entsize. 264 if (Flags & SHF_STRINGS) 265 return true; 266 267 return Sec.sh_addralign <= EntSize; 268 } 269 270 template <class ELFT> 271 void elf::ObjectFile<ELFT>::initializeSections( 272 DenseSet<CachedHashStringRef> &ComdatGroups) { 273 ArrayRef<Elf_Shdr> ObjSections = check(this->getObj().sections()); 274 const ELFFile<ELFT> &Obj = this->getObj(); 275 uint64_t Size = ObjSections.size(); 276 Sections.resize(Size); 277 unsigned I = -1; 278 StringRef SectionStringTable = check(Obj.getSectionStringTable(ObjSections)); 279 for (const Elf_Shdr &Sec : ObjSections) { 280 ++I; 281 if (Sections[I] == &InputSection<ELFT>::Discarded) 282 continue; 283 284 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 285 // if -r is given, we'll let the final link discard such sections. 286 // This is compatible with GNU. 287 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 288 Sections[I] = &InputSection<ELFT>::Discarded; 289 continue; 290 } 291 292 switch (Sec.sh_type) { 293 case SHT_GROUP: 294 Sections[I] = &InputSection<ELFT>::Discarded; 295 if (ComdatGroups.insert(CachedHashStringRef( 296 getShtGroupSignature(ObjSections, Sec))) 297 .second) 298 continue; 299 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 300 if (SecIndex >= Size) 301 fatal(toString(this) + ": invalid section index in group: " + 302 Twine(SecIndex)); 303 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 304 } 305 break; 306 case SHT_SYMTAB: 307 this->initSymtab(ObjSections, &Sec); 308 break; 309 case SHT_SYMTAB_SHNDX: 310 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, ObjSections)); 311 break; 312 case SHT_STRTAB: 313 case SHT_NULL: 314 break; 315 default: 316 Sections[I] = createInputSection(Sec, SectionStringTable); 317 } 318 319 // .ARM.exidx sections have a reverse dependency on the InputSection they 320 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 321 if (Sec.sh_flags & SHF_LINK_ORDER) { 322 if (Sec.sh_link >= Sections.size()) 323 fatal(toString(this) + ": invalid sh_link index: " + 324 Twine(Sec.sh_link)); 325 Sections[Sec.sh_link]->DependentSections.push_back(Sections[I]); 326 } 327 } 328 } 329 330 template <class ELFT> 331 InputSectionBase<ELFT> * 332 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 333 uint32_t Idx = Sec.sh_info; 334 if (Idx >= Sections.size()) 335 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 336 InputSectionBase<ELFT> *Target = Sections[Idx]; 337 338 // Strictly speaking, a relocation section must be included in the 339 // group of the section it relocates. However, LLVM 3.3 and earlier 340 // would fail to do so, so we gracefully handle that case. 341 if (Target == &InputSection<ELFT>::Discarded) 342 return nullptr; 343 344 if (!Target) 345 fatal(toString(this) + ": unsupported relocation reference"); 346 return Target; 347 } 348 349 template <class ELFT> 350 InputSectionBase<ELFT> * 351 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec, 352 StringRef SectionStringTable) { 353 StringRef Name = 354 check(this->getObj().getSectionName(&Sec, SectionStringTable)); 355 356 switch (Sec.sh_type) { 357 case SHT_ARM_ATTRIBUTES: 358 // FIXME: ARM meta-data section. Retain the first attribute section 359 // we see. The eglibc ARM dynamic loaders require the presence of an 360 // attribute section for dlopen to work. 361 // In a full implementation we would merge all attribute sections. 362 if (In<ELFT>::ARMAttributes == nullptr) { 363 In<ELFT>::ARMAttributes = make<InputSection<ELFT>>(this, &Sec, Name); 364 return In<ELFT>::ARMAttributes; 365 } 366 return &InputSection<ELFT>::Discarded; 367 case SHT_RELA: 368 case SHT_REL: { 369 // Find the relocation target section and associate this 370 // section with it. Target can be discarded, for example 371 // if it is a duplicated member of SHT_GROUP section, we 372 // do not create or proccess relocatable sections then. 373 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 374 if (!Target) 375 return nullptr; 376 377 // This section contains relocation information. 378 // If -r is given, we do not interpret or apply relocation 379 // but just copy relocation sections to output. 380 if (Config->Relocatable) 381 return make<InputSection<ELFT>>(this, &Sec, Name); 382 383 if (Target->FirstRelocation) 384 fatal(toString(this) + 385 ": multiple relocation sections to one section are not supported"); 386 if (!isa<InputSection<ELFT>>(Target) && !isa<EhInputSection<ELFT>>(Target)) 387 fatal(toString(this) + 388 ": relocations pointing to SHF_MERGE are not supported"); 389 390 size_t NumRelocations; 391 if (Sec.sh_type == SHT_RELA) { 392 ArrayRef<Elf_Rela> Rels = check(this->getObj().relas(&Sec)); 393 Target->FirstRelocation = Rels.begin(); 394 NumRelocations = Rels.size(); 395 Target->AreRelocsRela = true; 396 } else { 397 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec)); 398 Target->FirstRelocation = Rels.begin(); 399 NumRelocations = Rels.size(); 400 Target->AreRelocsRela = false; 401 } 402 assert(isUInt<31>(NumRelocations)); 403 Target->NumRelocations = NumRelocations; 404 405 // Relocation sections processed by the linker are usually removed 406 // from the output, so returning `nullptr` for the normal case. 407 // However, if -emit-relocs is given, we need to leave them in the output. 408 // (Some post link analysis tools need this information.) 409 if (Config->EmitRelocs) { 410 InputSection<ELFT> *RelocSec = make<InputSection<ELFT>>(this, &Sec, Name); 411 // We will not emit relocation section if target was discarded. 412 Target->DependentSections.push_back(RelocSec); 413 return RelocSec; 414 } 415 return nullptr; 416 } 417 } 418 419 // .note.GNU-stack is a marker section to control the presence of 420 // PT_GNU_STACK segment in outputs. Since the presence of the segment 421 // is controlled only by the command line option (-z execstack) in LLD, 422 // .note.GNU-stack is ignored. 423 if (Name == ".note.GNU-stack") 424 return &InputSection<ELFT>::Discarded; 425 426 if (Name == ".note.GNU-split-stack") { 427 error("objects using splitstacks are not supported"); 428 return &InputSection<ELFT>::Discarded; 429 } 430 431 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 432 return &InputSection<ELFT>::Discarded; 433 434 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 435 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 436 // sections. Drop those sections to avoid duplicate symbol errors. 437 // FIXME: This is glibc PR20543, we should remove this hack once that has been 438 // fixed for a while. 439 if (Name.startswith(".gnu.linkonce.")) 440 return &InputSection<ELFT>::Discarded; 441 442 // The linker merges EH (exception handling) frames and creates a 443 // .eh_frame_hdr section for runtime. So we handle them with a special 444 // class. For relocatable outputs, they are just passed through. 445 if (Name == ".eh_frame" && !Config->Relocatable) 446 return make<EhInputSection<ELFT>>(this, &Sec, Name); 447 448 if (shouldMerge(Sec)) 449 return make<MergeInputSection<ELFT>>(this, &Sec, Name); 450 return make<InputSection<ELFT>>(this, &Sec, Name); 451 } 452 453 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 454 SymbolBodies.reserve(this->Symbols.size()); 455 for (const Elf_Sym &Sym : this->Symbols) 456 SymbolBodies.push_back(createSymbolBody(&Sym)); 457 } 458 459 template <class ELFT> 460 InputSectionBase<ELFT> * 461 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 462 uint32_t Index = this->getSectionIndex(Sym); 463 if (Index >= Sections.size()) 464 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 465 InputSectionBase<ELFT> *S = Sections[Index]; 466 467 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could 468 // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be 469 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 470 // In this case it is fine for section to be null here as we do not 471 // allocate sections of these types. 472 if (!S) { 473 if (Index == 0 || Sym.getType() == STT_SECTION || 474 Sym.getType() == STT_NOTYPE) 475 return nullptr; 476 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 477 } 478 479 if (S == &InputSection<ELFT>::Discarded) 480 return S; 481 return S->Repl; 482 } 483 484 template <class ELFT> 485 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 486 int Binding = Sym->getBinding(); 487 InputSectionBase<ELFT> *Sec = getSection(*Sym); 488 489 uint8_t StOther = Sym->st_other; 490 uint8_t Type = Sym->getType(); 491 uintX_t Value = Sym->st_value; 492 uintX_t Size = Sym->st_size; 493 494 if (Binding == STB_LOCAL) { 495 if (Sym->getType() == STT_FILE) 496 SourceFile = check(Sym->getName(this->StringTable)); 497 498 if (this->StringTable.size() <= Sym->st_name) 499 fatal(toString(this) + ": invalid symbol name offset"); 500 501 StringRefZ Name = this->StringTable.data() + Sym->st_name; 502 if (Sym->st_shndx == SHN_UNDEF) 503 return new (BAlloc) 504 Undefined(Name, /*IsLocal=*/true, StOther, Type, this); 505 506 return new (BAlloc) DefinedRegular<ELFT>(Name, /*IsLocal=*/true, StOther, 507 Type, Value, Size, Sec, this); 508 } 509 510 StringRef Name = check(Sym->getName(this->StringTable)); 511 512 switch (Sym->st_shndx) { 513 case SHN_UNDEF: 514 return elf::Symtab<ELFT>::X 515 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 516 /*CanOmitFromDynSym=*/false, this) 517 ->body(); 518 case SHN_COMMON: 519 if (Value == 0 || Value >= UINT32_MAX) 520 fatal(toString(this) + ": common symbol '" + Name + 521 "' has invalid alignment: " + Twine(Value)); 522 return elf::Symtab<ELFT>::X 523 ->addCommon(Name, Size, Value, Binding, StOther, Type, this) 524 ->body(); 525 } 526 527 switch (Binding) { 528 default: 529 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 530 case STB_GLOBAL: 531 case STB_WEAK: 532 case STB_GNU_UNIQUE: 533 if (Sec == &InputSection<ELFT>::Discarded) 534 return elf::Symtab<ELFT>::X 535 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 536 /*CanOmitFromDynSym=*/false, this) 537 ->body(); 538 return elf::Symtab<ELFT>::X 539 ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this) 540 ->body(); 541 } 542 } 543 544 template <class ELFT> void ArchiveFile::parse() { 545 File = check(Archive::create(MB), 546 MB.getBufferIdentifier() + ": failed to parse archive"); 547 548 // Read the symbol table to construct Lazy objects. 549 for (const Archive::Symbol &Sym : File->symbols()) 550 Symtab<ELFT>::X->addLazyArchive(this, Sym); 551 } 552 553 // Returns a buffer pointing to a member file containing a given symbol. 554 std::pair<MemoryBufferRef, uint64_t> 555 ArchiveFile::getMember(const Archive::Symbol *Sym) { 556 Archive::Child C = 557 check(Sym->getMember(), 558 "could not get the member for symbol " + Sym->getName()); 559 560 if (!Seen.insert(C.getChildOffset()).second) 561 return {MemoryBufferRef(), 0}; 562 563 MemoryBufferRef Ret = 564 check(C.getMemoryBufferRef(), 565 "could not get the buffer for the member defining symbol " + 566 Sym->getName()); 567 568 if (C.getParent()->isThin() && Tar) 569 Tar->append(relativeToRoot(check(C.getFullName())), Ret.getBuffer()); 570 if (C.getParent()->isThin()) 571 return {Ret, 0}; 572 return {Ret, C.getChildOffset()}; 573 } 574 575 template <class ELFT> 576 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 577 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 578 579 template <class ELFT> 580 const typename ELFT::Shdr * 581 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 582 return check( 583 this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX)); 584 } 585 586 // Partially parse the shared object file so that we can call 587 // getSoName on this object. 588 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 589 const Elf_Shdr *DynamicSec = nullptr; 590 591 const ELFFile<ELFT> Obj = this->getObj(); 592 ArrayRef<Elf_Shdr> Sections = check(Obj.sections()); 593 for (const Elf_Shdr &Sec : Sections) { 594 switch (Sec.sh_type) { 595 default: 596 continue; 597 case SHT_DYNSYM: 598 this->initSymtab(Sections, &Sec); 599 break; 600 case SHT_DYNAMIC: 601 DynamicSec = &Sec; 602 break; 603 case SHT_SYMTAB_SHNDX: 604 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, Sections)); 605 break; 606 case SHT_GNU_versym: 607 this->VersymSec = &Sec; 608 break; 609 case SHT_GNU_verdef: 610 this->VerdefSec = &Sec; 611 break; 612 } 613 } 614 615 if (this->VersymSec && this->Symbols.empty()) 616 error("SHT_GNU_versym should be associated with symbol table"); 617 618 // DSOs are identified by soname, and they usually contain 619 // DT_SONAME tag in their header. But if they are missing, 620 // filenames are used as default sonames. 621 SoName = sys::path::filename(this->getName()); 622 623 if (!DynamicSec) 624 return; 625 626 ArrayRef<Elf_Dyn> Arr = 627 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 628 toString(this) + ": getSectionContentsAsArray failed"); 629 for (const Elf_Dyn &Dyn : Arr) { 630 if (Dyn.d_tag == DT_SONAME) { 631 uintX_t Val = Dyn.getVal(); 632 if (Val >= this->StringTable.size()) 633 fatal(toString(this) + ": invalid DT_SONAME entry"); 634 SoName = StringRef(this->StringTable.data() + Val); 635 return; 636 } 637 } 638 } 639 640 // Parse the version definitions in the object file if present. Returns a vector 641 // whose nth element contains a pointer to the Elf_Verdef for version identifier 642 // n. Version identifiers that are not definitions map to nullptr. The array 643 // always has at least length 1. 644 template <class ELFT> 645 std::vector<const typename ELFT::Verdef *> 646 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 647 std::vector<const Elf_Verdef *> Verdefs(1); 648 // We only need to process symbol versions for this DSO if it has both a 649 // versym and a verdef section, which indicates that the DSO contains symbol 650 // version definitions. 651 if (!VersymSec || !VerdefSec) 652 return Verdefs; 653 654 // The location of the first global versym entry. 655 const char *Base = this->MB.getBuffer().data(); 656 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 657 this->FirstNonLocal; 658 659 // We cannot determine the largest verdef identifier without inspecting 660 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 661 // sequentially starting from 1, so we predict that the largest identifier 662 // will be VerdefCount. 663 unsigned VerdefCount = VerdefSec->sh_info; 664 Verdefs.resize(VerdefCount + 1); 665 666 // Build the Verdefs array by following the chain of Elf_Verdef objects 667 // from the start of the .gnu.version_d section. 668 const char *Verdef = Base + VerdefSec->sh_offset; 669 for (unsigned I = 0; I != VerdefCount; ++I) { 670 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 671 Verdef += CurVerdef->vd_next; 672 unsigned VerdefIndex = CurVerdef->vd_ndx; 673 if (Verdefs.size() <= VerdefIndex) 674 Verdefs.resize(VerdefIndex + 1); 675 Verdefs[VerdefIndex] = CurVerdef; 676 } 677 678 return Verdefs; 679 } 680 681 // Fully parse the shared object file. This must be called after parseSoName(). 682 template <class ELFT> void SharedFile<ELFT>::parseRest() { 683 // Create mapping from version identifiers to Elf_Verdef entries. 684 const Elf_Versym *Versym = nullptr; 685 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 686 687 Elf_Sym_Range Syms = this->getGlobalSymbols(); 688 for (const Elf_Sym &Sym : Syms) { 689 unsigned VersymIndex = 0; 690 if (Versym) { 691 VersymIndex = Versym->vs_index; 692 ++Versym; 693 } 694 bool Hidden = VersymIndex & VERSYM_HIDDEN; 695 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 696 697 StringRef Name = check(Sym.getName(this->StringTable)); 698 if (Sym.isUndefined()) { 699 Undefs.push_back(Name); 700 continue; 701 } 702 703 // Ignore local symbols. 704 if (Versym && VersymIndex == VER_NDX_LOCAL) 705 continue; 706 707 const Elf_Verdef *V = 708 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 709 710 if (!Hidden) 711 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 712 713 // Also add the symbol with the versioned name to handle undefined symbols 714 // with explicit versions. 715 if (V) { 716 StringRef VerName = this->StringTable.data() + V->getAux()->vda_name; 717 Name = Saver.save(Twine(Name) + "@" + VerName); 718 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 719 } 720 } 721 } 722 723 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 724 Triple T(check(getBitcodeTargetTriple(MB))); 725 if (T.isLittleEndian()) 726 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 727 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 728 } 729 730 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 731 Triple T(check(getBitcodeTargetTriple(MB))); 732 switch (T.getArch()) { 733 case Triple::aarch64: 734 return EM_AARCH64; 735 case Triple::arm: 736 return EM_ARM; 737 case Triple::mips: 738 case Triple::mipsel: 739 case Triple::mips64: 740 case Triple::mips64el: 741 return EM_MIPS; 742 case Triple::ppc: 743 return EM_PPC; 744 case Triple::ppc64: 745 return EM_PPC64; 746 case Triple::x86: 747 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 748 case Triple::x86_64: 749 return EM_X86_64; 750 default: 751 fatal(MB.getBufferIdentifier() + 752 ": could not infer e_machine from bitcode target triple " + T.str()); 753 } 754 } 755 756 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 757 EKind = getBitcodeELFKind(MB); 758 EMachine = getBitcodeMachineKind(MB); 759 } 760 761 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 762 switch (GvVisibility) { 763 case GlobalValue::DefaultVisibility: 764 return STV_DEFAULT; 765 case GlobalValue::HiddenVisibility: 766 return STV_HIDDEN; 767 case GlobalValue::ProtectedVisibility: 768 return STV_PROTECTED; 769 } 770 llvm_unreachable("unknown visibility"); 771 } 772 773 template <class ELFT> 774 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 775 const lto::InputFile::Symbol &ObjSym, 776 BitcodeFile *F) { 777 StringRef NameRef = Saver.save(ObjSym.getName()); 778 uint32_t Flags = ObjSym.getFlags(); 779 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 780 781 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 782 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 783 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 784 785 int C = check(ObjSym.getComdatIndex()); 786 if (C != -1 && !KeptComdats[C]) 787 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 788 Visibility, Type, CanOmitFromDynSym, 789 F); 790 791 if (Flags & BasicSymbolRef::SF_Undefined) 792 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 793 Visibility, Type, CanOmitFromDynSym, 794 F); 795 796 if (Flags & BasicSymbolRef::SF_Common) 797 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 798 ObjSym.getCommonAlignment(), Binding, 799 Visibility, STT_OBJECT, F); 800 801 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 802 CanOmitFromDynSym, F); 803 } 804 805 template <class ELFT> 806 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 807 808 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 809 // (the fully resolved path of the archive) + member name + offset of the 810 // member in the archive. 811 // ThinLTO uses the MemoryBufferRef identifier to access its internal 812 // data structures and if two archives define two members with the same name, 813 // this causes a collision which result in only one of the objects being 814 // taken into consideration at LTO time (which very likely causes undefined 815 // symbols later in the link stage). 816 Obj = check(lto::InputFile::create(MemoryBufferRef( 817 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() + 818 utostr(OffsetInArchive))))); 819 820 std::vector<bool> KeptComdats; 821 for (StringRef S : Obj->getComdatTable()) { 822 StringRef N = Saver.save(S); 823 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second); 824 } 825 826 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 827 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 828 } 829 830 template <template <class> class T> 831 static InputFile *createELFFile(MemoryBufferRef MB) { 832 unsigned char Size; 833 unsigned char Endian; 834 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 835 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 836 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 837 838 size_t BufSize = MB.getBuffer().size(); 839 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 840 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 841 fatal(MB.getBufferIdentifier() + ": file is too short"); 842 843 InputFile *Obj; 844 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 845 Obj = make<T<ELF32LE>>(MB); 846 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 847 Obj = make<T<ELF32BE>>(MB); 848 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 849 Obj = make<T<ELF64LE>>(MB); 850 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 851 Obj = make<T<ELF64BE>>(MB); 852 else 853 fatal(MB.getBufferIdentifier() + ": invalid file class"); 854 855 if (!Config->FirstElf) 856 Config->FirstElf = Obj; 857 return Obj; 858 } 859 860 template <class ELFT> void BinaryFile::parse() { 861 StringRef Buf = MB.getBuffer(); 862 ArrayRef<uint8_t> Data = 863 makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size()); 864 865 std::string Filename = MB.getBufferIdentifier(); 866 std::transform(Filename.begin(), Filename.end(), Filename.begin(), 867 [](char C) { return isalnum(C) ? C : '_'; }); 868 Filename = "_binary_" + Filename; 869 StringRef StartName = Saver.save(Twine(Filename) + "_start"); 870 StringRef EndName = Saver.save(Twine(Filename) + "_end"); 871 StringRef SizeName = Saver.save(Twine(Filename) + "_size"); 872 873 auto *Section = make<InputSection<ELFT>>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 874 8, Data, ".data"); 875 Sections.push_back(Section); 876 877 elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0, 878 STB_GLOBAL, Section, nullptr); 879 elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT, 880 Data.size(), 0, STB_GLOBAL, Section, 881 nullptr); 882 elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT, 883 Data.size(), 0, STB_GLOBAL, nullptr, 884 nullptr); 885 } 886 887 static bool isBitcode(MemoryBufferRef MB) { 888 using namespace sys::fs; 889 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 890 } 891 892 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 893 uint64_t OffsetInArchive) { 894 InputFile *F = 895 isBitcode(MB) ? make<BitcodeFile>(MB) : createELFFile<ObjectFile>(MB); 896 F->ArchiveName = ArchiveName; 897 F->OffsetInArchive = OffsetInArchive; 898 return F; 899 } 900 901 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 902 return createELFFile<SharedFile>(MB); 903 } 904 905 MemoryBufferRef LazyObjectFile::getBuffer() { 906 if (Seen) 907 return MemoryBufferRef(); 908 Seen = true; 909 return MB; 910 } 911 912 template <class ELFT> void LazyObjectFile::parse() { 913 for (StringRef Sym : getSymbols()) 914 Symtab<ELFT>::X->addLazyObject(Sym, *this); 915 } 916 917 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 918 typedef typename ELFT::Shdr Elf_Shdr; 919 typedef typename ELFT::Sym Elf_Sym; 920 typedef typename ELFT::SymRange Elf_Sym_Range; 921 922 const ELFFile<ELFT> Obj(this->MB.getBuffer()); 923 ArrayRef<Elf_Shdr> Sections = check(Obj.sections()); 924 for (const Elf_Shdr &Sec : Sections) { 925 if (Sec.sh_type != SHT_SYMTAB) 926 continue; 927 Elf_Sym_Range Syms = check(Obj.symbols(&Sec)); 928 uint32_t FirstNonLocal = Sec.sh_info; 929 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec, Sections)); 930 std::vector<StringRef> V; 931 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 932 if (Sym.st_shndx != SHN_UNDEF) 933 V.push_back(check(Sym.getName(StringTable))); 934 return V; 935 } 936 return {}; 937 } 938 939 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 940 std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); 941 std::vector<StringRef> V; 942 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 943 if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) 944 V.push_back(Saver.save(Sym.getName())); 945 return V; 946 } 947 948 // Returns a vector of globally-visible defined symbol names. 949 std::vector<StringRef> LazyObjectFile::getSymbols() { 950 if (isBitcode(this->MB)) 951 return getBitcodeSymbols(); 952 953 unsigned char Size; 954 unsigned char Endian; 955 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 956 if (Size == ELFCLASS32) { 957 if (Endian == ELFDATA2LSB) 958 return getElfSymbols<ELF32LE>(); 959 return getElfSymbols<ELF32BE>(); 960 } 961 if (Endian == ELFDATA2LSB) 962 return getElfSymbols<ELF64LE>(); 963 return getElfSymbols<ELF64BE>(); 964 } 965 966 template void ArchiveFile::parse<ELF32LE>(); 967 template void ArchiveFile::parse<ELF32BE>(); 968 template void ArchiveFile::parse<ELF64LE>(); 969 template void ArchiveFile::parse<ELF64BE>(); 970 971 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 972 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 973 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 974 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 975 976 template void LazyObjectFile::parse<ELF32LE>(); 977 template void LazyObjectFile::parse<ELF32BE>(); 978 template void LazyObjectFile::parse<ELF64LE>(); 979 template void LazyObjectFile::parse<ELF64BE>(); 980 981 template class elf::ELFFileBase<ELF32LE>; 982 template class elf::ELFFileBase<ELF32BE>; 983 template class elf::ELFFileBase<ELF64LE>; 984 template class elf::ELFFileBase<ELF64BE>; 985 986 template class elf::ObjectFile<ELF32LE>; 987 template class elf::ObjectFile<ELF32BE>; 988 template class elf::ObjectFile<ELF64LE>; 989 template class elf::ObjectFile<ELF64BE>; 990 991 template class elf::SharedFile<ELF32LE>; 992 template class elf::SharedFile<ELF32BE>; 993 template class elf::SharedFile<ELF64LE>; 994 template class elf::SharedFile<ELF64BE>; 995 996 template void BinaryFile::parse<ELF32LE>(); 997 template void BinaryFile::parse<ELF32BE>(); 998 template void BinaryFile::parse<ELF64LE>(); 999 template void BinaryFile::parse<ELF64BE>(); 1000