1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Error.h"
12 #include "InputSection.h"
13 #include "LinkerScript.h"
14 #include "Memory.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Bitcode/BitcodeReader.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/LTO/LTO.h"
25 #include "llvm/MC/StringTableBuilder.h"
26 #include "llvm/Object/ELFObjectFile.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/TarWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 using namespace llvm::ELF;
33 using namespace llvm::object;
34 using namespace llvm::sys::fs;
35 
36 using namespace lld;
37 using namespace lld::elf;
38 
39 TarWriter *elf::Tar;
40 
41 namespace {
42 // In ELF object file all section addresses are zero. If we have multiple
43 // .text sections (when using -ffunction-section or comdat group) then
44 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless
45 // we assign each section some unique address. This callback method assigns
46 // each section an address equal to its offset in ELF object file.
47 class ObjectInfo : public LoadedObjectInfo {
48 public:
49   uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override {
50     return static_cast<const ELFSectionRef &>(Sec).getOffset();
51   }
52   std::unique_ptr<LoadedObjectInfo> clone() const override {
53     return std::unique_ptr<LoadedObjectInfo>();
54   }
55 };
56 }
57 
58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
59   log(Path);
60   auto MBOrErr = MemoryBuffer::getFile(Path);
61   if (auto EC = MBOrErr.getError()) {
62     error("cannot open " + Path + ": " + EC.message());
63     return None;
64   }
65 
66   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
67   MemoryBufferRef MBRef = MB->getMemBufferRef();
68   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
69 
70   if (Tar)
71     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
72   return MBRef;
73 }
74 
75 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() {
76   std::unique_ptr<object::ObjectFile> Obj =
77       check(object::ObjectFile::createObjectFile(this->MB),
78             "createObjectFile failed");
79 
80   ObjectInfo ObjInfo;
81   DWARFContextInMemory Dwarf(*Obj, &ObjInfo);
82   DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs));
83   DataExtractor LineData(Dwarf.getLineSection().Data,
84                          ELFT::TargetEndianness == support::little,
85                          ELFT::Is64Bits ? 8 : 4);
86 
87   // The second parameter is offset in .debug_line section
88   // for compilation unit (CU) of interest. We have only one
89   // CU (object file), so offset is always 0.
90   DwarfLine->getOrParseLineTable(LineData, 0);
91 }
92 
93 // Returns source line information for a given offset
94 // using DWARF debug info.
95 template <class ELFT>
96 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase *S,
97                                                uint64_t Offset) {
98   if (!DwarfLine)
99     initializeDwarfLine();
100 
101   // The offset to CU is 0.
102   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
103   if (!Tbl)
104     return "";
105 
106   // Use fake address calcuated by adding section file offset and offset in
107   // section. See comments for ObjectInfo class.
108   DILineInfo Info;
109   Tbl->getFileLineInfoForAddress(
110       S->Offset + Offset, nullptr,
111       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
112   if (Info.Line == 0)
113     return "";
114   return Info.FileName + ":" + std::to_string(Info.Line);
115 }
116 
117 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
118 std::string lld::toString(const InputFile *F) {
119   if (!F)
120     return "(internal)";
121   if (!F->ArchiveName.empty())
122     return (F->ArchiveName + "(" + F->getName() + ")").str();
123   return F->getName();
124 }
125 
126 template <class ELFT> static ELFKind getELFKind() {
127   if (ELFT::TargetEndianness == support::little)
128     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
129   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
130 }
131 
132 template <class ELFT>
133 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
134   EKind = getELFKind<ELFT>();
135   EMachine = getObj().getHeader()->e_machine;
136   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
137 }
138 
139 template <class ELFT>
140 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() {
141   return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end());
142 }
143 
144 template <class ELFT>
145 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
146   return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX));
147 }
148 
149 template <class ELFT>
150 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
151                                    const Elf_Shdr *Symtab) {
152   FirstNonLocal = Symtab->sh_info;
153   Symbols = check(getObj().symbols(Symtab));
154   if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size())
155     fatal(toString(this) + ": invalid sh_info in symbol table");
156 
157   StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections));
158 }
159 
160 template <class ELFT>
161 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
162     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
163 
164 template <class ELFT>
165 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
166   return makeArrayRef(this->SymbolBodies).slice(this->FirstNonLocal);
167 }
168 
169 template <class ELFT>
170 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
171   if (this->SymbolBodies.empty())
172     return this->SymbolBodies;
173   return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1);
174 }
175 
176 template <class ELFT>
177 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
178   if (this->SymbolBodies.empty())
179     return this->SymbolBodies;
180   return makeArrayRef(this->SymbolBodies).slice(1);
181 }
182 
183 template <class ELFT>
184 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
185   // Read section and symbol tables.
186   initializeSections(ComdatGroups);
187   initializeSymbols();
188 }
189 
190 // Sections with SHT_GROUP and comdat bits define comdat section groups.
191 // They are identified and deduplicated by group name. This function
192 // returns a group name.
193 template <class ELFT>
194 StringRef
195 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
196                                             const Elf_Shdr &Sec) {
197   if (this->Symbols.empty())
198     this->initSymtab(Sections,
199                      check(object::getSection<ELFT>(Sections, Sec.sh_link)));
200   const Elf_Sym *Sym =
201       check(object::getSymbol<ELFT>(this->Symbols, Sec.sh_info));
202   return check(Sym->getName(this->StringTable));
203 }
204 
205 template <class ELFT>
206 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
207 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
208   const ELFFile<ELFT> &Obj = this->getObj();
209   ArrayRef<Elf_Word> Entries =
210       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
211   if (Entries.empty() || Entries[0] != GRP_COMDAT)
212     fatal(toString(this) + ": unsupported SHT_GROUP format");
213   return Entries.slice(1);
214 }
215 
216 template <class ELFT>
217 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
218   // We don't merge sections if -O0 (default is -O1). This makes sometimes
219   // the linker significantly faster, although the output will be bigger.
220   if (Config->Optimize == 0)
221     return false;
222 
223   // Do not merge sections if generating a relocatable object. It makes
224   // the code simpler because we do not need to update relocation addends
225   // to reflect changes introduced by merging. Instead of that we write
226   // such "merge" sections into separate OutputSections and keep SHF_MERGE
227   // / SHF_STRINGS flags and sh_entsize value to be able to perform merging
228   // later during a final linking.
229   if (Config->Relocatable)
230     return false;
231 
232   // A mergeable section with size 0 is useless because they don't have
233   // any data to merge. A mergeable string section with size 0 can be
234   // argued as invalid because it doesn't end with a null character.
235   // We'll avoid a mess by handling them as if they were non-mergeable.
236   if (Sec.sh_size == 0)
237     return false;
238 
239   // Check for sh_entsize. The ELF spec is not clear about the zero
240   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
241   // the section does not hold a table of fixed-size entries". We know
242   // that Rust 1.13 produces a string mergeable section with a zero
243   // sh_entsize. Here we just accept it rather than being picky about it.
244   uint64_t EntSize = Sec.sh_entsize;
245   if (EntSize == 0)
246     return false;
247   if (Sec.sh_size % EntSize)
248     fatal(toString(this) +
249           ": SHF_MERGE section size must be a multiple of sh_entsize");
250 
251   uint64_t Flags = Sec.sh_flags;
252   if (!(Flags & SHF_MERGE))
253     return false;
254   if (Flags & SHF_WRITE)
255     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
256 
257   // Don't try to merge if the alignment is larger than the sh_entsize and this
258   // is not SHF_STRINGS.
259   //
260   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
261   // It would be equivalent for the producer of the .o to just set a larger
262   // sh_entsize.
263   if (Flags & SHF_STRINGS)
264     return true;
265 
266   return Sec.sh_addralign <= EntSize;
267 }
268 
269 template <class ELFT>
270 void elf::ObjectFile<ELFT>::initializeSections(
271     DenseSet<CachedHashStringRef> &ComdatGroups) {
272   ArrayRef<Elf_Shdr> ObjSections = check(this->getObj().sections());
273   const ELFFile<ELFT> &Obj = this->getObj();
274   uint64_t Size = ObjSections.size();
275   Sections.resize(Size);
276   unsigned I = -1;
277   StringRef SectionStringTable = check(Obj.getSectionStringTable(ObjSections));
278   for (const Elf_Shdr &Sec : ObjSections) {
279     ++I;
280     if (Sections[I] == &InputSection::Discarded)
281       continue;
282 
283     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
284     // if -r is given, we'll let the final link discard such sections.
285     // This is compatible with GNU.
286     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
287       Sections[I] = &InputSection::Discarded;
288       continue;
289     }
290 
291     switch (Sec.sh_type) {
292     case SHT_GROUP:
293       Sections[I] = &InputSection::Discarded;
294       if (ComdatGroups.insert(CachedHashStringRef(
295                                   getShtGroupSignature(ObjSections, Sec)))
296               .second)
297         continue;
298       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
299         if (SecIndex >= Size)
300           fatal(toString(this) + ": invalid section index in group: " +
301                 Twine(SecIndex));
302         Sections[SecIndex] = &InputSection::Discarded;
303       }
304       break;
305     case SHT_SYMTAB:
306       this->initSymtab(ObjSections, &Sec);
307       break;
308     case SHT_SYMTAB_SHNDX:
309       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, ObjSections));
310       break;
311     case SHT_STRTAB:
312     case SHT_NULL:
313       break;
314     default:
315       Sections[I] = createInputSection(Sec, SectionStringTable);
316     }
317 
318     // .ARM.exidx sections have a reverse dependency on the InputSection they
319     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
320     if (Sec.sh_flags & SHF_LINK_ORDER) {
321       if (Sec.sh_link >= Sections.size())
322         fatal(toString(this) + ": invalid sh_link index: " +
323               Twine(Sec.sh_link));
324       Sections[Sec.sh_link]->DependentSections.push_back(Sections[I]);
325     }
326   }
327 }
328 
329 template <class ELFT>
330 InputSectionBase *elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
331   uint32_t Idx = Sec.sh_info;
332   if (Idx >= Sections.size())
333     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
334   InputSectionBase *Target = Sections[Idx];
335 
336   // Strictly speaking, a relocation section must be included in the
337   // group of the section it relocates. However, LLVM 3.3 and earlier
338   // would fail to do so, so we gracefully handle that case.
339   if (Target == &InputSection::Discarded)
340     return nullptr;
341 
342   if (!Target)
343     fatal(toString(this) + ": unsupported relocation reference");
344   return Target;
345 }
346 
347 template <class ELFT>
348 InputSectionBase *
349 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec,
350                                           StringRef SectionStringTable) {
351   StringRef Name =
352       check(this->getObj().getSectionName(&Sec, SectionStringTable));
353 
354   switch (Sec.sh_type) {
355   case SHT_ARM_ATTRIBUTES:
356     // FIXME: ARM meta-data section. Retain the first attribute section
357     // we see. The eglibc ARM dynamic loaders require the presence of an
358     // attribute section for dlopen to work.
359     // In a full implementation we would merge all attribute sections.
360     if (In<ELFT>::ARMAttributes == nullptr) {
361       In<ELFT>::ARMAttributes = make<InputSection>(this, &Sec, Name);
362       return In<ELFT>::ARMAttributes;
363     }
364     return &InputSection::Discarded;
365   case SHT_RELA:
366   case SHT_REL: {
367     // Find the relocation target section and associate this
368     // section with it. Target can be discarded, for example
369     // if it is a duplicated member of SHT_GROUP section, we
370     // do not create or proccess relocatable sections then.
371     InputSectionBase *Target = getRelocTarget(Sec);
372     if (!Target)
373       return nullptr;
374 
375     // This section contains relocation information.
376     // If -r is given, we do not interpret or apply relocation
377     // but just copy relocation sections to output.
378     if (Config->Relocatable)
379       return make<InputSection>(this, &Sec, Name);
380 
381     if (Target->FirstRelocation)
382       fatal(toString(this) +
383             ": multiple relocation sections to one section are not supported");
384     if (isa<MergeInputSection<ELFT>>(Target))
385       fatal(toString(this) +
386             ": relocations pointing to SHF_MERGE are not supported");
387 
388     size_t NumRelocations;
389     if (Sec.sh_type == SHT_RELA) {
390       ArrayRef<Elf_Rela> Rels = check(this->getObj().relas(&Sec));
391       Target->FirstRelocation = Rels.begin();
392       NumRelocations = Rels.size();
393       Target->AreRelocsRela = true;
394     } else {
395       ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec));
396       Target->FirstRelocation = Rels.begin();
397       NumRelocations = Rels.size();
398       Target->AreRelocsRela = false;
399     }
400     assert(isUInt<31>(NumRelocations));
401     Target->NumRelocations = NumRelocations;
402 
403     // Relocation sections processed by the linker are usually removed
404     // from the output, so returning `nullptr` for the normal case.
405     // However, if -emit-relocs is given, we need to leave them in the output.
406     // (Some post link analysis tools need this information.)
407     if (Config->EmitRelocs) {
408       InputSection *RelocSec = make<InputSection>(this, &Sec, Name);
409       // We will not emit relocation section if target was discarded.
410       Target->DependentSections.push_back(RelocSec);
411       return RelocSec;
412     }
413     return nullptr;
414   }
415   }
416 
417   // The GNU linker uses .note.GNU-stack section as a marker indicating
418   // that the code in the object file does not expect that the stack is
419   // executable (in terms of NX bit). If all input files have the marker,
420   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
421   // make the stack non-executable. Most object files have this section as
422   // of 2017.
423   //
424   // But making the stack non-executable is a norm today for security
425   // reasons. Failure to do so may result in a serious security issue.
426   // Therefore, we make LLD always add PT_GNU_STACK unless it is
427   // explicitly told to do otherwise (by -z execstack). Because the stack
428   // executable-ness is controlled solely by command line options,
429   // .note.GNU-stack sections are simply ignored.
430   if (Name == ".note.GNU-stack")
431     return &InputSection::Discarded;
432 
433   // Split stacks is a feature to support a discontiguous stack. At least
434   // as of 2017, it seems that the feature is not being used widely.
435   // Only GNU gold supports that. We don't. For the details about that,
436   // see https://gcc.gnu.org/wiki/SplitStacks
437   if (Name == ".note.GNU-split-stack") {
438     error(toString(this) +
439           ": object file compiled with -fsplit-stack is not supported");
440     return &InputSection::Discarded;
441   }
442 
443   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
444     return &InputSection::Discarded;
445 
446   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
447   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
448   // sections. Drop those sections to avoid duplicate symbol errors.
449   // FIXME: This is glibc PR20543, we should remove this hack once that has been
450   // fixed for a while.
451   if (Name.startswith(".gnu.linkonce."))
452     return &InputSection::Discarded;
453 
454   // The linker merges EH (exception handling) frames and creates a
455   // .eh_frame_hdr section for runtime. So we handle them with a special
456   // class. For relocatable outputs, they are just passed through.
457   if (Name == ".eh_frame" && !Config->Relocatable)
458     return make<EhInputSection<ELFT>>(this, &Sec, Name);
459 
460   if (shouldMerge(Sec))
461     return make<MergeInputSection<ELFT>>(this, &Sec, Name);
462   return make<InputSection>(this, &Sec, Name);
463 }
464 
465 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
466   SymbolBodies.reserve(this->Symbols.size());
467   for (const Elf_Sym &Sym : this->Symbols)
468     SymbolBodies.push_back(createSymbolBody(&Sym));
469 }
470 
471 template <class ELFT>
472 InputSectionBase *elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
473   uint32_t Index = this->getSectionIndex(Sym);
474   if (Index >= Sections.size())
475     fatal(toString(this) + ": invalid section index: " + Twine(Index));
476   InputSectionBase *S = Sections[Index];
477 
478   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could
479   // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be
480   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
481   // In this case it is fine for section to be null here as we do not
482   // allocate sections of these types.
483   if (!S) {
484     if (Index == 0 || Sym.getType() == STT_SECTION ||
485         Sym.getType() == STT_NOTYPE)
486       return nullptr;
487     fatal(toString(this) + ": invalid section index: " + Twine(Index));
488   }
489 
490   if (S == &InputSection::Discarded)
491     return S;
492   return S->Repl;
493 }
494 
495 template <class ELFT>
496 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
497   int Binding = Sym->getBinding();
498   InputSectionBase *Sec = getSection(*Sym);
499 
500   uint8_t StOther = Sym->st_other;
501   uint8_t Type = Sym->getType();
502   uint64_t Value = Sym->st_value;
503   uint64_t Size = Sym->st_size;
504 
505   if (Binding == STB_LOCAL) {
506     if (Sym->getType() == STT_FILE)
507       SourceFile = check(Sym->getName(this->StringTable));
508 
509     if (this->StringTable.size() <= Sym->st_name)
510       fatal(toString(this) + ": invalid symbol name offset");
511 
512     StringRefZ Name = this->StringTable.data() + Sym->st_name;
513     if (Sym->st_shndx == SHN_UNDEF)
514       return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type, this);
515 
516     return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value,
517                                 Size, Sec, this);
518   }
519 
520   StringRef Name = check(Sym->getName(this->StringTable));
521 
522   switch (Sym->st_shndx) {
523   case SHN_UNDEF:
524     return elf::Symtab<ELFT>::X
525         ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type,
526                        /*CanOmitFromDynSym=*/false, this)
527         ->body();
528   case SHN_COMMON:
529     if (Value == 0 || Value >= UINT32_MAX)
530       fatal(toString(this) + ": common symbol '" + Name +
531             "' has invalid alignment: " + Twine(Value));
532     return elf::Symtab<ELFT>::X
533         ->addCommon(Name, Size, Value, Binding, StOther, Type, this)
534         ->body();
535   }
536 
537   switch (Binding) {
538   default:
539     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
540   case STB_GLOBAL:
541   case STB_WEAK:
542   case STB_GNU_UNIQUE:
543     if (Sec == &InputSection::Discarded)
544       return elf::Symtab<ELFT>::X
545           ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type,
546                          /*CanOmitFromDynSym=*/false, this)
547           ->body();
548     return elf::Symtab<ELFT>::X
549         ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this)
550         ->body();
551   }
552 }
553 
554 template <class ELFT> void ArchiveFile::parse() {
555   File = check(Archive::create(MB),
556                MB.getBufferIdentifier() + ": failed to parse archive");
557 
558   // Read the symbol table to construct Lazy objects.
559   for (const Archive::Symbol &Sym : File->symbols())
560     Symtab<ELFT>::X->addLazyArchive(this, Sym);
561 }
562 
563 // Returns a buffer pointing to a member file containing a given symbol.
564 std::pair<MemoryBufferRef, uint64_t>
565 ArchiveFile::getMember(const Archive::Symbol *Sym) {
566   Archive::Child C =
567       check(Sym->getMember(),
568             "could not get the member for symbol " + Sym->getName());
569 
570   if (!Seen.insert(C.getChildOffset()).second)
571     return {MemoryBufferRef(), 0};
572 
573   MemoryBufferRef Ret =
574       check(C.getMemoryBufferRef(),
575             "could not get the buffer for the member defining symbol " +
576                 Sym->getName());
577 
578   if (C.getParent()->isThin() && Tar)
579     Tar->append(relativeToRoot(check(C.getFullName())), Ret.getBuffer());
580   if (C.getParent()->isThin())
581     return {Ret, 0};
582   return {Ret, C.getChildOffset()};
583 }
584 
585 template <class ELFT>
586 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
587     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
588 
589 template <class ELFT>
590 const typename ELFT::Shdr *
591 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
592   return check(
593       this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX));
594 }
595 
596 // Partially parse the shared object file so that we can call
597 // getSoName on this object.
598 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
599   const Elf_Shdr *DynamicSec = nullptr;
600 
601   const ELFFile<ELFT> Obj = this->getObj();
602   ArrayRef<Elf_Shdr> Sections = check(Obj.sections());
603   for (const Elf_Shdr &Sec : Sections) {
604     switch (Sec.sh_type) {
605     default:
606       continue;
607     case SHT_DYNSYM:
608       this->initSymtab(Sections, &Sec);
609       break;
610     case SHT_DYNAMIC:
611       DynamicSec = &Sec;
612       break;
613     case SHT_SYMTAB_SHNDX:
614       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, Sections));
615       break;
616     case SHT_GNU_versym:
617       this->VersymSec = &Sec;
618       break;
619     case SHT_GNU_verdef:
620       this->VerdefSec = &Sec;
621       break;
622     }
623   }
624 
625   if (this->VersymSec && this->Symbols.empty())
626     error("SHT_GNU_versym should be associated with symbol table");
627 
628   // DSOs are identified by soname, and they usually contain
629   // DT_SONAME tag in their header. But if they are missing,
630   // filenames are used as default sonames.
631   SoName = sys::path::filename(this->getName());
632 
633   if (!DynamicSec)
634     return;
635 
636   ArrayRef<Elf_Dyn> Arr =
637       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
638             toString(this) + ": getSectionContentsAsArray failed");
639   for (const Elf_Dyn &Dyn : Arr) {
640     if (Dyn.d_tag == DT_SONAME) {
641       uint64_t Val = Dyn.getVal();
642       if (Val >= this->StringTable.size())
643         fatal(toString(this) + ": invalid DT_SONAME entry");
644       SoName = StringRef(this->StringTable.data() + Val);
645       return;
646     }
647   }
648 }
649 
650 // Parse the version definitions in the object file if present. Returns a vector
651 // whose nth element contains a pointer to the Elf_Verdef for version identifier
652 // n. Version identifiers that are not definitions map to nullptr. The array
653 // always has at least length 1.
654 template <class ELFT>
655 std::vector<const typename ELFT::Verdef *>
656 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
657   std::vector<const Elf_Verdef *> Verdefs(1);
658   // We only need to process symbol versions for this DSO if it has both a
659   // versym and a verdef section, which indicates that the DSO contains symbol
660   // version definitions.
661   if (!VersymSec || !VerdefSec)
662     return Verdefs;
663 
664   // The location of the first global versym entry.
665   const char *Base = this->MB.getBuffer().data();
666   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
667            this->FirstNonLocal;
668 
669   // We cannot determine the largest verdef identifier without inspecting
670   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
671   // sequentially starting from 1, so we predict that the largest identifier
672   // will be VerdefCount.
673   unsigned VerdefCount = VerdefSec->sh_info;
674   Verdefs.resize(VerdefCount + 1);
675 
676   // Build the Verdefs array by following the chain of Elf_Verdef objects
677   // from the start of the .gnu.version_d section.
678   const char *Verdef = Base + VerdefSec->sh_offset;
679   for (unsigned I = 0; I != VerdefCount; ++I) {
680     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
681     Verdef += CurVerdef->vd_next;
682     unsigned VerdefIndex = CurVerdef->vd_ndx;
683     if (Verdefs.size() <= VerdefIndex)
684       Verdefs.resize(VerdefIndex + 1);
685     Verdefs[VerdefIndex] = CurVerdef;
686   }
687 
688   return Verdefs;
689 }
690 
691 // Fully parse the shared object file. This must be called after parseSoName().
692 template <class ELFT> void SharedFile<ELFT>::parseRest() {
693   // Create mapping from version identifiers to Elf_Verdef entries.
694   const Elf_Versym *Versym = nullptr;
695   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
696 
697   Elf_Sym_Range Syms = this->getGlobalSymbols();
698   for (const Elf_Sym &Sym : Syms) {
699     unsigned VersymIndex = 0;
700     if (Versym) {
701       VersymIndex = Versym->vs_index;
702       ++Versym;
703     }
704     bool Hidden = VersymIndex & VERSYM_HIDDEN;
705     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
706 
707     StringRef Name = check(Sym.getName(this->StringTable));
708     if (Sym.isUndefined()) {
709       Undefs.push_back(Name);
710       continue;
711     }
712 
713     // Ignore local symbols.
714     if (Versym && VersymIndex == VER_NDX_LOCAL)
715       continue;
716 
717     const Elf_Verdef *V =
718         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
719 
720     if (!Hidden)
721       elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
722 
723     // Also add the symbol with the versioned name to handle undefined symbols
724     // with explicit versions.
725     if (V) {
726       StringRef VerName = this->StringTable.data() + V->getAux()->vda_name;
727       Name = Saver.save(Twine(Name) + "@" + VerName);
728       elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
729     }
730   }
731 }
732 
733 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
734   Triple T(check(getBitcodeTargetTriple(MB)));
735   if (T.isLittleEndian())
736     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
737   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
738 }
739 
740 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
741   Triple T(check(getBitcodeTargetTriple(MB)));
742   switch (T.getArch()) {
743   case Triple::aarch64:
744     return EM_AARCH64;
745   case Triple::arm:
746   case Triple::thumb:
747     return EM_ARM;
748   case Triple::mips:
749   case Triple::mipsel:
750   case Triple::mips64:
751   case Triple::mips64el:
752     return EM_MIPS;
753   case Triple::ppc:
754     return EM_PPC;
755   case Triple::ppc64:
756     return EM_PPC64;
757   case Triple::x86:
758     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
759   case Triple::x86_64:
760     return EM_X86_64;
761   default:
762     fatal(MB.getBufferIdentifier() +
763           ": could not infer e_machine from bitcode target triple " + T.str());
764   }
765 }
766 
767 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) {
768   EKind = getBitcodeELFKind(MB);
769   EMachine = getBitcodeMachineKind(MB);
770 }
771 
772 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
773   switch (GvVisibility) {
774   case GlobalValue::DefaultVisibility:
775     return STV_DEFAULT;
776   case GlobalValue::HiddenVisibility:
777     return STV_HIDDEN;
778   case GlobalValue::ProtectedVisibility:
779     return STV_PROTECTED;
780   }
781   llvm_unreachable("unknown visibility");
782 }
783 
784 template <class ELFT>
785 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
786                                    const lto::InputFile::Symbol &ObjSym,
787                                    BitcodeFile *F) {
788   StringRef NameRef = Saver.save(ObjSym.getName());
789   uint32_t Flags = ObjSym.getFlags();
790   uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL;
791 
792   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
793   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
794   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
795 
796   int C = check(ObjSym.getComdatIndex());
797   if (C != -1 && !KeptComdats[C])
798     return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding,
799                                          Visibility, Type, CanOmitFromDynSym,
800                                          F);
801 
802   if (Flags & BasicSymbolRef::SF_Undefined)
803     return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding,
804                                          Visibility, Type, CanOmitFromDynSym,
805                                          F);
806 
807   if (Flags & BasicSymbolRef::SF_Common)
808     return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(),
809                                       ObjSym.getCommonAlignment(), Binding,
810                                       Visibility, STT_OBJECT, F);
811 
812   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
813                                      CanOmitFromDynSym, F);
814 }
815 
816 template <class ELFT>
817 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
818 
819   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
820   // (the fully resolved path of the archive) + member name + offset of the
821   // member in the archive.
822   // ThinLTO uses the MemoryBufferRef identifier to access its internal
823   // data structures and if two archives define two members with the same name,
824   // this causes a collision which result in only one of the objects being
825   // taken into consideration at LTO time (which very likely causes undefined
826   // symbols later in the link stage).
827   Obj = check(lto::InputFile::create(MemoryBufferRef(
828       MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() +
829                                  utostr(OffsetInArchive)))));
830 
831   std::vector<bool> KeptComdats;
832   for (StringRef S : Obj->getComdatTable()) {
833     StringRef N = Saver.save(S);
834     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second);
835   }
836 
837   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
838     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
839 }
840 
841 template <template <class> class T>
842 static InputFile *createELFFile(MemoryBufferRef MB) {
843   unsigned char Size;
844   unsigned char Endian;
845   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
846   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
847     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
848 
849   size_t BufSize = MB.getBuffer().size();
850   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
851       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
852     fatal(MB.getBufferIdentifier() + ": file is too short");
853 
854   InputFile *Obj;
855   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
856     Obj = make<T<ELF32LE>>(MB);
857   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
858     Obj = make<T<ELF32BE>>(MB);
859   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
860     Obj = make<T<ELF64LE>>(MB);
861   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
862     Obj = make<T<ELF64BE>>(MB);
863   else
864     fatal(MB.getBufferIdentifier() + ": invalid file class");
865 
866   if (!Config->FirstElf)
867     Config->FirstElf = Obj;
868   return Obj;
869 }
870 
871 template <class ELFT> void BinaryFile::parse() {
872   StringRef Buf = MB.getBuffer();
873   ArrayRef<uint8_t> Data =
874       makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size());
875 
876   std::string Filename = MB.getBufferIdentifier();
877   std::transform(Filename.begin(), Filename.end(), Filename.begin(),
878                  [](char C) { return isalnum(C) ? C : '_'; });
879   Filename = "_binary_" + Filename;
880   StringRef StartName = Saver.save(Twine(Filename) + "_start");
881   StringRef EndName = Saver.save(Twine(Filename) + "_end");
882   StringRef SizeName = Saver.save(Twine(Filename) + "_size");
883 
884   auto *Section =
885       make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data");
886   Sections.push_back(Section);
887 
888   elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0,
889                                    STB_GLOBAL, Section, nullptr);
890   elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT,
891                                    Data.size(), 0, STB_GLOBAL, Section,
892                                    nullptr);
893   elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT,
894                                    Data.size(), 0, STB_GLOBAL, nullptr,
895                                    nullptr);
896 }
897 
898 static bool isBitcode(MemoryBufferRef MB) {
899   using namespace sys::fs;
900   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
901 }
902 
903 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
904                                  uint64_t OffsetInArchive) {
905   InputFile *F =
906       isBitcode(MB) ? make<BitcodeFile>(MB) : createELFFile<ObjectFile>(MB);
907   F->ArchiveName = ArchiveName;
908   F->OffsetInArchive = OffsetInArchive;
909   return F;
910 }
911 
912 InputFile *elf::createSharedFile(MemoryBufferRef MB) {
913   return createELFFile<SharedFile>(MB);
914 }
915 
916 MemoryBufferRef LazyObjectFile::getBuffer() {
917   if (Seen)
918     return MemoryBufferRef();
919   Seen = true;
920   return MB;
921 }
922 
923 template <class ELFT> void LazyObjectFile::parse() {
924   for (StringRef Sym : getSymbols())
925     Symtab<ELFT>::X->addLazyObject(Sym, *this);
926 }
927 
928 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
929   typedef typename ELFT::Shdr Elf_Shdr;
930   typedef typename ELFT::Sym Elf_Sym;
931   typedef typename ELFT::SymRange Elf_Sym_Range;
932 
933   const ELFFile<ELFT> Obj(this->MB.getBuffer());
934   ArrayRef<Elf_Shdr> Sections = check(Obj.sections());
935   for (const Elf_Shdr &Sec : Sections) {
936     if (Sec.sh_type != SHT_SYMTAB)
937       continue;
938     Elf_Sym_Range Syms = check(Obj.symbols(&Sec));
939     uint32_t FirstNonLocal = Sec.sh_info;
940     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec, Sections));
941     std::vector<StringRef> V;
942     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
943       if (Sym.st_shndx != SHN_UNDEF)
944         V.push_back(check(Sym.getName(StringTable)));
945     return V;
946   }
947   return {};
948 }
949 
950 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
951   std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB));
952   std::vector<StringRef> V;
953   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
954     if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined))
955       V.push_back(Saver.save(Sym.getName()));
956   return V;
957 }
958 
959 // Returns a vector of globally-visible defined symbol names.
960 std::vector<StringRef> LazyObjectFile::getSymbols() {
961   if (isBitcode(this->MB))
962     return getBitcodeSymbols();
963 
964   unsigned char Size;
965   unsigned char Endian;
966   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
967   if (Size == ELFCLASS32) {
968     if (Endian == ELFDATA2LSB)
969       return getElfSymbols<ELF32LE>();
970     return getElfSymbols<ELF32BE>();
971   }
972   if (Endian == ELFDATA2LSB)
973     return getElfSymbols<ELF64LE>();
974   return getElfSymbols<ELF64BE>();
975 }
976 
977 template void ArchiveFile::parse<ELF32LE>();
978 template void ArchiveFile::parse<ELF32BE>();
979 template void ArchiveFile::parse<ELF64LE>();
980 template void ArchiveFile::parse<ELF64BE>();
981 
982 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
983 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
984 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
985 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
986 
987 template void LazyObjectFile::parse<ELF32LE>();
988 template void LazyObjectFile::parse<ELF32BE>();
989 template void LazyObjectFile::parse<ELF64LE>();
990 template void LazyObjectFile::parse<ELF64BE>();
991 
992 template class elf::ELFFileBase<ELF32LE>;
993 template class elf::ELFFileBase<ELF32BE>;
994 template class elf::ELFFileBase<ELF64LE>;
995 template class elf::ELFFileBase<ELF64BE>;
996 
997 template class elf::ObjectFile<ELF32LE>;
998 template class elf::ObjectFile<ELF32BE>;
999 template class elf::ObjectFile<ELF64LE>;
1000 template class elf::ObjectFile<ELF64BE>;
1001 
1002 template class elf::SharedFile<ELF32LE>;
1003 template class elf::SharedFile<ELF32BE>;
1004 template class elf::SharedFile<ELF64LE>;
1005 template class elf::SharedFile<ELF64BE>;
1006 
1007 template void BinaryFile::parse<ELF32LE>();
1008 template void BinaryFile::parse<ELF32BE>();
1009 template void BinaryFile::parse<ELF64LE>();
1010 template void BinaryFile::parse<ELF64BE>();
1011