1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "Error.h" 13 #include "InputSection.h" 14 #include "SymbolTable.h" 15 #include "Symbols.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/Module.h" 20 #include "llvm/Support/raw_ostream.h" 21 22 using namespace llvm; 23 using namespace llvm::ELF; 24 using namespace llvm::object; 25 using namespace llvm::sys::fs; 26 27 using namespace lld; 28 using namespace lld::elf; 29 30 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 31 std::string elf::getFilename(InputFile *F) { 32 if (!F) 33 return "(internal)"; 34 if (!F->ArchiveName.empty()) 35 return (F->ArchiveName + "(" + F->getName() + ")").str(); 36 return F->getName(); 37 } 38 39 template <class ELFT> 40 static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 41 std::error_code EC; 42 ELFFile<ELFT> F(MB.getBuffer(), EC); 43 check(EC); 44 return F; 45 } 46 47 template <class ELFT> 48 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 49 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {} 50 51 template <class ELFT> 52 ELFKind ELFFileBase<ELFT>::getELFKind() { 53 if (ELFT::TargetEndianness == support::little) 54 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 55 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 56 } 57 58 template <class ELFT> 59 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 60 if (!Symtab) 61 return Elf_Sym_Range(nullptr, nullptr); 62 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 63 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 64 uint32_t FirstNonLocal = Symtab->sh_info; 65 if (FirstNonLocal > NumSymbols) 66 fatal("invalid sh_info in symbol table"); 67 68 if (OnlyGlobals) 69 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 70 return makeArrayRef(Syms.begin(), Syms.end()); 71 } 72 73 template <class ELFT> 74 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 75 uint32_t I = Sym.st_shndx; 76 if (I == ELF::SHN_XINDEX) 77 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 78 if (I >= ELF::SHN_LORESERVE) 79 return 0; 80 return I; 81 } 82 83 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 84 if (!Symtab) 85 return; 86 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 87 } 88 89 template <class ELFT> 90 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 91 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 92 93 template <class ELFT> 94 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 95 if (!this->Symtab) 96 return this->SymbolBodies; 97 uint32_t FirstNonLocal = this->Symtab->sh_info; 98 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 99 } 100 101 template <class ELFT> 102 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 103 if (!this->Symtab) 104 return this->SymbolBodies; 105 uint32_t FirstNonLocal = this->Symtab->sh_info; 106 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 107 } 108 109 template <class ELFT> 110 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 111 if (!this->Symtab) 112 return this->SymbolBodies; 113 return makeArrayRef(this->SymbolBodies).slice(1); 114 } 115 116 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 117 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 118 return MipsOptions->Reginfo->ri_gp_value; 119 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 120 return MipsReginfo->Reginfo->ri_gp_value; 121 return 0; 122 } 123 124 template <class ELFT> 125 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 126 // Read section and symbol tables. 127 initializeSections(ComdatGroups); 128 initializeSymbols(); 129 } 130 131 // Sections with SHT_GROUP and comdat bits define comdat section groups. 132 // They are identified and deduplicated by group name. This function 133 // returns a group name. 134 template <class ELFT> 135 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 136 const ELFFile<ELFT> &Obj = this->ELFObj; 137 uint32_t SymtabdSectionIndex = Sec.sh_link; 138 const Elf_Shdr *SymtabSec = check(Obj.getSection(SymtabdSectionIndex)); 139 uint32_t SymIndex = Sec.sh_info; 140 const Elf_Sym *Sym = Obj.getSymbol(SymtabSec, SymIndex); 141 StringRef StringTable = check(Obj.getStringTableForSymtab(*SymtabSec)); 142 return check(Sym->getName(StringTable)); 143 } 144 145 template <class ELFT> 146 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 147 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 148 const ELFFile<ELFT> &Obj = this->ELFObj; 149 ArrayRef<Elf_Word> Entries = 150 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 151 if (Entries.empty() || Entries[0] != GRP_COMDAT) 152 fatal("unsupported SHT_GROUP format"); 153 return Entries.slice(1); 154 } 155 156 template <class ELFT> static bool shouldMerge(const typename ELFT::Shdr &Sec) { 157 typedef typename ELFT::uint uintX_t; 158 159 // We don't merge sections if -O0 (default is -O1). This makes sometimes 160 // the linker significantly faster, although the output will be bigger. 161 if (Config->Optimize == 0) 162 return false; 163 164 uintX_t Flags = Sec.sh_flags; 165 if (!(Flags & SHF_MERGE)) 166 return false; 167 if (Flags & SHF_WRITE) 168 fatal("writable SHF_MERGE sections are not supported"); 169 uintX_t EntSize = Sec.sh_entsize; 170 if (!EntSize || Sec.sh_size % EntSize) 171 fatal("SHF_MERGE section size must be a multiple of sh_entsize"); 172 173 // Don't try to merge if the alignment is larger than the sh_entsize and this 174 // is not SHF_STRINGS. 175 // 176 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 177 // It would be equivalent for the producer of the .o to just set a larger 178 // sh_entsize. 179 if (Flags & SHF_STRINGS) 180 return true; 181 182 return Sec.sh_addralign <= EntSize; 183 } 184 185 template <class ELFT> 186 void elf::ObjectFile<ELFT>::initializeSections( 187 DenseSet<StringRef> &ComdatGroups) { 188 uint64_t Size = this->ELFObj.getNumSections(); 189 Sections.resize(Size); 190 unsigned I = -1; 191 const ELFFile<ELFT> &Obj = this->ELFObj; 192 for (const Elf_Shdr &Sec : Obj.sections()) { 193 ++I; 194 if (Sections[I] == &InputSection<ELFT>::Discarded) 195 continue; 196 197 switch (Sec.sh_type) { 198 case SHT_GROUP: 199 Sections[I] = &InputSection<ELFT>::Discarded; 200 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 201 continue; 202 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 203 if (SecIndex >= Size) 204 fatal("invalid section index in group"); 205 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 206 } 207 break; 208 case SHT_SYMTAB: 209 this->Symtab = &Sec; 210 break; 211 case SHT_SYMTAB_SHNDX: 212 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 213 break; 214 case SHT_STRTAB: 215 case SHT_NULL: 216 break; 217 case SHT_RELA: 218 case SHT_REL: { 219 // This section contains relocation information. 220 // If -r is given, we do not interpret or apply relocation 221 // but just copy relocation sections to output. 222 if (Config->Relocatable) { 223 Sections[I] = new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec); 224 break; 225 } 226 227 // Find the relocation target section and associate this 228 // section with it. 229 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 230 if (!Target) 231 break; 232 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 233 S->RelocSections.push_back(&Sec); 234 break; 235 } 236 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 237 if (S->RelocSection) 238 fatal("multiple relocation sections to .eh_frame are not supported"); 239 S->RelocSection = &Sec; 240 break; 241 } 242 fatal("relocations pointing to SHF_MERGE are not supported"); 243 } 244 case SHT_ARM_ATTRIBUTES: 245 // FIXME: ARM meta-data section. At present attributes are ignored, 246 // they can be used to reason about object compatibility. 247 Sections[I] = &InputSection<ELFT>::Discarded; 248 break; 249 default: 250 Sections[I] = createInputSection(Sec); 251 } 252 } 253 } 254 255 template <class ELFT> 256 InputSectionBase<ELFT> * 257 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 258 uint32_t Idx = Sec.sh_info; 259 if (Idx >= Sections.size()) 260 fatal("invalid relocated section index"); 261 InputSectionBase<ELFT> *Target = Sections[Idx]; 262 263 // Strictly speaking, a relocation section must be included in the 264 // group of the section it relocates. However, LLVM 3.3 and earlier 265 // would fail to do so, so we gracefully handle that case. 266 if (Target == &InputSection<ELFT>::Discarded) 267 return nullptr; 268 269 if (!Target) 270 fatal("unsupported relocation reference"); 271 return Target; 272 } 273 274 template <class ELFT> 275 InputSectionBase<ELFT> * 276 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 277 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 278 279 // .note.GNU-stack is a marker section to control the presence of 280 // PT_GNU_STACK segment in outputs. Since the presence of the segment 281 // is controlled only by the command line option (-z execstack) in LLD, 282 // .note.GNU-stack is ignored. 283 if (Name == ".note.GNU-stack") 284 return &InputSection<ELFT>::Discarded; 285 286 if (Name == ".note.GNU-split-stack") { 287 error("objects using splitstacks are not supported"); 288 return &InputSection<ELFT>::Discarded; 289 } 290 291 if (Config->StripDebug && Name.startswith(".debug")) 292 return &InputSection<ELFT>::Discarded; 293 294 // A MIPS object file has a special sections that contain register 295 // usage info, which need to be handled by the linker specially. 296 if (Config->EMachine == EM_MIPS) { 297 if (Name == ".reginfo") { 298 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec)); 299 return MipsReginfo.get(); 300 } 301 if (Name == ".MIPS.options") { 302 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec)); 303 return MipsOptions.get(); 304 } 305 } 306 307 // We dont need special handling of .eh_frame sections if relocatable 308 // output was choosen. Proccess them as usual input sections. 309 if (!Config->Relocatable && Name == ".eh_frame") 310 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec); 311 if (shouldMerge<ELFT>(Sec)) 312 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec); 313 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec); 314 } 315 316 // Print the module names which reference the notified 317 // symbols provided through -y or --trace-symbol option. 318 template <class ELFT> 319 void elf::ObjectFile<ELFT>::traceUndefined(StringRef Name) { 320 if (!Config->TraceSymbol.empty() && Config->TraceSymbol.count(Name)) 321 outs() << getFilename(this) << ": reference to " << Name << "\n"; 322 } 323 324 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 325 this->initStringTable(); 326 Elf_Sym_Range Syms = this->getElfSymbols(false); 327 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 328 SymbolBodies.reserve(NumSymbols); 329 for (const Elf_Sym &Sym : Syms) 330 SymbolBodies.push_back(createSymbolBody(&Sym)); 331 } 332 333 template <class ELFT> 334 InputSectionBase<ELFT> * 335 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 336 uint32_t Index = this->getSectionIndex(Sym); 337 if (Index == 0) 338 return nullptr; 339 if (Index >= Sections.size() || !Sections[Index]) 340 fatal("invalid section index"); 341 InputSectionBase<ELFT> *S = Sections[Index]; 342 if (S == &InputSectionBase<ELFT>::Discarded) 343 return S; 344 return S->Repl; 345 } 346 347 template <class ELFT> 348 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 349 unsigned char Binding = Sym->getBinding(); 350 InputSectionBase<ELFT> *Sec = getSection(*Sym); 351 if (Binding == STB_LOCAL) { 352 if (Sym->st_shndx == SHN_UNDEF) 353 return new (Alloc) Undefined(Sym->st_name, Sym->st_other, Sym->getType()); 354 return new (Alloc) DefinedRegular<ELFT>(*Sym, Sec); 355 } 356 357 StringRef Name = check(Sym->getName(this->StringTable)); 358 359 switch (Sym->st_shndx) { 360 case SHN_UNDEF: 361 traceUndefined(Name); 362 return elf::Symtab<ELFT>::X 363 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 364 /*CanOmitFromDynSym*/ false, this) 365 ->body(); 366 case SHN_COMMON: 367 return elf::Symtab<ELFT>::X 368 ->addCommon(Name, Sym->st_size, Sym->st_value, Binding, Sym->st_other, 369 Sym->getType(), this) 370 ->body(); 371 } 372 373 switch (Binding) { 374 default: 375 fatal("unexpected binding"); 376 case STB_GLOBAL: 377 case STB_WEAK: 378 case STB_GNU_UNIQUE: 379 if (Sec == &InputSection<ELFT>::Discarded) 380 return elf::Symtab<ELFT>::X 381 ->addUndefined(Name, Binding, Sym->st_other, Sym->getType(), 382 /*CanOmitFromDynSym*/ false, this) 383 ->body(); 384 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 385 } 386 } 387 388 template <class ELFT> void ArchiveFile::parse() { 389 File = check(Archive::create(MB), "failed to parse archive"); 390 391 // Read the symbol table to construct Lazy objects. 392 for (const Archive::Symbol &Sym : File->symbols()) 393 Symtab<ELFT>::X->addLazyArchive(this, Sym); 394 } 395 396 // Returns a buffer pointing to a member file containing a given symbol. 397 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) { 398 Archive::Child C = 399 check(Sym->getMember(), 400 "could not get the member for symbol " + Sym->getName()); 401 402 if (!Seen.insert(C.getChildOffset()).second) 403 return MemoryBufferRef(); 404 405 MemoryBufferRef Ret = 406 check(C.getMemoryBufferRef(), 407 "could not get the buffer for the member defining symbol " + 408 Sym->getName()); 409 410 if (C.getParent()->isThin() && Driver->Cpio) 411 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 412 Ret.getBuffer()); 413 414 return Ret; 415 } 416 417 template <class ELFT> 418 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 419 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 420 421 template <class ELFT> 422 const typename ELFT::Shdr * 423 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 424 uint32_t Index = this->getSectionIndex(Sym); 425 if (Index == 0) 426 return nullptr; 427 return check(this->ELFObj.getSection(Index)); 428 } 429 430 // Partially parse the shared object file so that we can call 431 // getSoName on this object. 432 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 433 typedef typename ELFT::Dyn Elf_Dyn; 434 typedef typename ELFT::uint uintX_t; 435 const Elf_Shdr *DynamicSec = nullptr; 436 437 const ELFFile<ELFT> Obj = this->ELFObj; 438 for (const Elf_Shdr &Sec : Obj.sections()) { 439 switch (Sec.sh_type) { 440 default: 441 continue; 442 case SHT_DYNSYM: 443 this->Symtab = &Sec; 444 break; 445 case SHT_DYNAMIC: 446 DynamicSec = &Sec; 447 break; 448 case SHT_SYMTAB_SHNDX: 449 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 450 break; 451 case SHT_GNU_versym: 452 this->VersymSec = &Sec; 453 break; 454 case SHT_GNU_verdef: 455 this->VerdefSec = &Sec; 456 break; 457 } 458 } 459 460 this->initStringTable(); 461 SoName = this->getName(); 462 463 if (!DynamicSec) 464 return; 465 auto *Begin = 466 reinterpret_cast<const Elf_Dyn *>(Obj.base() + DynamicSec->sh_offset); 467 const Elf_Dyn *End = Begin + DynamicSec->sh_size / sizeof(Elf_Dyn); 468 469 for (const Elf_Dyn &Dyn : make_range(Begin, End)) { 470 if (Dyn.d_tag == DT_SONAME) { 471 uintX_t Val = Dyn.getVal(); 472 if (Val >= this->StringTable.size()) 473 fatal("invalid DT_SONAME entry"); 474 SoName = StringRef(this->StringTable.data() + Val); 475 return; 476 } 477 } 478 } 479 480 // Parse the version definitions in the object file if present. Returns a vector 481 // whose nth element contains a pointer to the Elf_Verdef for version identifier 482 // n. Version identifiers that are not definitions map to nullptr. The array 483 // always has at least length 1. 484 template <class ELFT> 485 std::vector<const typename ELFT::Verdef *> 486 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 487 std::vector<const Elf_Verdef *> Verdefs(1); 488 // We only need to process symbol versions for this DSO if it has both a 489 // versym and a verdef section, which indicates that the DSO contains symbol 490 // version definitions. 491 if (!VersymSec || !VerdefSec) 492 return Verdefs; 493 494 // The location of the first global versym entry. 495 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 496 VersymSec->sh_offset) + 497 this->Symtab->sh_info; 498 499 // We cannot determine the largest verdef identifier without inspecting 500 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 501 // sequentially starting from 1, so we predict that the largest identifier 502 // will be VerdefCount. 503 unsigned VerdefCount = VerdefSec->sh_info; 504 Verdefs.resize(VerdefCount + 1); 505 506 // Build the Verdefs array by following the chain of Elf_Verdef objects 507 // from the start of the .gnu.version_d section. 508 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 509 for (unsigned I = 0; I != VerdefCount; ++I) { 510 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 511 Verdef += CurVerdef->vd_next; 512 unsigned VerdefIndex = CurVerdef->vd_ndx; 513 if (Verdefs.size() <= VerdefIndex) 514 Verdefs.resize(VerdefIndex + 1); 515 Verdefs[VerdefIndex] = CurVerdef; 516 } 517 518 return Verdefs; 519 } 520 521 // Fully parse the shared object file. This must be called after parseSoName(). 522 template <class ELFT> void SharedFile<ELFT>::parseRest() { 523 // Create mapping from version identifiers to Elf_Verdef entries. 524 const Elf_Versym *Versym = nullptr; 525 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 526 527 Elf_Sym_Range Syms = this->getElfSymbols(true); 528 for (const Elf_Sym &Sym : Syms) { 529 unsigned VersymIndex = 0; 530 if (Versym) { 531 VersymIndex = Versym->vs_index; 532 ++Versym; 533 } 534 535 StringRef Name = check(Sym.getName(this->StringTable)); 536 if (Sym.isUndefined()) { 537 Undefs.push_back(Name); 538 continue; 539 } 540 541 if (Versym) { 542 // Ignore local symbols and non-default versions. 543 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 544 continue; 545 } 546 547 const Elf_Verdef *V = 548 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 549 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 550 } 551 } 552 553 BitcodeFile::BitcodeFile(MemoryBufferRef M) : InputFile(BitcodeKind, M) {} 554 555 static uint8_t getGvVisibility(const GlobalValue *GV) { 556 switch (GV->getVisibility()) { 557 case GlobalValue::DefaultVisibility: 558 return STV_DEFAULT; 559 case GlobalValue::HiddenVisibility: 560 return STV_HIDDEN; 561 case GlobalValue::ProtectedVisibility: 562 return STV_PROTECTED; 563 } 564 llvm_unreachable("unknown visibility"); 565 } 566 567 template <class ELFT> 568 Symbol *BitcodeFile::createSymbol(const DenseSet<const Comdat *> &KeptComdats, 569 const IRObjectFile &Obj, 570 const BasicSymbolRef &Sym) { 571 const GlobalValue *GV = Obj.getSymbolGV(Sym.getRawDataRefImpl()); 572 573 SmallString<64> Name; 574 raw_svector_ostream OS(Name); 575 Sym.printName(OS); 576 StringRef NameRef = Saver.save(StringRef(Name)); 577 578 uint32_t Flags = Sym.getFlags(); 579 bool IsWeak = Flags & BasicSymbolRef::SF_Weak; 580 uint32_t Binding = IsWeak ? STB_WEAK : STB_GLOBAL; 581 582 uint8_t Type = STT_NOTYPE; 583 bool CanOmitFromDynSym = false; 584 // FIXME: Expose a thread-local flag for module asm symbols. 585 if (GV) { 586 if (GV->isThreadLocal()) 587 Type = STT_TLS; 588 CanOmitFromDynSym = canBeOmittedFromSymbolTable(GV); 589 } 590 591 uint8_t Visibility; 592 if (GV) 593 Visibility = getGvVisibility(GV); 594 else 595 // FIXME: Set SF_Hidden flag correctly for module asm symbols, and expose 596 // protected visibility. 597 Visibility = STV_DEFAULT; 598 599 if (GV) 600 if (const Comdat *C = GV->getComdat()) 601 if (!KeptComdats.count(C)) 602 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 603 CanOmitFromDynSym, this); 604 605 const Module &M = Obj.getModule(); 606 if (Flags & BasicSymbolRef::SF_Undefined) 607 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 608 CanOmitFromDynSym, this); 609 if (Flags & BasicSymbolRef::SF_Common) { 610 // FIXME: Set SF_Common flag correctly for module asm symbols, and expose 611 // size and alignment. 612 assert(GV); 613 const DataLayout &DL = M.getDataLayout(); 614 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 615 return Symtab<ELFT>::X->addCommon(NameRef, Size, GV->getAlignment(), 616 Binding, Visibility, STT_OBJECT, this); 617 } 618 return Symtab<ELFT>::X->addBitcode(NameRef, IsWeak, Visibility, Type, 619 CanOmitFromDynSym, this); 620 } 621 622 bool BitcodeFile::shouldSkip(uint32_t Flags) { 623 if (!(Flags & BasicSymbolRef::SF_Global)) 624 return true; 625 if (Flags & BasicSymbolRef::SF_FormatSpecific) 626 return true; 627 return false; 628 } 629 630 template <class ELFT> 631 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 632 Obj = check(IRObjectFile::create(MB, Driver->Context)); 633 const Module &M = Obj->getModule(); 634 635 DenseSet<const Comdat *> KeptComdats; 636 for (const auto &P : M.getComdatSymbolTable()) { 637 StringRef N = Saver.save(P.first()); 638 if (ComdatGroups.insert(N).second) 639 KeptComdats.insert(&P.second); 640 } 641 642 for (const BasicSymbolRef &Sym : Obj->symbols()) 643 if (!shouldSkip(Sym.getFlags())) 644 Symbols.push_back(createSymbol<ELFT>(KeptComdats, *Obj, Sym)); 645 } 646 647 template <typename T> 648 static std::unique_ptr<InputFile> createELFFileAux(MemoryBufferRef MB) { 649 std::unique_ptr<T> Ret = llvm::make_unique<T>(MB); 650 651 if (!Config->FirstElf) 652 Config->FirstElf = Ret.get(); 653 654 if (Config->EKind == ELFNoneKind) { 655 Config->EKind = Ret->getELFKind(); 656 Config->EMachine = Ret->getEMachine(); 657 if (Config->EMachine == EM_MIPS && Config->EKind == ELF64LEKind) 658 Config->Mips64EL = true; 659 } 660 661 return std::move(Ret); 662 } 663 664 template <template <class> class T> 665 static std::unique_ptr<InputFile> createELFFile(MemoryBufferRef MB) { 666 unsigned char Size; 667 unsigned char Endian; 668 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 669 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 670 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 671 672 if (Size == ELFCLASS32) { 673 if (Endian == ELFDATA2LSB) 674 return createELFFileAux<T<ELF32LE>>(MB); 675 return createELFFileAux<T<ELF32BE>>(MB); 676 } 677 if (Size == ELFCLASS64) { 678 if (Endian == ELFDATA2LSB) 679 return createELFFileAux<T<ELF64LE>>(MB); 680 return createELFFileAux<T<ELF64BE>>(MB); 681 } 682 fatal("invalid file class: " + MB.getBufferIdentifier()); 683 } 684 685 static bool isBitcode(MemoryBufferRef MB) { 686 using namespace sys::fs; 687 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 688 } 689 690 std::unique_ptr<InputFile> elf::createObjectFile(MemoryBufferRef MB, 691 StringRef ArchiveName) { 692 std::unique_ptr<InputFile> F; 693 if (isBitcode(MB)) 694 F.reset(new BitcodeFile(MB)); 695 else 696 F = createELFFile<ObjectFile>(MB); 697 F->ArchiveName = ArchiveName; 698 return F; 699 } 700 701 std::unique_ptr<InputFile> elf::createSharedFile(MemoryBufferRef MB) { 702 return createELFFile<SharedFile>(MB); 703 } 704 705 MemoryBufferRef LazyObjectFile::getBuffer() { 706 if (Seen) 707 return MemoryBufferRef(); 708 Seen = true; 709 return MB; 710 } 711 712 template <class ELFT> 713 void LazyObjectFile::parse() { 714 for (StringRef Sym : getSymbols()) 715 Symtab<ELFT>::X->addLazyObject(Sym, *this); 716 } 717 718 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 719 typedef typename ELFT::Shdr Elf_Shdr; 720 typedef typename ELFT::Sym Elf_Sym; 721 typedef typename ELFT::SymRange Elf_Sym_Range; 722 723 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 724 for (const Elf_Shdr &Sec : Obj.sections()) { 725 if (Sec.sh_type != SHT_SYMTAB) 726 continue; 727 Elf_Sym_Range Syms = Obj.symbols(&Sec); 728 uint32_t FirstNonLocal = Sec.sh_info; 729 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 730 std::vector<StringRef> V; 731 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 732 if (Sym.st_shndx != SHN_UNDEF) 733 V.push_back(check(Sym.getName(StringTable))); 734 return V; 735 } 736 return {}; 737 } 738 739 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 740 LLVMContext Context; 741 std::unique_ptr<IRObjectFile> Obj = 742 check(IRObjectFile::create(this->MB, Context)); 743 std::vector<StringRef> V; 744 for (const BasicSymbolRef &Sym : Obj->symbols()) { 745 uint32_t Flags = Sym.getFlags(); 746 if (BitcodeFile::shouldSkip(Flags)) 747 continue; 748 if (Flags & BasicSymbolRef::SF_Undefined) 749 continue; 750 SmallString<64> Name; 751 raw_svector_ostream OS(Name); 752 Sym.printName(OS); 753 V.push_back(Saver.save(StringRef(Name))); 754 } 755 return V; 756 } 757 758 // Returns a vector of globally-visible defined symbol names. 759 std::vector<StringRef> LazyObjectFile::getSymbols() { 760 if (isBitcode(this->MB)) 761 return getBitcodeSymbols(); 762 763 unsigned char Size; 764 unsigned char Endian; 765 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 766 if (Size == ELFCLASS32) { 767 if (Endian == ELFDATA2LSB) 768 return getElfSymbols<ELF32LE>(); 769 return getElfSymbols<ELF32BE>(); 770 } 771 if (Endian == ELFDATA2LSB) 772 return getElfSymbols<ELF64LE>(); 773 return getElfSymbols<ELF64BE>(); 774 } 775 776 template void ArchiveFile::parse<ELF32LE>(); 777 template void ArchiveFile::parse<ELF32BE>(); 778 template void ArchiveFile::parse<ELF64LE>(); 779 template void ArchiveFile::parse<ELF64BE>(); 780 781 template void BitcodeFile::parse<ELF32LE>(llvm::DenseSet<StringRef> &); 782 template void BitcodeFile::parse<ELF32BE>(llvm::DenseSet<StringRef> &); 783 template void BitcodeFile::parse<ELF64LE>(llvm::DenseSet<StringRef> &); 784 template void BitcodeFile::parse<ELF64BE>(llvm::DenseSet<StringRef> &); 785 786 template void LazyObjectFile::parse<ELF32LE>(); 787 template void LazyObjectFile::parse<ELF32BE>(); 788 template void LazyObjectFile::parse<ELF64LE>(); 789 template void LazyObjectFile::parse<ELF64BE>(); 790 791 template class elf::ELFFileBase<ELF32LE>; 792 template class elf::ELFFileBase<ELF32BE>; 793 template class elf::ELFFileBase<ELF64LE>; 794 template class elf::ELFFileBase<ELF64BE>; 795 796 template class elf::ObjectFile<ELF32LE>; 797 template class elf::ObjectFile<ELF32BE>; 798 template class elf::ObjectFile<ELF64LE>; 799 template class elf::ObjectFile<ELF64BE>; 800 801 template class elf::SharedFile<ELF32LE>; 802 template class elf::SharedFile<ELF32BE>; 803 template class elf::SharedFile<ELF64LE>; 804 template class elf::SharedFile<ELF64BE>; 805