1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "InputSection.h"
11 #include "LinkerScript.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "lld/Common/ErrorHandler.h"
16 #include "lld/Common/Memory.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/LTO/LTO.h"
23 #include "llvm/MC/StringTableBuilder.h"
24 #include "llvm/Object/ELFObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/TarWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 using namespace llvm::ELF;
33 using namespace llvm::object;
34 using namespace llvm::sys;
35 using namespace llvm::sys::fs;
36 
37 using namespace lld;
38 using namespace lld::elf;
39 
40 bool InputFile::IsInGroup;
41 uint32_t InputFile::NextGroupId;
42 std::vector<BinaryFile *> elf::BinaryFiles;
43 std::vector<BitcodeFile *> elf::BitcodeFiles;
44 std::vector<LazyObjFile *> elf::LazyObjFiles;
45 std::vector<InputFile *> elf::ObjectFiles;
46 std::vector<SharedFile *> elf::SharedFiles;
47 
48 std::unique_ptr<TarWriter> elf::Tar;
49 
50 InputFile::InputFile(Kind K, MemoryBufferRef M)
51     : MB(M), GroupId(NextGroupId), FileKind(K) {
52   // All files within the same --{start,end}-group get the same group ID.
53   // Otherwise, a new file will get a new group ID.
54   if (!IsInGroup)
55     ++NextGroupId;
56 }
57 
58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
59   // The --chroot option changes our virtual root directory.
60   // This is useful when you are dealing with files created by --reproduce.
61   if (!Config->Chroot.empty() && Path.startswith("/"))
62     Path = Saver.save(Config->Chroot + Path);
63 
64   log(Path);
65 
66   auto MBOrErr = MemoryBuffer::getFile(Path, -1, false);
67   if (auto EC = MBOrErr.getError()) {
68     error("cannot open " + Path + ": " + EC.message());
69     return None;
70   }
71 
72   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
73   MemoryBufferRef MBRef = MB->getMemBufferRef();
74   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
75 
76   if (Tar)
77     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
78   return MBRef;
79 }
80 
81 // Concatenates arguments to construct a string representing an error location.
82 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
83   std::string Filename = path::filename(Path);
84   std::string Lineno = ":" + std::to_string(Line);
85   if (Filename == Path)
86     return Filename + Lineno;
87   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
88 }
89 
90 template <class ELFT>
91 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
92                                 InputSectionBase &Sec, uint64_t Offset) {
93   // In DWARF, functions and variables are stored to different places.
94   // First, lookup a function for a given offset.
95   if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
96     return createFileLineMsg(Info->FileName, Info->Line);
97 
98   // If it failed, lookup again as a variable.
99   if (Optional<std::pair<std::string, unsigned>> FileLine =
100           File.getVariableLoc(Sym.getName()))
101     return createFileLineMsg(FileLine->first, FileLine->second);
102 
103   // File.SourceFile contains STT_FILE symbol, and that is a last resort.
104   return File.SourceFile;
105 }
106 
107 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
108                                  uint64_t Offset) {
109   if (kind() != ObjKind)
110     return "";
111   switch (Config->EKind) {
112   default:
113     llvm_unreachable("Invalid kind");
114   case ELF32LEKind:
115     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
116   case ELF32BEKind:
117     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
118   case ELF64LEKind:
119     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
120   case ELF64BEKind:
121     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
122   }
123 }
124 
125 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
126   Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this));
127   for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) {
128     auto Report = [](Error Err) {
129       handleAllErrors(std::move(Err),
130                       [](ErrorInfoBase &Info) { warn(Info.message()); });
131     };
132     Expected<const DWARFDebugLine::LineTable *> ExpectedLT =
133         Dwarf->getLineTableForUnit(CU.get(), Report);
134     const DWARFDebugLine::LineTable *LT = nullptr;
135     if (ExpectedLT)
136       LT = *ExpectedLT;
137     else
138       Report(ExpectedLT.takeError());
139     if (!LT)
140       continue;
141     LineTables.push_back(LT);
142 
143     // Loop over variable records and insert them to VariableLoc.
144     for (const auto &Entry : CU->dies()) {
145       DWARFDie Die(CU.get(), &Entry);
146       // Skip all tags that are not variables.
147       if (Die.getTag() != dwarf::DW_TAG_variable)
148         continue;
149 
150       // Skip if a local variable because we don't need them for generating
151       // error messages. In general, only non-local symbols can fail to be
152       // linked.
153       if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
154         continue;
155 
156       // Get the source filename index for the variable.
157       unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
158       if (!LT->hasFileAtIndex(File))
159         continue;
160 
161       // Get the line number on which the variable is declared.
162       unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
163 
164       // Here we want to take the variable name to add it into VariableLoc.
165       // Variable can have regular and linkage name associated. At first, we try
166       // to get linkage name as it can be different, for example when we have
167       // two variables in different namespaces of the same object. Use common
168       // name otherwise, but handle the case when it also absent in case if the
169       // input object file lacks some debug info.
170       StringRef Name =
171           dwarf::toString(Die.find(dwarf::DW_AT_linkage_name),
172                           dwarf::toString(Die.find(dwarf::DW_AT_name), ""));
173       if (!Name.empty())
174         VariableLoc.insert({Name, {LT, File, Line}});
175     }
176   }
177 }
178 
179 // Returns the pair of file name and line number describing location of data
180 // object (variable, array, etc) definition.
181 template <class ELFT>
182 Optional<std::pair<std::string, unsigned>>
183 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
184   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
185 
186   // Return if we have no debug information about data object.
187   auto It = VariableLoc.find(Name);
188   if (It == VariableLoc.end())
189     return None;
190 
191   // Take file name string from line table.
192   std::string FileName;
193   if (!It->second.LT->getFileNameByIndex(
194           It->second.File, nullptr,
195           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
196     return None;
197 
198   return std::make_pair(FileName, It->second.Line);
199 }
200 
201 // Returns source line information for a given offset
202 // using DWARF debug info.
203 template <class ELFT>
204 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
205                                                   uint64_t Offset) {
206   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
207 
208   // Detect SectionIndex for specified section.
209   uint64_t SectionIndex = object::SectionedAddress::UndefSection;
210   ArrayRef<InputSectionBase *> Sections = S->File->getSections();
211   for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) {
212     if (S == Sections[CurIndex]) {
213       SectionIndex = CurIndex;
214       break;
215     }
216   }
217 
218   // Use fake address calcuated by adding section file offset and offset in
219   // section. See comments for ObjectInfo class.
220   DILineInfo Info;
221   for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) {
222     if (LT->getFileLineInfoForAddress(
223             {S->getOffsetInFile() + Offset, SectionIndex}, nullptr,
224             DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info))
225       return Info;
226   }
227   return None;
228 }
229 
230 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
231 std::string lld::toString(const InputFile *F) {
232   if (!F)
233     return "<internal>";
234 
235   if (F->ToStringCache.empty()) {
236     if (F->ArchiveName.empty())
237       F->ToStringCache = F->getName();
238     else
239       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
240   }
241   return F->ToStringCache;
242 }
243 
244 ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {}
245 
246 template <class ELFT> void ELFFileBase::parseHeader() {
247   if (ELFT::TargetEndianness == support::little)
248     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
249   else
250     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
251 
252   EMachine = getObj<ELFT>().getHeader()->e_machine;
253   OSABI = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_OSABI];
254   ABIVersion = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
255 }
256 
257 template <class ELFT>
258 void ELFFileBase::initSymtab(ArrayRef<typename ELFT::Shdr> Sections,
259                              const typename ELFT::Shdr *Symtab) {
260   FirstGlobal = Symtab->sh_info;
261   ArrayRef<typename ELFT::Sym> ELFSyms =
262       CHECK(getObj<ELFT>().symbols(Symtab), this);
263   if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size())
264     fatal(toString(this) + ": invalid sh_info in symbol table");
265   this->ELFSyms = reinterpret_cast<const void *>(ELFSyms.data());
266   this->NumELFSyms = ELFSyms.size();
267 
268   StringTable =
269       CHECK(getObj<ELFT>().getStringTableForSymtab(*Symtab, Sections), this);
270 }
271 
272 template <class ELFT>
273 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
274     : ELFFileBase(ObjKind, M) {
275   parseHeader<ELFT>();
276   this->ArchiveName = ArchiveName;
277 }
278 
279 template <class ELFT>
280 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
281   return CHECK(
282       this->getObj().getSectionIndex(&Sym, getELFSyms<ELFT>(), ShndxTable),
283       this);
284 }
285 
286 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
287   if (this->Symbols.empty())
288     return {};
289   return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1);
290 }
291 
292 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
293   return makeArrayRef(this->Symbols).slice(this->FirstGlobal);
294 }
295 
296 template <class ELFT>
297 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
298   // Read a section table. JustSymbols is usually false.
299   if (this->JustSymbols)
300     initializeJustSymbols();
301   else
302     initializeSections(ComdatGroups);
303 
304   // Read a symbol table.
305   initializeSymbols();
306 }
307 
308 // Sections with SHT_GROUP and comdat bits define comdat section groups.
309 // They are identified and deduplicated by group name. This function
310 // returns a group name.
311 template <class ELFT>
312 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
313                                               const Elf_Shdr &Sec) {
314   // Group signatures are stored as symbol names in object files.
315   // sh_info contains a symbol index, so we fetch a symbol and read its name.
316   if (this->getELFSyms<ELFT>().empty())
317     this->initSymtab<ELFT>(
318         Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this));
319 
320   const Elf_Sym *Sym =
321       CHECK(object::getSymbol<ELFT>(this->getELFSyms<ELFT>(), Sec.sh_info), this);
322   StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
323 
324   // As a special case, if a symbol is a section symbol and has no name,
325   // we use a section name as a signature.
326   //
327   // Such SHT_GROUP sections are invalid from the perspective of the ELF
328   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
329   // older produce such sections as outputs for the -r option, so we need
330   // a bug-compatibility.
331   if (Signature.empty() && Sym->getType() == STT_SECTION)
332     return getSectionName(Sec);
333   return Signature;
334 }
335 
336 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
337   // On a regular link we don't merge sections if -O0 (default is -O1). This
338   // sometimes makes the linker significantly faster, although the output will
339   // be bigger.
340   //
341   // Doing the same for -r would create a problem as it would combine sections
342   // with different sh_entsize. One option would be to just copy every SHF_MERGE
343   // section as is to the output. While this would produce a valid ELF file with
344   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
345   // they see two .debug_str. We could have separate logic for combining
346   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
347   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
348   // logic for -r.
349   if (Config->Optimize == 0 && !Config->Relocatable)
350     return false;
351 
352   // A mergeable section with size 0 is useless because they don't have
353   // any data to merge. A mergeable string section with size 0 can be
354   // argued as invalid because it doesn't end with a null character.
355   // We'll avoid a mess by handling them as if they were non-mergeable.
356   if (Sec.sh_size == 0)
357     return false;
358 
359   // Check for sh_entsize. The ELF spec is not clear about the zero
360   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
361   // the section does not hold a table of fixed-size entries". We know
362   // that Rust 1.13 produces a string mergeable section with a zero
363   // sh_entsize. Here we just accept it rather than being picky about it.
364   uint64_t EntSize = Sec.sh_entsize;
365   if (EntSize == 0)
366     return false;
367   if (Sec.sh_size % EntSize)
368     fatal(toString(this) +
369           ": SHF_MERGE section size must be a multiple of sh_entsize");
370 
371   uint64_t Flags = Sec.sh_flags;
372   if (!(Flags & SHF_MERGE))
373     return false;
374   if (Flags & SHF_WRITE)
375     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
376 
377   return true;
378 }
379 
380 // This is for --just-symbols.
381 //
382 // --just-symbols is a very minor feature that allows you to link your
383 // output against other existing program, so that if you load both your
384 // program and the other program into memory, your output can refer the
385 // other program's symbols.
386 //
387 // When the option is given, we link "just symbols". The section table is
388 // initialized with null pointers.
389 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
390   ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this);
391   this->Sections.resize(ObjSections.size());
392 
393   for (const Elf_Shdr &Sec : ObjSections) {
394     if (Sec.sh_type != SHT_SYMTAB)
395       continue;
396     this->initSymtab<ELFT>(ObjSections, &Sec);
397     return;
398   }
399 }
400 
401 template <class ELFT>
402 void ObjFile<ELFT>::initializeSections(
403     DenseSet<CachedHashStringRef> &ComdatGroups) {
404   const ELFFile<ELFT> &Obj = this->getObj();
405 
406   ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this);
407   uint64_t Size = ObjSections.size();
408   this->Sections.resize(Size);
409   this->SectionStringTable =
410       CHECK(Obj.getSectionStringTable(ObjSections), this);
411 
412   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
413     if (this->Sections[I] == &InputSection::Discarded)
414       continue;
415     const Elf_Shdr &Sec = ObjSections[I];
416 
417     if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
418       CGProfile =
419           check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec));
420 
421     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
422     // if -r is given, we'll let the final link discard such sections.
423     // This is compatible with GNU.
424     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
425       if (Sec.sh_type == SHT_LLVM_ADDRSIG) {
426         // We ignore the address-significance table if we know that the object
427         // file was created by objcopy or ld -r. This is because these tools
428         // will reorder the symbols in the symbol table, invalidating the data
429         // in the address-significance table, which refers to symbols by index.
430         if (Sec.sh_link != 0)
431           this->AddrsigSec = &Sec;
432         else if (Config->ICF == ICFLevel::Safe)
433           warn(toString(this) + ": --icf=safe is incompatible with object "
434                                 "files created using objcopy or ld -r");
435       }
436       this->Sections[I] = &InputSection::Discarded;
437       continue;
438     }
439 
440     switch (Sec.sh_type) {
441     case SHT_GROUP: {
442       // De-duplicate section groups by their signatures.
443       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
444       this->Sections[I] = &InputSection::Discarded;
445 
446 
447       ArrayRef<Elf_Word> Entries =
448           CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
449       if (Entries.empty())
450         fatal(toString(this) + ": empty SHT_GROUP");
451 
452       // The first word of a SHT_GROUP section contains flags. Currently,
453       // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
454       // An group with the empty flag doesn't define anything; such sections
455       // are just skipped.
456       if (Entries[0] == 0)
457         continue;
458 
459       if (Entries[0] != GRP_COMDAT)
460         fatal(toString(this) + ": unsupported SHT_GROUP format");
461 
462       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
463       if (IsNew) {
464         if (Config->Relocatable)
465           this->Sections[I] = createInputSection(Sec);
466         continue;
467       }
468 
469       // Otherwise, discard group members.
470       for (uint32_t SecIndex : Entries.slice(1)) {
471         if (SecIndex >= Size)
472           fatal(toString(this) +
473                 ": invalid section index in group: " + Twine(SecIndex));
474         this->Sections[SecIndex] = &InputSection::Discarded;
475       }
476       break;
477     }
478     case SHT_SYMTAB:
479       this->initSymtab<ELFT>(ObjSections, &Sec);
480       break;
481     case SHT_SYMTAB_SHNDX:
482       ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
483       break;
484     case SHT_STRTAB:
485     case SHT_NULL:
486       break;
487     default:
488       this->Sections[I] = createInputSection(Sec);
489     }
490 
491     // .ARM.exidx sections have a reverse dependency on the InputSection they
492     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
493     if (Sec.sh_flags & SHF_LINK_ORDER) {
494       InputSectionBase *LinkSec = nullptr;
495       if (Sec.sh_link < this->Sections.size())
496         LinkSec = this->Sections[Sec.sh_link];
497       if (!LinkSec)
498         fatal(toString(this) +
499               ": invalid sh_link index: " + Twine(Sec.sh_link));
500 
501       InputSection *IS = cast<InputSection>(this->Sections[I]);
502       LinkSec->DependentSections.push_back(IS);
503       if (!isa<InputSection>(LinkSec))
504         error("a section " + IS->Name +
505               " with SHF_LINK_ORDER should not refer a non-regular "
506               "section: " +
507               toString(LinkSec));
508     }
509   }
510 }
511 
512 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
513 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
514 // the input objects have been compiled.
515 static void updateARMVFPArgs(const ARMAttributeParser &Attributes,
516                              const InputFile *F) {
517   if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
518     // If an ABI tag isn't present then it is implicitly given the value of 0
519     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
520     // including some in glibc that don't use FP args (and should have value 3)
521     // don't have the attribute so we do not consider an implicit value of 0
522     // as a clash.
523     return;
524 
525   unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
526   ARMVFPArgKind Arg;
527   switch (VFPArgs) {
528   case ARMBuildAttrs::BaseAAPCS:
529     Arg = ARMVFPArgKind::Base;
530     break;
531   case ARMBuildAttrs::HardFPAAPCS:
532     Arg = ARMVFPArgKind::VFP;
533     break;
534   case ARMBuildAttrs::ToolChainFPPCS:
535     // Tool chain specific convention that conforms to neither AAPCS variant.
536     Arg = ARMVFPArgKind::ToolChain;
537     break;
538   case ARMBuildAttrs::CompatibleFPAAPCS:
539     // Object compatible with all conventions.
540     return;
541   default:
542     error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs));
543     return;
544   }
545   // Follow ld.bfd and error if there is a mix of calling conventions.
546   if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default)
547     error(toString(F) + ": incompatible Tag_ABI_VFP_args");
548   else
549     Config->ARMVFPArgs = Arg;
550 }
551 
552 // The ARM support in lld makes some use of instructions that are not available
553 // on all ARM architectures. Namely:
554 // - Use of BLX instruction for interworking between ARM and Thumb state.
555 // - Use of the extended Thumb branch encoding in relocation.
556 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
557 // The ARM Attributes section contains information about the architecture chosen
558 // at compile time. We follow the convention that if at least one input object
559 // is compiled with an architecture that supports these features then lld is
560 // permitted to use them.
561 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
562   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
563     return;
564   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
565   switch (Arch) {
566   case ARMBuildAttrs::Pre_v4:
567   case ARMBuildAttrs::v4:
568   case ARMBuildAttrs::v4T:
569     // Architectures prior to v5 do not support BLX instruction
570     break;
571   case ARMBuildAttrs::v5T:
572   case ARMBuildAttrs::v5TE:
573   case ARMBuildAttrs::v5TEJ:
574   case ARMBuildAttrs::v6:
575   case ARMBuildAttrs::v6KZ:
576   case ARMBuildAttrs::v6K:
577     Config->ARMHasBlx = true;
578     // Architectures used in pre-Cortex processors do not support
579     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
580     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
581     break;
582   default:
583     // All other Architectures have BLX and extended branch encoding
584     Config->ARMHasBlx = true;
585     Config->ARMJ1J2BranchEncoding = true;
586     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
587       // All Architectures used in Cortex processors with the exception
588       // of v6-M and v6S-M have the MOVT and MOVW instructions.
589       Config->ARMHasMovtMovw = true;
590     break;
591   }
592 }
593 
594 template <class ELFT>
595 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
596   uint32_t Idx = Sec.sh_info;
597   if (Idx >= this->Sections.size())
598     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
599   InputSectionBase *Target = this->Sections[Idx];
600 
601   // Strictly speaking, a relocation section must be included in the
602   // group of the section it relocates. However, LLVM 3.3 and earlier
603   // would fail to do so, so we gracefully handle that case.
604   if (Target == &InputSection::Discarded)
605     return nullptr;
606 
607   if (!Target)
608     fatal(toString(this) + ": unsupported relocation reference");
609   return Target;
610 }
611 
612 // Create a regular InputSection class that has the same contents
613 // as a given section.
614 static InputSection *toRegularSection(MergeInputSection *Sec) {
615   return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
616                             Sec->data(), Sec->Name);
617 }
618 
619 template <class ELFT>
620 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
621   StringRef Name = getSectionName(Sec);
622 
623   switch (Sec.sh_type) {
624   case SHT_ARM_ATTRIBUTES: {
625     if (Config->EMachine != EM_ARM)
626       break;
627     ARMAttributeParser Attributes;
628     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
629     Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
630     updateSupportedARMFeatures(Attributes);
631     updateARMVFPArgs(Attributes, this);
632 
633     // FIXME: Retain the first attribute section we see. The eglibc ARM
634     // dynamic loaders require the presence of an attribute section for dlopen
635     // to work. In a full implementation we would merge all attribute sections.
636     if (In.ARMAttributes == nullptr) {
637       In.ARMAttributes = make<InputSection>(*this, Sec, Name);
638       return In.ARMAttributes;
639     }
640     return &InputSection::Discarded;
641   }
642   case SHT_RELA:
643   case SHT_REL: {
644     // Find a relocation target section and associate this section with that.
645     // Target may have been discarded if it is in a different section group
646     // and the group is discarded, even though it's a violation of the
647     // spec. We handle that situation gracefully by discarding dangling
648     // relocation sections.
649     InputSectionBase *Target = getRelocTarget(Sec);
650     if (!Target)
651       return nullptr;
652 
653     // This section contains relocation information.
654     // If -r is given, we do not interpret or apply relocation
655     // but just copy relocation sections to output.
656     if (Config->Relocatable) {
657       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
658       // We want to add a dependency to target, similar like we do for
659       // -emit-relocs below. This is useful for the case when linker script
660       // contains the "/DISCARD/". It is perhaps uncommon to use a script with
661       // -r, but we faced it in the Linux kernel and have to handle such case
662       // and not to crash.
663       Target->DependentSections.push_back(RelocSec);
664       return RelocSec;
665     }
666 
667     if (Target->FirstRelocation)
668       fatal(toString(this) +
669             ": multiple relocation sections to one section are not supported");
670 
671     // ELF spec allows mergeable sections with relocations, but they are
672     // rare, and it is in practice hard to merge such sections by contents,
673     // because applying relocations at end of linking changes section
674     // contents. So, we simply handle such sections as non-mergeable ones.
675     // Degrading like this is acceptable because section merging is optional.
676     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
677       Target = toRegularSection(MS);
678       this->Sections[Sec.sh_info] = Target;
679     }
680 
681     if (Sec.sh_type == SHT_RELA) {
682       ArrayRef<Elf_Rela> Rels = CHECK(getObj().relas(&Sec), this);
683       Target->FirstRelocation = Rels.begin();
684       Target->NumRelocations = Rels.size();
685       Target->AreRelocsRela = true;
686     } else {
687       ArrayRef<Elf_Rel> Rels = CHECK(getObj().rels(&Sec), this);
688       Target->FirstRelocation = Rels.begin();
689       Target->NumRelocations = Rels.size();
690       Target->AreRelocsRela = false;
691     }
692     assert(isUInt<31>(Target->NumRelocations));
693 
694     // Relocation sections processed by the linker are usually removed
695     // from the output, so returning `nullptr` for the normal case.
696     // However, if -emit-relocs is given, we need to leave them in the output.
697     // (Some post link analysis tools need this information.)
698     if (Config->EmitRelocs) {
699       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
700       // We will not emit relocation section if target was discarded.
701       Target->DependentSections.push_back(RelocSec);
702       return RelocSec;
703     }
704     return nullptr;
705   }
706   }
707 
708   // The GNU linker uses .note.GNU-stack section as a marker indicating
709   // that the code in the object file does not expect that the stack is
710   // executable (in terms of NX bit). If all input files have the marker,
711   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
712   // make the stack non-executable. Most object files have this section as
713   // of 2017.
714   //
715   // But making the stack non-executable is a norm today for security
716   // reasons. Failure to do so may result in a serious security issue.
717   // Therefore, we make LLD always add PT_GNU_STACK unless it is
718   // explicitly told to do otherwise (by -z execstack). Because the stack
719   // executable-ness is controlled solely by command line options,
720   // .note.GNU-stack sections are simply ignored.
721   if (Name == ".note.GNU-stack")
722     return &InputSection::Discarded;
723 
724   // Split stacks is a feature to support a discontiguous stack,
725   // commonly used in the programming language Go. For the details,
726   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
727   // for split stack will include a .note.GNU-split-stack section.
728   if (Name == ".note.GNU-split-stack") {
729     if (Config->Relocatable) {
730       error("cannot mix split-stack and non-split-stack in a relocatable link");
731       return &InputSection::Discarded;
732     }
733     this->SplitStack = true;
734     return &InputSection::Discarded;
735   }
736 
737   // An object file cmpiled for split stack, but where some of the
738   // functions were compiled with the no_split_stack_attribute will
739   // include a .note.GNU-no-split-stack section.
740   if (Name == ".note.GNU-no-split-stack") {
741     this->SomeNoSplitStack = true;
742     return &InputSection::Discarded;
743   }
744 
745   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
746   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
747   // sections. Drop those sections to avoid duplicate symbol errors.
748   // FIXME: This is glibc PR20543, we should remove this hack once that has been
749   // fixed for a while.
750   if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
751       Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
752     return &InputSection::Discarded;
753 
754   // If we are creating a new .build-id section, strip existing .build-id
755   // sections so that the output won't have more than one .build-id.
756   // This is not usually a problem because input object files normally don't
757   // have .build-id sections, but you can create such files by
758   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
759   if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
760     return &InputSection::Discarded;
761 
762   // The linker merges EH (exception handling) frames and creates a
763   // .eh_frame_hdr section for runtime. So we handle them with a special
764   // class. For relocatable outputs, they are just passed through.
765   if (Name == ".eh_frame" && !Config->Relocatable)
766     return make<EhInputSection>(*this, Sec, Name);
767 
768   if (shouldMerge(Sec))
769     return make<MergeInputSection>(*this, Sec, Name);
770   return make<InputSection>(*this, Sec, Name);
771 }
772 
773 template <class ELFT>
774 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
775   return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this);
776 }
777 
778 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
779   this->Symbols.reserve(this->getELFSyms<ELFT>().size());
780   for (const Elf_Sym &Sym : this->getELFSyms<ELFT>())
781     this->Symbols.push_back(createSymbol(&Sym));
782 }
783 
784 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
785   int Binding = Sym->getBinding();
786 
787   uint32_t SecIdx = getSectionIndex(*Sym);
788   if (SecIdx >= this->Sections.size())
789     fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
790 
791   InputSectionBase *Sec = this->Sections[SecIdx];
792   uint8_t StOther = Sym->st_other;
793   uint8_t Type = Sym->getType();
794   uint64_t Value = Sym->st_value;
795   uint64_t Size = Sym->st_size;
796 
797   if (Binding == STB_LOCAL) {
798     if (Sym->getType() == STT_FILE)
799       SourceFile = CHECK(Sym->getName(this->StringTable), this);
800 
801     if (this->StringTable.size() <= Sym->st_name)
802       fatal(toString(this) + ": invalid symbol name offset");
803 
804     StringRefZ Name = this->StringTable.data() + Sym->st_name;
805     if (Sym->st_shndx == SHN_UNDEF)
806       return make<Undefined>(this, Name, Binding, StOther, Type);
807 
808     return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
809   }
810 
811   StringRef Name = CHECK(Sym->getName(this->StringTable), this);
812 
813   switch (Sym->st_shndx) {
814   case SHN_UNDEF:
815     return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
816                                       /*CanOmitFromDynSym=*/false, this);
817   case SHN_COMMON:
818     if (Value == 0 || Value >= UINT32_MAX)
819       fatal(toString(this) + ": common symbol '" + Name +
820             "' has invalid alignment: " + Twine(Value));
821     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this);
822   }
823 
824   switch (Binding) {
825   default:
826     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
827   case STB_GLOBAL:
828   case STB_WEAK:
829   case STB_GNU_UNIQUE:
830     if (Sec == &InputSection::Discarded)
831       return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
832                                         /*CanOmitFromDynSym=*/false, this);
833     return Symtab->addDefined(Name, StOther, Type, Value, Size, Binding, Sec,
834                               this);
835   }
836 }
837 
838 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
839     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
840       File(std::move(File)) {}
841 
842 template <class ELFT> void ArchiveFile::parse() {
843   for (const Archive::Symbol &Sym : File->symbols())
844     Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym);
845 }
846 
847 // Returns a buffer pointing to a member file containing a given symbol.
848 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) {
849   Archive::Child C =
850       CHECK(Sym.getMember(), toString(this) +
851                                  ": could not get the member for symbol " +
852                                  Sym.getName());
853 
854   if (!Seen.insert(C.getChildOffset()).second)
855     return nullptr;
856 
857   MemoryBufferRef MB =
858       CHECK(C.getMemoryBufferRef(),
859             toString(this) +
860                 ": could not get the buffer for the member defining symbol " +
861                 Sym.getName());
862 
863   if (Tar && C.getParent()->isThin())
864     Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer());
865 
866   InputFile *File = createObjectFile(
867       MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset());
868   File->GroupId = GroupId;
869   return File;
870 }
871 
872 unsigned SharedFile::VernauxNum;
873 
874 SharedFile::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
875     : ELFFileBase(SharedKind, M), SoName(DefaultSoName),
876       IsNeeded(!Config->AsNeeded) {}
877 
878 // Parse the version definitions in the object file if present, and return a
879 // vector whose nth element contains a pointer to the Elf_Verdef for version
880 // identifier n. Version identifiers that are not definitions map to nullptr.
881 template <typename ELFT>
882 static std::vector<const void *> parseVerdefs(const uint8_t *Base,
883                                               const typename ELFT::Shdr *Sec) {
884   if (!Sec)
885     return {};
886 
887   // We cannot determine the largest verdef identifier without inspecting
888   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
889   // sequentially starting from 1, so we predict that the largest identifier
890   // will be VerdefCount.
891   unsigned VerdefCount = Sec->sh_info;
892   std::vector<const void *> Verdefs(VerdefCount + 1);
893 
894   // Build the Verdefs array by following the chain of Elf_Verdef objects
895   // from the start of the .gnu.version_d section.
896   const uint8_t *Verdef = Base + Sec->sh_offset;
897   for (unsigned I = 0; I != VerdefCount; ++I) {
898     auto *CurVerdef = reinterpret_cast<const typename ELFT::Verdef *>(Verdef);
899     Verdef += CurVerdef->vd_next;
900     unsigned VerdefIndex = CurVerdef->vd_ndx;
901     Verdefs.resize(VerdefIndex + 1);
902     Verdefs[VerdefIndex] = CurVerdef;
903   }
904   return Verdefs;
905 }
906 
907 // We do not usually care about alignments of data in shared object
908 // files because the loader takes care of it. However, if we promote a
909 // DSO symbol to point to .bss due to copy relocation, we need to keep
910 // the original alignment requirements. We infer it in this function.
911 template <typename ELFT>
912 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> Sections,
913                              const typename ELFT::Sym &Sym) {
914   uint64_t Ret = UINT64_MAX;
915   if (Sym.st_value)
916     Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
917   if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size())
918     Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign);
919   return (Ret > UINT32_MAX) ? 0 : Ret;
920 }
921 
922 // Fully parse the shared object file.
923 //
924 // This function parses symbol versions. If a DSO has version information,
925 // the file has a ".gnu.version_d" section which contains symbol version
926 // definitions. Each symbol is associated to one version through a table in
927 // ".gnu.version" section. That table is a parallel array for the symbol
928 // table, and each table entry contains an index in ".gnu.version_d".
929 //
930 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
931 // VER_NDX_GLOBAL. There's no table entry for these special versions in
932 // ".gnu.version_d".
933 //
934 // The file format for symbol versioning is perhaps a bit more complicated
935 // than necessary, but you can easily understand the code if you wrap your
936 // head around the data structure described above.
937 template <class ELFT> void SharedFile::parse() {
938   using Elf_Dyn = typename ELFT::Dyn;
939   using Elf_Shdr = typename ELFT::Shdr;
940   using Elf_Sym = typename ELFT::Sym;
941   using Elf_Verdef = typename ELFT::Verdef;
942   using Elf_Versym = typename ELFT::Versym;
943 
944   ArrayRef<Elf_Dyn> DynamicTags;
945   const ELFFile<ELFT> Obj = this->getObj<ELFT>();
946   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
947 
948   const Elf_Shdr *VersymSec = nullptr;
949   const Elf_Shdr *VerdefSec = nullptr;
950 
951   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
952   for (const Elf_Shdr &Sec : Sections) {
953     switch (Sec.sh_type) {
954     default:
955       continue;
956     case SHT_DYNSYM:
957       this->initSymtab<ELFT>(Sections, &Sec);
958       break;
959     case SHT_DYNAMIC:
960       DynamicTags =
961           CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(&Sec), this);
962       break;
963     case SHT_GNU_versym:
964       VersymSec = &Sec;
965       break;
966     case SHT_GNU_verdef:
967       VerdefSec = &Sec;
968       break;
969     }
970   }
971 
972   if (VersymSec && this->getELFSyms<ELFT>().empty()) {
973     error("SHT_GNU_versym should be associated with symbol table");
974     return;
975   }
976 
977   // Search for a DT_SONAME tag to initialize this->SoName.
978   for (const Elf_Dyn &Dyn : DynamicTags) {
979     if (Dyn.d_tag == DT_NEEDED) {
980       uint64_t Val = Dyn.getVal();
981       if (Val >= this->StringTable.size())
982         fatal(toString(this) + ": invalid DT_NEEDED entry");
983       DtNeeded.push_back(this->StringTable.data() + Val);
984     } else if (Dyn.d_tag == DT_SONAME) {
985       uint64_t Val = Dyn.getVal();
986       if (Val >= this->StringTable.size())
987         fatal(toString(this) + ": invalid DT_SONAME entry");
988       SoName = this->StringTable.data() + Val;
989     }
990   }
991 
992   // DSOs are uniquified not by filename but by soname.
993   DenseMap<StringRef, SharedFile *>::iterator It;
994   bool WasInserted;
995   std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this);
996 
997   // If a DSO appears more than once on the command line with and without
998   // --as-needed, --no-as-needed takes precedence over --as-needed because a
999   // user can add an extra DSO with --no-as-needed to force it to be added to
1000   // the dependency list.
1001   It->second->IsNeeded |= IsNeeded;
1002   if (!WasInserted)
1003     return;
1004 
1005   SharedFiles.push_back(this);
1006 
1007   Verdefs = parseVerdefs<ELFT>(Obj.base(), VerdefSec);
1008 
1009   // Parse ".gnu.version" section which is a parallel array for the symbol
1010   // table. If a given file doesn't have a ".gnu.version" section, we use
1011   // VER_NDX_GLOBAL.
1012   size_t Size = this->getELFSyms<ELFT>().size() - this->FirstGlobal;
1013   std::vector<uint32_t> Versyms(Size, VER_NDX_GLOBAL);
1014   if (VersymSec) {
1015     ArrayRef<Elf_Versym> Versym =
1016         CHECK(Obj.template getSectionContentsAsArray<Elf_Versym>(VersymSec),
1017               this)
1018             .slice(FirstGlobal);
1019     for (size_t I = 0; I < Size; ++I)
1020       Versyms[I] = Versym[I].vs_index;
1021   }
1022 
1023   // System libraries can have a lot of symbols with versions. Using a
1024   // fixed buffer for computing the versions name (foo@ver) can save a
1025   // lot of allocations.
1026   SmallString<0> VersionedNameBuffer;
1027 
1028   // Add symbols to the symbol table.
1029   ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms<ELFT>();
1030   for (size_t I = 0; I < Syms.size(); ++I) {
1031     const Elf_Sym &Sym = Syms[I];
1032 
1033     // ELF spec requires that all local symbols precede weak or global
1034     // symbols in each symbol table, and the index of first non-local symbol
1035     // is stored to sh_info. If a local symbol appears after some non-local
1036     // symbol, that's a violation of the spec.
1037     StringRef Name = CHECK(Sym.getName(this->StringTable), this);
1038     if (Sym.getBinding() == STB_LOCAL) {
1039       warn("found local symbol '" + Name +
1040            "' in global part of symbol table in file " + toString(this));
1041       continue;
1042     }
1043 
1044     if (Sym.isUndefined()) {
1045       Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(),
1046                                              Sym.st_other, Sym.getType(),
1047                                              /*CanOmitFromDynSym=*/false, this);
1048       S->ExportDynamic = true;
1049       continue;
1050     }
1051 
1052     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1053     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1054     // workaround for this bug.
1055     uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN;
1056     if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL &&
1057         Name == "_gp_disp")
1058       continue;
1059 
1060     uint64_t Alignment = getAlignment<ELFT>(Sections, Sym);
1061     if (!(Versyms[I] & VERSYM_HIDDEN))
1062       Symtab->addShared(Name, Sym.getBinding(), Sym.st_other, Sym.getType(),
1063                         Sym.st_value, Sym.st_size, Alignment, Idx, this);
1064 
1065     // Also add the symbol with the versioned name to handle undefined symbols
1066     // with explicit versions.
1067     if (Idx == VER_NDX_GLOBAL)
1068       continue;
1069 
1070     if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) {
1071       error("corrupt input file: version definition index " + Twine(Idx) +
1072             " for symbol " + Name + " is out of bounds\n>>> defined in " +
1073             toString(this));
1074       continue;
1075     }
1076 
1077     StringRef VerName =
1078         this->StringTable.data() +
1079         reinterpret_cast<const Elf_Verdef *>(Verdefs[Idx])->getAux()->vda_name;
1080     VersionedNameBuffer.clear();
1081     Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer);
1082     Symtab->addShared(Saver.save(Name), Sym.getBinding(), Sym.st_other,
1083                       Sym.getType(), Sym.st_value, Sym.st_size, Alignment, Idx,
1084                       this);
1085   }
1086 }
1087 
1088 static ELFKind getBitcodeELFKind(const Triple &T) {
1089   if (T.isLittleEndian())
1090     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1091   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1092 }
1093 
1094 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
1095   switch (T.getArch()) {
1096   case Triple::aarch64:
1097     return EM_AARCH64;
1098   case Triple::amdgcn:
1099   case Triple::r600:
1100     return EM_AMDGPU;
1101   case Triple::arm:
1102   case Triple::thumb:
1103     return EM_ARM;
1104   case Triple::avr:
1105     return EM_AVR;
1106   case Triple::mips:
1107   case Triple::mipsel:
1108   case Triple::mips64:
1109   case Triple::mips64el:
1110     return EM_MIPS;
1111   case Triple::msp430:
1112     return EM_MSP430;
1113   case Triple::ppc:
1114     return EM_PPC;
1115   case Triple::ppc64:
1116   case Triple::ppc64le:
1117     return EM_PPC64;
1118   case Triple::x86:
1119     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
1120   case Triple::x86_64:
1121     return EM_X86_64;
1122   default:
1123     error(Path + ": could not infer e_machine from bitcode target triple " +
1124           T.str());
1125     return EM_NONE;
1126   }
1127 }
1128 
1129 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
1130                          uint64_t OffsetInArchive)
1131     : InputFile(BitcodeKind, MB) {
1132   this->ArchiveName = ArchiveName;
1133 
1134   std::string Path = MB.getBufferIdentifier().str();
1135   if (Config->ThinLTOIndexOnly)
1136     Path = replaceThinLTOSuffix(MB.getBufferIdentifier());
1137 
1138   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1139   // name. If two archives define two members with the same name, this
1140   // causes a collision which result in only one of the objects being taken
1141   // into consideration at LTO time (which very likely causes undefined
1142   // symbols later in the link stage). So we append file offset to make
1143   // filename unique.
1144   MemoryBufferRef MBRef(
1145       MB.getBuffer(),
1146       Saver.save(ArchiveName + Path +
1147                  (ArchiveName.empty() ? "" : utostr(OffsetInArchive))));
1148 
1149   Obj = CHECK(lto::InputFile::create(MBRef), this);
1150 
1151   Triple T(Obj->getTargetTriple());
1152   EKind = getBitcodeELFKind(T);
1153   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
1154 }
1155 
1156 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
1157   switch (GvVisibility) {
1158   case GlobalValue::DefaultVisibility:
1159     return STV_DEFAULT;
1160   case GlobalValue::HiddenVisibility:
1161     return STV_HIDDEN;
1162   case GlobalValue::ProtectedVisibility:
1163     return STV_PROTECTED;
1164   }
1165   llvm_unreachable("unknown visibility");
1166 }
1167 
1168 template <class ELFT>
1169 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
1170                                    const lto::InputFile::Symbol &ObjSym,
1171                                    BitcodeFile &F) {
1172   StringRef Name = Saver.save(ObjSym.getName());
1173   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1174 
1175   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
1176   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
1177   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
1178 
1179   int C = ObjSym.getComdatIndex();
1180   if (C != -1 && !KeptComdats[C])
1181     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1182                                       CanOmitFromDynSym, &F);
1183 
1184   if (ObjSym.isUndefined())
1185     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1186                                       CanOmitFromDynSym, &F);
1187 
1188   if (ObjSym.isCommon())
1189     return Symtab->addCommon(Name, ObjSym.getCommonSize(),
1190                              ObjSym.getCommonAlignment(), Binding, Visibility,
1191                              STT_OBJECT, F);
1192 
1193   return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym,
1194                             F);
1195 }
1196 
1197 template <class ELFT>
1198 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
1199   std::vector<bool> KeptComdats;
1200   for (StringRef S : Obj->getComdatTable())
1201     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
1202 
1203   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
1204     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
1205 }
1206 
1207 static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) {
1208   unsigned char Size;
1209   unsigned char Endian;
1210   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
1211 
1212   auto Fatal = [&](StringRef Msg) {
1213     StringRef Filename = MB.getBufferIdentifier();
1214     if (ArchiveName.empty())
1215       fatal(Filename + ": " + Msg);
1216     else
1217       fatal(ArchiveName + "(" + Filename + "): " + Msg);
1218   };
1219 
1220   if (!MB.getBuffer().startswith(ElfMagic))
1221     Fatal("not an ELF file");
1222   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
1223     Fatal("corrupted ELF file: invalid data encoding");
1224   if (Size != ELFCLASS32 && Size != ELFCLASS64)
1225     Fatal("corrupted ELF file: invalid file class");
1226 
1227   size_t BufSize = MB.getBuffer().size();
1228   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
1229       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
1230     Fatal("corrupted ELF file: file is too short");
1231 
1232   if (Size == ELFCLASS32)
1233     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
1234   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
1235 }
1236 
1237 void BinaryFile::parse() {
1238   ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer());
1239   auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1240                                      8, Data, ".data");
1241   Sections.push_back(Section);
1242 
1243   // For each input file foo that is embedded to a result as a binary
1244   // blob, we define _binary_foo_{start,end,size} symbols, so that
1245   // user programs can access blobs by name. Non-alphanumeric
1246   // characters in a filename are replaced with underscore.
1247   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1248   for (size_t I = 0; I < S.size(); ++I)
1249     if (!isAlnum(S[I]))
1250       S[I] = '_';
1251 
1252   Symtab->addDefined(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0,
1253                      STB_GLOBAL, Section, nullptr);
1254   Symtab->addDefined(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
1255                      Data.size(), 0, STB_GLOBAL, Section, nullptr);
1256   Symtab->addDefined(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
1257                      Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
1258 }
1259 
1260 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1261                                  uint64_t OffsetInArchive) {
1262   if (isBitcode(MB))
1263     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1264 
1265   switch (getELFKind(MB, ArchiveName)) {
1266   case ELF32LEKind:
1267     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1268   case ELF32BEKind:
1269     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1270   case ELF64LEKind:
1271     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1272   case ELF64BEKind:
1273     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1274   default:
1275     llvm_unreachable("getELFKind");
1276   }
1277 }
1278 
1279 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1280   auto *F = make<SharedFile>(MB, DefaultSoName);
1281   switch (getELFKind(MB, "")) {
1282   case ELF32LEKind:
1283     F->parseHeader<ELF32LE>();
1284     break;
1285   case ELF32BEKind:
1286     F->parseHeader<ELF32BE>();
1287     break;
1288   case ELF64LEKind:
1289     F->parseHeader<ELF64LE>();
1290     break;
1291   case ELF64BEKind:
1292     F->parseHeader<ELF64BE>();
1293     break;
1294   default:
1295     llvm_unreachable("getELFKind");
1296   }
1297   return F;
1298 }
1299 
1300 MemoryBufferRef LazyObjFile::getBuffer() {
1301   if (AddedToLink)
1302     return MemoryBufferRef();
1303   AddedToLink = true;
1304   return MB;
1305 }
1306 
1307 InputFile *LazyObjFile::fetch() {
1308   MemoryBufferRef MBRef = getBuffer();
1309   if (MBRef.getBuffer().empty())
1310     return nullptr;
1311 
1312   InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1313   File->GroupId = GroupId;
1314   return File;
1315 }
1316 
1317 template <class ELFT> void LazyObjFile::parse() {
1318   // A lazy object file wraps either a bitcode file or an ELF file.
1319   if (isBitcode(this->MB)) {
1320     std::unique_ptr<lto::InputFile> Obj =
1321         CHECK(lto::InputFile::create(this->MB), this);
1322     for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1323       if (!Sym.isUndefined())
1324         Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this);
1325     return;
1326   }
1327 
1328   if (getELFKind(this->MB, ArchiveName) != Config->EKind) {
1329     error("incompatible file: " + this->MB.getBufferIdentifier());
1330     return;
1331   }
1332 
1333   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1334   ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
1335 
1336   for (const typename ELFT::Shdr &Sec : Sections) {
1337     if (Sec.sh_type != SHT_SYMTAB)
1338       continue;
1339 
1340     typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this);
1341     uint32_t FirstGlobal = Sec.sh_info;
1342     StringRef StringTable =
1343         CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
1344 
1345     for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal))
1346       if (Sym.st_shndx != SHN_UNDEF)
1347         Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this),
1348                                     *this);
1349     return;
1350   }
1351 }
1352 
1353 std::string elf::replaceThinLTOSuffix(StringRef Path) {
1354   StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first;
1355   StringRef Repl = Config->ThinLTOObjectSuffixReplace.second;
1356 
1357   if (Path.consume_back(Suffix))
1358     return (Path + Repl).str();
1359   return Path;
1360 }
1361 
1362 template void ArchiveFile::parse<ELF32LE>();
1363 template void ArchiveFile::parse<ELF32BE>();
1364 template void ArchiveFile::parse<ELF64LE>();
1365 template void ArchiveFile::parse<ELF64BE>();
1366 
1367 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1368 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1369 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1370 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1371 
1372 template void LazyObjFile::parse<ELF32LE>();
1373 template void LazyObjFile::parse<ELF32BE>();
1374 template void LazyObjFile::parse<ELF64LE>();
1375 template void LazyObjFile::parse<ELF64BE>();
1376 
1377 template class elf::ObjFile<ELF32LE>;
1378 template class elf::ObjFile<ELF32BE>;
1379 template class elf::ObjFile<ELF64LE>;
1380 template class elf::ObjFile<ELF64BE>;
1381 
1382 template void SharedFile::parse<ELF32LE>();
1383 template void SharedFile::parse<ELF32BE>();
1384 template void SharedFile::parse<ELF64LE>();
1385 template void SharedFile::parse<ELF64BE>();
1386