1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "ELFCreator.h" 13 #include "Error.h" 14 #include "InputSection.h" 15 #include "LinkerScript.h" 16 #include "SymbolTable.h" 17 #include "Symbols.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Bitcode/ReaderWriter.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Path.h" 26 #include "llvm/Support/raw_ostream.h" 27 28 using namespace llvm; 29 using namespace llvm::ELF; 30 using namespace llvm::object; 31 using namespace llvm::sys::fs; 32 33 using namespace lld; 34 using namespace lld::elf; 35 36 std::vector<InputFile *> InputFile::Pool; 37 38 // Deletes all InputFile instances created so far. 39 void InputFile::freePool() { 40 // Files are freed in reverse order so that files created 41 // from other files (e.g. object files extracted from archives) 42 // are freed in the proper order. 43 for (int I = Pool.size() - 1; I >= 0; --I) 44 delete Pool[I]; 45 } 46 47 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 48 std::string elf::getFilename(const InputFile *F) { 49 if (!F) 50 return "(internal)"; 51 if (!F->ArchiveName.empty()) 52 return (F->ArchiveName + "(" + F->getName() + ")").str(); 53 return F->getName(); 54 } 55 56 template <class ELFT> static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) { 57 std::error_code EC; 58 ELFFile<ELFT> F(MB.getBuffer(), EC); 59 if (EC) 60 fatal(EC, "failed to read " + MB.getBufferIdentifier()); 61 return F; 62 } 63 64 template <class ELFT> static ELFKind getELFKind() { 65 if (ELFT::TargetEndianness == support::little) 66 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 67 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 68 } 69 70 template <class ELFT> 71 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) 72 : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) { 73 EKind = getELFKind<ELFT>(); 74 EMachine = ELFObj.getHeader()->e_machine; 75 } 76 77 template <class ELFT> 78 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) { 79 if (!Symtab) 80 return Elf_Sym_Range(nullptr, nullptr); 81 Elf_Sym_Range Syms = ELFObj.symbols(Symtab); 82 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 83 uint32_t FirstNonLocal = Symtab->sh_info; 84 if (FirstNonLocal == 0 || FirstNonLocal > NumSymbols) 85 fatal(getFilename(this) + ": invalid sh_info in symbol table"); 86 87 if (OnlyGlobals) 88 return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end()); 89 return makeArrayRef(Syms.begin(), Syms.end()); 90 } 91 92 template <class ELFT> 93 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 94 uint32_t I = Sym.st_shndx; 95 if (I == ELF::SHN_XINDEX) 96 return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX); 97 if (I >= ELF::SHN_LORESERVE) 98 return 0; 99 return I; 100 } 101 102 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() { 103 if (!Symtab) 104 return; 105 StringTable = check(ELFObj.getStringTableForSymtab(*Symtab)); 106 } 107 108 template <class ELFT> 109 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 110 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 111 112 template <class ELFT> 113 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 114 if (!this->Symtab) 115 return this->SymbolBodies; 116 uint32_t FirstNonLocal = this->Symtab->sh_info; 117 return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal); 118 } 119 120 template <class ELFT> 121 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 122 if (!this->Symtab) 123 return this->SymbolBodies; 124 uint32_t FirstNonLocal = this->Symtab->sh_info; 125 return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1); 126 } 127 128 template <class ELFT> 129 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 130 if (!this->Symtab) 131 return this->SymbolBodies; 132 return makeArrayRef(this->SymbolBodies).slice(1); 133 } 134 135 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const { 136 if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo) 137 return MipsOptions->Reginfo->ri_gp_value; 138 if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo) 139 return MipsReginfo->Reginfo->ri_gp_value; 140 return 0; 141 } 142 143 template <class ELFT> 144 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) { 145 // Read section and symbol tables. 146 initializeSections(ComdatGroups); 147 initializeSymbols(); 148 if (Config->GcSections && Config->EMachine == EM_ARM) 149 initializeReverseDependencies(); 150 } 151 152 // Sections with SHT_GROUP and comdat bits define comdat section groups. 153 // They are identified and deduplicated by group name. This function 154 // returns a group name. 155 template <class ELFT> 156 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) { 157 const ELFFile<ELFT> &Obj = this->ELFObj; 158 const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link)); 159 const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info); 160 StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab)); 161 return check(Sym->getName(Strtab)); 162 } 163 164 template <class ELFT> 165 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 166 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 167 const ELFFile<ELFT> &Obj = this->ELFObj; 168 ArrayRef<Elf_Word> Entries = 169 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 170 if (Entries.empty() || Entries[0] != GRP_COMDAT) 171 fatal(getFilename(this) + ": unsupported SHT_GROUP format"); 172 return Entries.slice(1); 173 } 174 175 template <class ELFT> 176 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 177 // We don't merge sections if -O0 (default is -O1). This makes sometimes 178 // the linker significantly faster, although the output will be bigger. 179 if (Config->Optimize == 0) 180 return false; 181 182 // Do not merge sections if generating a relocatable object. It makes 183 // the code simpler because we do not need to update relocation addends 184 // to reflect changes introduced by merging. Instead of that we write 185 // such "merge" sections into separate OutputSections and keep SHF_MERGE 186 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 187 // later during a final linking. 188 if (Config->Relocatable) 189 return false; 190 191 // A mergeable section with size 0 is useless because they don't have 192 // any data to merge. A mergeable string section with size 0 can be 193 // argued as invalid because it doesn't end with a null character. 194 // We'll avoid a mess by handling them as if they were non-mergeable. 195 if (Sec.sh_size == 0) 196 return false; 197 198 // Check for sh_entsize. The ELF spec is not clear about the zero 199 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 200 // the section does not hold a table of fixed-size entries". We know 201 // that Rust 1.13 produces a string mergeable section with a zero 202 // sh_entsize. Here we just accept it rather than being picky about it. 203 uintX_t EntSize = Sec.sh_entsize; 204 if (EntSize == 0) 205 return false; 206 if (Sec.sh_size % EntSize) 207 fatal(getFilename(this) + 208 ": SHF_MERGE section size must be a multiple of sh_entsize"); 209 210 uintX_t Flags = Sec.sh_flags; 211 if (!(Flags & SHF_MERGE)) 212 return false; 213 if (Flags & SHF_WRITE) 214 fatal(getFilename(this) + ": writable SHF_MERGE section is not supported"); 215 216 // Don't try to merge if the alignment is larger than the sh_entsize and this 217 // is not SHF_STRINGS. 218 // 219 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 220 // It would be equivalent for the producer of the .o to just set a larger 221 // sh_entsize. 222 if (Flags & SHF_STRINGS) 223 return true; 224 225 return Sec.sh_addralign <= EntSize; 226 } 227 228 template <class ELFT> 229 void elf::ObjectFile<ELFT>::initializeSections( 230 DenseSet<StringRef> &ComdatGroups) { 231 uint64_t Size = this->ELFObj.getNumSections(); 232 Sections.resize(Size); 233 unsigned I = -1; 234 const ELFFile<ELFT> &Obj = this->ELFObj; 235 for (const Elf_Shdr &Sec : Obj.sections()) { 236 ++I; 237 if (Sections[I] == &InputSection<ELFT>::Discarded) 238 continue; 239 240 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 241 // if -r is given, we'll let the final link discard such sections. 242 // This is compatible with GNU. 243 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 244 Sections[I] = &InputSection<ELFT>::Discarded; 245 continue; 246 } 247 248 switch (Sec.sh_type) { 249 case SHT_GROUP: 250 Sections[I] = &InputSection<ELFT>::Discarded; 251 if (ComdatGroups.insert(getShtGroupSignature(Sec)).second) 252 continue; 253 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 254 if (SecIndex >= Size) 255 fatal(getFilename(this) + ": invalid section index in group: " + 256 Twine(SecIndex)); 257 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 258 } 259 break; 260 case SHT_SYMTAB: 261 this->Symtab = &Sec; 262 break; 263 case SHT_SYMTAB_SHNDX: 264 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 265 break; 266 case SHT_STRTAB: 267 case SHT_NULL: 268 break; 269 default: 270 Sections[I] = createInputSection(Sec); 271 } 272 } 273 } 274 275 // .ARM.exidx sections have a reverse dependency on the InputSection they 276 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 277 template <class ELFT> 278 void elf::ObjectFile<ELFT>::initializeReverseDependencies() { 279 unsigned I = -1; 280 for (const Elf_Shdr &Sec : this->ELFObj.sections()) { 281 ++I; 282 if ((Sections[I] == &InputSection<ELFT>::Discarded) || 283 !(Sec.sh_flags & SHF_LINK_ORDER)) 284 continue; 285 if (Sec.sh_link >= Sections.size()) 286 fatal(getFilename(this) + ": invalid sh_link index: " + 287 Twine(Sec.sh_link)); 288 auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]); 289 IS->DependentSection = Sections[I]; 290 } 291 } 292 293 template <class ELFT> 294 InputSectionBase<ELFT> * 295 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 296 uint32_t Idx = Sec.sh_info; 297 if (Idx >= Sections.size()) 298 fatal(getFilename(this) + ": invalid relocated section index: " + 299 Twine(Idx)); 300 InputSectionBase<ELFT> *Target = Sections[Idx]; 301 302 // Strictly speaking, a relocation section must be included in the 303 // group of the section it relocates. However, LLVM 3.3 and earlier 304 // would fail to do so, so we gracefully handle that case. 305 if (Target == &InputSection<ELFT>::Discarded) 306 return nullptr; 307 308 if (!Target) 309 fatal(getFilename(this) + ": unsupported relocation reference"); 310 return Target; 311 } 312 313 template <class ELFT> 314 InputSectionBase<ELFT> * 315 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 316 StringRef Name = check(this->ELFObj.getSectionName(&Sec)); 317 318 switch (Sec.sh_type) { 319 case SHT_ARM_ATTRIBUTES: 320 // FIXME: ARM meta-data section. At present attributes are ignored, 321 // they can be used to reason about object compatibility. 322 return &InputSection<ELFT>::Discarded; 323 case SHT_MIPS_REGINFO: 324 MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name)); 325 return MipsReginfo.get(); 326 case SHT_MIPS_OPTIONS: 327 MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name)); 328 return MipsOptions.get(); 329 case SHT_MIPS_ABIFLAGS: 330 MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name)); 331 return MipsAbiFlags.get(); 332 case SHT_RELA: 333 case SHT_REL: { 334 // This section contains relocation information. 335 // If -r is given, we do not interpret or apply relocation 336 // but just copy relocation sections to output. 337 if (Config->Relocatable) 338 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 339 340 // Find the relocation target section and associate this 341 // section with it. 342 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 343 if (!Target) 344 return nullptr; 345 if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) { 346 S->RelocSections.push_back(&Sec); 347 return nullptr; 348 } 349 if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) { 350 if (S->RelocSection) 351 fatal(getFilename(this) + 352 ": multiple relocation sections to .eh_frame are not supported"); 353 S->RelocSection = &Sec; 354 return nullptr; 355 } 356 fatal(getFilename(this) + 357 ": relocations pointing to SHF_MERGE are not supported"); 358 } 359 } 360 361 // .note.GNU-stack is a marker section to control the presence of 362 // PT_GNU_STACK segment in outputs. Since the presence of the segment 363 // is controlled only by the command line option (-z execstack) in LLD, 364 // .note.GNU-stack is ignored. 365 if (Name == ".note.GNU-stack") 366 return &InputSection<ELFT>::Discarded; 367 368 if (Name == ".note.GNU-split-stack") { 369 error("objects using splitstacks are not supported"); 370 return &InputSection<ELFT>::Discarded; 371 } 372 373 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 374 return &InputSection<ELFT>::Discarded; 375 376 // The linker merges EH (exception handling) frames and creates a 377 // .eh_frame_hdr section for runtime. So we handle them with a special 378 // class. For relocatable outputs, they are just passed through. 379 if (Name == ".eh_frame" && !Config->Relocatable) 380 return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name); 381 382 if (shouldMerge(Sec)) 383 return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name); 384 return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name); 385 } 386 387 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 388 this->initStringTable(); 389 Elf_Sym_Range Syms = this->getElfSymbols(false); 390 uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end()); 391 SymbolBodies.reserve(NumSymbols); 392 for (const Elf_Sym &Sym : Syms) 393 SymbolBodies.push_back(createSymbolBody(&Sym)); 394 } 395 396 template <class ELFT> 397 InputSectionBase<ELFT> * 398 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 399 uint32_t Index = this->getSectionIndex(Sym); 400 if (Index >= Sections.size()) 401 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 402 InputSectionBase<ELFT> *S = Sections[Index]; 403 404 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 405 // could generate broken objects. STT_SECTION symbols can be 406 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 407 // In this case it is fine for section to be null here as we 408 // do not allocate sections of these types. 409 if (!S) { 410 if (Index == 0 || Sym.getType() == STT_SECTION) 411 return nullptr; 412 fatal(getFilename(this) + ": invalid section index: " + Twine(Index)); 413 } 414 415 if (S == &InputSectionBase<ELFT>::Discarded) 416 return S; 417 return S->Repl; 418 } 419 420 template <class ELFT> 421 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 422 int Binding = Sym->getBinding(); 423 InputSectionBase<ELFT> *Sec = getSection(*Sym); 424 if (Binding == STB_LOCAL) { 425 if (Sym->st_shndx == SHN_UNDEF) 426 return new (this->Alloc) 427 Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this); 428 return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec); 429 } 430 431 StringRef Name = check(Sym->getName(this->StringTable)); 432 433 switch (Sym->st_shndx) { 434 case SHN_UNDEF: 435 return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, 436 Sym->getType(), 437 /*CanOmitFromDynSym*/ false, this) 438 ->body(); 439 case SHN_COMMON: 440 if (Sym->st_value == 0 || Sym->st_value >= UINT32_MAX) 441 fatal(getFilename(this) + ": common symbol '" + Name + 442 "' has invalid alignment: " + Twine(Sym->st_value)); 443 return elf::Symtab<ELFT>::X->addCommon(Name, Sym->st_size, Sym->st_value, 444 Binding, Sym->st_other, 445 Sym->getType(), this) 446 ->body(); 447 } 448 449 switch (Binding) { 450 default: 451 fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding)); 452 case STB_GLOBAL: 453 case STB_WEAK: 454 case STB_GNU_UNIQUE: 455 if (Sec == &InputSection<ELFT>::Discarded) 456 return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other, 457 Sym->getType(), 458 /*CanOmitFromDynSym*/ false, 459 this) 460 ->body(); 461 return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body(); 462 } 463 } 464 465 template <class ELFT> void ArchiveFile::parse() { 466 File = check(Archive::create(MB), "failed to parse archive"); 467 468 // Read the symbol table to construct Lazy objects. 469 for (const Archive::Symbol &Sym : File->symbols()) 470 Symtab<ELFT>::X->addLazyArchive(this, Sym); 471 } 472 473 // Returns a buffer pointing to a member file containing a given symbol. 474 std::pair<MemoryBufferRef, uint64_t> 475 ArchiveFile::getMember(const Archive::Symbol *Sym) { 476 Archive::Child C = 477 check(Sym->getMember(), 478 "could not get the member for symbol " + Sym->getName()); 479 480 if (!Seen.insert(C.getChildOffset()).second) 481 return {MemoryBufferRef(), 0}; 482 483 MemoryBufferRef Ret = 484 check(C.getMemoryBufferRef(), 485 "could not get the buffer for the member defining symbol " + 486 Sym->getName()); 487 488 if (C.getParent()->isThin() && Driver->Cpio) 489 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 490 Ret.getBuffer()); 491 if (C.getParent()->isThin()) 492 return {Ret, 0}; 493 return {Ret, C.getChildOffset()}; 494 } 495 496 template <class ELFT> 497 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 498 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 499 500 template <class ELFT> 501 const typename ELFT::Shdr * 502 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 503 uint32_t Index = this->getSectionIndex(Sym); 504 if (Index == 0) 505 return nullptr; 506 return check(this->ELFObj.getSection(Index)); 507 } 508 509 // Partially parse the shared object file so that we can call 510 // getSoName on this object. 511 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 512 typedef typename ELFT::Dyn Elf_Dyn; 513 typedef typename ELFT::uint uintX_t; 514 const Elf_Shdr *DynamicSec = nullptr; 515 516 const ELFFile<ELFT> Obj = this->ELFObj; 517 for (const Elf_Shdr &Sec : Obj.sections()) { 518 switch (Sec.sh_type) { 519 default: 520 continue; 521 case SHT_DYNSYM: 522 this->Symtab = &Sec; 523 break; 524 case SHT_DYNAMIC: 525 DynamicSec = &Sec; 526 break; 527 case SHT_SYMTAB_SHNDX: 528 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec)); 529 break; 530 case SHT_GNU_versym: 531 this->VersymSec = &Sec; 532 break; 533 case SHT_GNU_verdef: 534 this->VerdefSec = &Sec; 535 break; 536 } 537 } 538 539 this->initStringTable(); 540 541 // DSOs are identified by soname, and they usually contain 542 // DT_SONAME tag in their header. But if they are missing, 543 // filenames are used as default sonames. 544 SoName = sys::path::filename(this->getName()); 545 546 if (!DynamicSec) 547 return; 548 549 ArrayRef<Elf_Dyn> Arr = 550 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 551 getFilename(this) + ": getSectionContentsAsArray failed"); 552 for (const Elf_Dyn &Dyn : Arr) { 553 if (Dyn.d_tag == DT_SONAME) { 554 uintX_t Val = Dyn.getVal(); 555 if (Val >= this->StringTable.size()) 556 fatal(getFilename(this) + ": invalid DT_SONAME entry"); 557 SoName = StringRef(this->StringTable.data() + Val); 558 return; 559 } 560 } 561 } 562 563 // Parse the version definitions in the object file if present. Returns a vector 564 // whose nth element contains a pointer to the Elf_Verdef for version identifier 565 // n. Version identifiers that are not definitions map to nullptr. The array 566 // always has at least length 1. 567 template <class ELFT> 568 std::vector<const typename ELFT::Verdef *> 569 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 570 std::vector<const Elf_Verdef *> Verdefs(1); 571 // We only need to process symbol versions for this DSO if it has both a 572 // versym and a verdef section, which indicates that the DSO contains symbol 573 // version definitions. 574 if (!VersymSec || !VerdefSec) 575 return Verdefs; 576 577 // The location of the first global versym entry. 578 Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() + 579 VersymSec->sh_offset) + 580 this->Symtab->sh_info; 581 582 // We cannot determine the largest verdef identifier without inspecting 583 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 584 // sequentially starting from 1, so we predict that the largest identifier 585 // will be VerdefCount. 586 unsigned VerdefCount = VerdefSec->sh_info; 587 Verdefs.resize(VerdefCount + 1); 588 589 // Build the Verdefs array by following the chain of Elf_Verdef objects 590 // from the start of the .gnu.version_d section. 591 const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset; 592 for (unsigned I = 0; I != VerdefCount; ++I) { 593 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 594 Verdef += CurVerdef->vd_next; 595 unsigned VerdefIndex = CurVerdef->vd_ndx; 596 if (Verdefs.size() <= VerdefIndex) 597 Verdefs.resize(VerdefIndex + 1); 598 Verdefs[VerdefIndex] = CurVerdef; 599 } 600 601 return Verdefs; 602 } 603 604 // Fully parse the shared object file. This must be called after parseSoName(). 605 template <class ELFT> void SharedFile<ELFT>::parseRest() { 606 // Create mapping from version identifiers to Elf_Verdef entries. 607 const Elf_Versym *Versym = nullptr; 608 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 609 610 Elf_Sym_Range Syms = this->getElfSymbols(true); 611 for (const Elf_Sym &Sym : Syms) { 612 unsigned VersymIndex = 0; 613 if (Versym) { 614 VersymIndex = Versym->vs_index; 615 ++Versym; 616 } 617 618 StringRef Name = check(Sym.getName(this->StringTable)); 619 if (Sym.isUndefined()) { 620 Undefs.push_back(Name); 621 continue; 622 } 623 624 if (Versym) { 625 // Ignore local symbols and non-default versions. 626 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 627 continue; 628 } 629 630 const Elf_Verdef *V = 631 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 632 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 633 } 634 } 635 636 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 637 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 638 if (T.isLittleEndian()) 639 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 640 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 641 } 642 643 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 644 Triple T(getBitcodeTargetTriple(MB, Driver->Context)); 645 switch (T.getArch()) { 646 case Triple::aarch64: 647 return EM_AARCH64; 648 case Triple::arm: 649 return EM_ARM; 650 case Triple::mips: 651 case Triple::mipsel: 652 case Triple::mips64: 653 case Triple::mips64el: 654 return EM_MIPS; 655 case Triple::ppc: 656 return EM_PPC; 657 case Triple::ppc64: 658 return EM_PPC64; 659 case Triple::x86: 660 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 661 case Triple::x86_64: 662 return EM_X86_64; 663 default: 664 fatal(MB.getBufferIdentifier() + 665 ": could not infer e_machine from bitcode target triple " + T.str()); 666 } 667 } 668 669 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 670 EKind = getBitcodeELFKind(MB); 671 EMachine = getBitcodeMachineKind(MB); 672 } 673 674 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 675 switch (GvVisibility) { 676 case GlobalValue::DefaultVisibility: 677 return STV_DEFAULT; 678 case GlobalValue::HiddenVisibility: 679 return STV_HIDDEN; 680 case GlobalValue::ProtectedVisibility: 681 return STV_PROTECTED; 682 } 683 llvm_unreachable("unknown visibility"); 684 } 685 686 template <class ELFT> 687 static Symbol *createBitcodeSymbol(const DenseSet<const Comdat *> &KeptComdats, 688 const lto::InputFile::Symbol &ObjSym, 689 StringSaver &Saver, BitcodeFile *F) { 690 StringRef NameRef = Saver.save(ObjSym.getName()); 691 uint32_t Flags = ObjSym.getFlags(); 692 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 693 694 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 695 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 696 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 697 698 if (const Comdat *C = check(ObjSym.getComdat())) 699 if (!KeptComdats.count(C)) 700 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 701 CanOmitFromDynSym, F); 702 703 if (Flags & BasicSymbolRef::SF_Undefined) 704 return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type, 705 CanOmitFromDynSym, F); 706 707 if (Flags & BasicSymbolRef::SF_Common) 708 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 709 ObjSym.getCommonAlignment(), Binding, 710 Visibility, STT_OBJECT, F); 711 712 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 713 CanOmitFromDynSym, F); 714 } 715 716 template <class ELFT> 717 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) { 718 719 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 720 // (the fully resolved path of the archive) + member name + offset of the 721 // member in the archive. 722 // ThinLTO uses the MemoryBufferRef identifier to access its internal 723 // data structures and if two archives define two members with the same name, 724 // this causes a collision which result in only one of the objects being 725 // taken into consideration at LTO time (which very likely causes undefined 726 // symbols later in the link stage). 727 Obj = check(lto::InputFile::create(MemoryBufferRef( 728 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() + 729 utostr(OffsetInArchive))))); 730 DenseSet<const Comdat *> KeptComdats; 731 for (const auto &P : Obj->getComdatSymbolTable()) { 732 StringRef N = Saver.save(P.first()); 733 if (ComdatGroups.insert(N).second) 734 KeptComdats.insert(&P.second); 735 } 736 737 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 738 Symbols.push_back( 739 createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, Saver, this)); 740 } 741 742 template <template <class> class T> 743 static InputFile *createELFFile(MemoryBufferRef MB) { 744 unsigned char Size; 745 unsigned char Endian; 746 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 747 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 748 fatal("invalid data encoding: " + MB.getBufferIdentifier()); 749 750 InputFile *Obj; 751 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 752 Obj = new T<ELF32LE>(MB); 753 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 754 Obj = new T<ELF32BE>(MB); 755 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 756 Obj = new T<ELF64LE>(MB); 757 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 758 Obj = new T<ELF64BE>(MB); 759 else 760 fatal("invalid file class: " + MB.getBufferIdentifier()); 761 762 if (!Config->FirstElf) 763 Config->FirstElf = Obj; 764 return Obj; 765 } 766 767 // Wraps a binary blob with an ELF header and footer 768 // so that we can link it as a regular ELF file. 769 template <class ELFT> InputFile *BinaryFile::createELF() { 770 // Fill the ELF file header. 771 ELFCreator<ELFT> ELF(ET_REL, Config->EMachine); 772 auto DataSec = ELF.addSection(".data"); 773 DataSec.Header->sh_flags = SHF_ALLOC; 774 DataSec.Header->sh_size = MB.getBufferSize(); 775 DataSec.Header->sh_type = SHT_PROGBITS; 776 DataSec.Header->sh_addralign = 8; 777 778 // Replace non-alphanumeric characters with '_'. 779 std::string Filepath = MB.getBufferIdentifier(); 780 std::transform(Filepath.begin(), Filepath.end(), Filepath.begin(), 781 [](char C) { return isalnum(C) ? C : '_'; }); 782 783 // Add _start, _end and _size symbols. 784 std::string StartSym = "_binary_" + Filepath + "_start"; 785 auto SSym = ELF.addSymbol(StartSym); 786 SSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 787 SSym.Sym->st_shndx = DataSec.Index; 788 789 std::string EndSym = "_binary_" + Filepath + "_end"; 790 auto ESym = ELF.addSymbol(EndSym); 791 ESym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 792 ESym.Sym->st_shndx = DataSec.Index; 793 ESym.Sym->st_value = MB.getBufferSize(); 794 795 std::string SizeSym = "_binary_" + Filepath + "_size"; 796 auto SZSym = ELF.addSymbol(SizeSym); 797 SZSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT); 798 SZSym.Sym->st_shndx = SHN_ABS; 799 SZSym.Sym->st_value = MB.getBufferSize(); 800 801 // Fix the ELF file layout and write it down to ELFData uint8_t vector. 802 std::size_t Size = ELF.layout(); 803 ELFData.resize(Size); 804 ELF.write(ELFData.data()); 805 806 // Fill .data section with actual data. 807 std::copy(MB.getBufferStart(), MB.getBufferEnd(), 808 ELFData.data() + DataSec.Header->sh_offset); 809 810 return createELFFile<ObjectFile>(MemoryBufferRef( 811 StringRef((char *)ELFData.data(), Size), MB.getBufferIdentifier())); 812 } 813 814 static bool isBitcode(MemoryBufferRef MB) { 815 using namespace sys::fs; 816 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 817 } 818 819 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 820 uint64_t OffsetInArchive) { 821 InputFile *F = 822 isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB); 823 F->ArchiveName = ArchiveName; 824 F->OffsetInArchive = OffsetInArchive; 825 return F; 826 } 827 828 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 829 return createELFFile<SharedFile>(MB); 830 } 831 832 MemoryBufferRef LazyObjectFile::getBuffer() { 833 if (Seen) 834 return MemoryBufferRef(); 835 Seen = true; 836 return MB; 837 } 838 839 template <class ELFT> void LazyObjectFile::parse() { 840 for (StringRef Sym : getSymbols()) 841 Symtab<ELFT>::X->addLazyObject(Sym, *this); 842 } 843 844 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 845 typedef typename ELFT::Shdr Elf_Shdr; 846 typedef typename ELFT::Sym Elf_Sym; 847 typedef typename ELFT::SymRange Elf_Sym_Range; 848 849 const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB); 850 for (const Elf_Shdr &Sec : Obj.sections()) { 851 if (Sec.sh_type != SHT_SYMTAB) 852 continue; 853 Elf_Sym_Range Syms = Obj.symbols(&Sec); 854 uint32_t FirstNonLocal = Sec.sh_info; 855 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec)); 856 std::vector<StringRef> V; 857 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 858 if (Sym.st_shndx != SHN_UNDEF) 859 V.push_back(check(Sym.getName(StringTable))); 860 return V; 861 } 862 return {}; 863 } 864 865 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 866 std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); 867 std::vector<StringRef> V; 868 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 869 if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) 870 V.push_back(Saver.save(Sym.getName())); 871 return V; 872 } 873 874 // Returns a vector of globally-visible defined symbol names. 875 std::vector<StringRef> LazyObjectFile::getSymbols() { 876 if (isBitcode(this->MB)) 877 return getBitcodeSymbols(); 878 879 unsigned char Size; 880 unsigned char Endian; 881 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 882 if (Size == ELFCLASS32) { 883 if (Endian == ELFDATA2LSB) 884 return getElfSymbols<ELF32LE>(); 885 return getElfSymbols<ELF32BE>(); 886 } 887 if (Endian == ELFDATA2LSB) 888 return getElfSymbols<ELF64LE>(); 889 return getElfSymbols<ELF64BE>(); 890 } 891 892 template void ArchiveFile::parse<ELF32LE>(); 893 template void ArchiveFile::parse<ELF32BE>(); 894 template void ArchiveFile::parse<ELF64LE>(); 895 template void ArchiveFile::parse<ELF64BE>(); 896 897 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &); 898 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &); 899 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &); 900 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &); 901 902 template void LazyObjectFile::parse<ELF32LE>(); 903 template void LazyObjectFile::parse<ELF32BE>(); 904 template void LazyObjectFile::parse<ELF64LE>(); 905 template void LazyObjectFile::parse<ELF64BE>(); 906 907 template class elf::ELFFileBase<ELF32LE>; 908 template class elf::ELFFileBase<ELF32BE>; 909 template class elf::ELFFileBase<ELF64LE>; 910 template class elf::ELFFileBase<ELF64BE>; 911 912 template class elf::ObjectFile<ELF32LE>; 913 template class elf::ObjectFile<ELF32BE>; 914 template class elf::ObjectFile<ELF64LE>; 915 template class elf::ObjectFile<ELF64BE>; 916 917 template class elf::SharedFile<ELF32LE>; 918 template class elf::SharedFile<ELF32BE>; 919 template class elf::SharedFile<ELF64LE>; 920 template class elf::SharedFile<ELF64BE>; 921 922 template InputFile *BinaryFile::createELF<ELF32LE>(); 923 template InputFile *BinaryFile::createELF<ELF32BE>(); 924 template InputFile *BinaryFile::createELF<ELF64LE>(); 925 template InputFile *BinaryFile::createELF<ELF64BE>(); 926