1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "InputSection.h" 11 #include "LinkerScript.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/LTO/LTO.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Object/ELFObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Path.h" 28 #include "llvm/Support/TarWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::sys; 35 using namespace llvm::sys::fs; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 bool InputFile::IsInGroup; 41 uint32_t InputFile::NextGroupId; 42 std::vector<BinaryFile *> elf::BinaryFiles; 43 std::vector<BitcodeFile *> elf::BitcodeFiles; 44 std::vector<LazyObjFile *> elf::LazyObjFiles; 45 std::vector<InputFile *> elf::ObjectFiles; 46 std::vector<SharedFile *> elf::SharedFiles; 47 48 std::unique_ptr<TarWriter> elf::Tar; 49 50 InputFile::InputFile(Kind K, MemoryBufferRef M) 51 : MB(M), GroupId(NextGroupId), FileKind(K) { 52 // All files within the same --{start,end}-group get the same group ID. 53 // Otherwise, a new file will get a new group ID. 54 if (!IsInGroup) 55 ++NextGroupId; 56 } 57 58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 59 // The --chroot option changes our virtual root directory. 60 // This is useful when you are dealing with files created by --reproduce. 61 if (!Config->Chroot.empty() && Path.startswith("/")) 62 Path = Saver.save(Config->Chroot + Path); 63 64 log(Path); 65 66 auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); 67 if (auto EC = MBOrErr.getError()) { 68 error("cannot open " + Path + ": " + EC.message()); 69 return None; 70 } 71 72 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 73 MemoryBufferRef MBRef = MB->getMemBufferRef(); 74 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 75 76 if (Tar) 77 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 78 return MBRef; 79 } 80 81 // All input object files must be for the same architecture 82 // (e.g. it does not make sense to link x86 object files with 83 // MIPS object files.) This function checks for that error. 84 static bool isCompatible(InputFile *File) { 85 if (!File->isElf() && !isa<BitcodeFile>(File)) 86 return true; 87 88 if (File->EKind == Config->EKind && File->EMachine == Config->EMachine) { 89 if (Config->EMachine != EM_MIPS) 90 return true; 91 if (isMipsN32Abi(File) == Config->MipsN32Abi) 92 return true; 93 } 94 95 if (!Config->Emulation.empty()) { 96 error(toString(File) + " is incompatible with " + Config->Emulation); 97 } else { 98 InputFile *Existing; 99 if (!ObjectFiles.empty()) 100 Existing = ObjectFiles[0]; 101 else if (!SharedFiles.empty()) 102 Existing = SharedFiles[0]; 103 else 104 Existing = BitcodeFiles[0]; 105 106 error(toString(File) + " is incompatible with " + toString(Existing)); 107 } 108 109 return false; 110 } 111 112 // Add symbols in File to the symbol table. 113 template <class ELFT> void elf::parseFile(InputFile *File) { 114 // Comdat groups define "link once" sections. If two comdat groups have the 115 // same name, only one of them is linked, and the other is ignored. This set 116 // is used to uniquify them. 117 static llvm::DenseSet<llvm::CachedHashStringRef> ComdatGroups; 118 119 if (!isCompatible(File)) 120 return; 121 122 // Binary file 123 if (auto *F = dyn_cast<BinaryFile>(File)) { 124 BinaryFiles.push_back(F); 125 F->parse(); 126 return; 127 } 128 129 // .a file 130 if (auto *F = dyn_cast<ArchiveFile>(File)) { 131 F->parse<ELFT>(); 132 return; 133 } 134 135 // Lazy object file 136 if (auto *F = dyn_cast<LazyObjFile>(File)) { 137 LazyObjFiles.push_back(F); 138 F->parse<ELFT>(); 139 return; 140 } 141 142 if (Config->Trace) 143 message(toString(File)); 144 145 // .so file 146 if (auto *F = dyn_cast<SharedFile>(File)) { 147 F->parse<ELFT>(); 148 return; 149 } 150 151 // LLVM bitcode file 152 if (auto *F = dyn_cast<BitcodeFile>(File)) { 153 BitcodeFiles.push_back(F); 154 F->parse<ELFT>(ComdatGroups); 155 return; 156 } 157 158 // Regular object file 159 ObjectFiles.push_back(File); 160 cast<ObjFile<ELFT>>(File)->parse(ComdatGroups); 161 } 162 163 // Concatenates arguments to construct a string representing an error location. 164 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 165 std::string Filename = path::filename(Path); 166 std::string Lineno = ":" + std::to_string(Line); 167 if (Filename == Path) 168 return Filename + Lineno; 169 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 170 } 171 172 template <class ELFT> 173 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 174 InputSectionBase &Sec, uint64_t Offset) { 175 // In DWARF, functions and variables are stored to different places. 176 // First, lookup a function for a given offset. 177 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 178 return createFileLineMsg(Info->FileName, Info->Line); 179 180 // If it failed, lookup again as a variable. 181 if (Optional<std::pair<std::string, unsigned>> FileLine = 182 File.getVariableLoc(Sym.getName())) 183 return createFileLineMsg(FileLine->first, FileLine->second); 184 185 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 186 return File.SourceFile; 187 } 188 189 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 190 uint64_t Offset) { 191 if (kind() != ObjKind) 192 return ""; 193 switch (Config->EKind) { 194 default: 195 llvm_unreachable("Invalid kind"); 196 case ELF32LEKind: 197 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 198 case ELF32BEKind: 199 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 200 case ELF64LEKind: 201 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 202 case ELF64BEKind: 203 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 204 } 205 } 206 207 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 208 Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 209 for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) { 210 auto Report = [](Error Err) { 211 handleAllErrors(std::move(Err), 212 [](ErrorInfoBase &Info) { warn(Info.message()); }); 213 }; 214 Expected<const DWARFDebugLine::LineTable *> ExpectedLT = 215 Dwarf->getLineTableForUnit(CU.get(), Report); 216 const DWARFDebugLine::LineTable *LT = nullptr; 217 if (ExpectedLT) 218 LT = *ExpectedLT; 219 else 220 Report(ExpectedLT.takeError()); 221 if (!LT) 222 continue; 223 LineTables.push_back(LT); 224 225 // Loop over variable records and insert them to VariableLoc. 226 for (const auto &Entry : CU->dies()) { 227 DWARFDie Die(CU.get(), &Entry); 228 // Skip all tags that are not variables. 229 if (Die.getTag() != dwarf::DW_TAG_variable) 230 continue; 231 232 // Skip if a local variable because we don't need them for generating 233 // error messages. In general, only non-local symbols can fail to be 234 // linked. 235 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 236 continue; 237 238 // Get the source filename index for the variable. 239 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 240 if (!LT->hasFileAtIndex(File)) 241 continue; 242 243 // Get the line number on which the variable is declared. 244 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 245 246 // Here we want to take the variable name to add it into VariableLoc. 247 // Variable can have regular and linkage name associated. At first, we try 248 // to get linkage name as it can be different, for example when we have 249 // two variables in different namespaces of the same object. Use common 250 // name otherwise, but handle the case when it also absent in case if the 251 // input object file lacks some debug info. 252 StringRef Name = 253 dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), 254 dwarf::toString(Die.find(dwarf::DW_AT_name), "")); 255 if (!Name.empty()) 256 VariableLoc.insert({Name, {LT, File, Line}}); 257 } 258 } 259 } 260 261 // Returns the pair of file name and line number describing location of data 262 // object (variable, array, etc) definition. 263 template <class ELFT> 264 Optional<std::pair<std::string, unsigned>> 265 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 266 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 267 268 // Return if we have no debug information about data object. 269 auto It = VariableLoc.find(Name); 270 if (It == VariableLoc.end()) 271 return None; 272 273 // Take file name string from line table. 274 std::string FileName; 275 if (!It->second.LT->getFileNameByIndex( 276 It->second.File, nullptr, 277 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 278 return None; 279 280 return std::make_pair(FileName, It->second.Line); 281 } 282 283 // Returns source line information for a given offset 284 // using DWARF debug info. 285 template <class ELFT> 286 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 287 uint64_t Offset) { 288 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 289 290 // Detect SectionIndex for specified section. 291 uint64_t SectionIndex = object::SectionedAddress::UndefSection; 292 ArrayRef<InputSectionBase *> Sections = S->File->getSections(); 293 for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) { 294 if (S == Sections[CurIndex]) { 295 SectionIndex = CurIndex; 296 break; 297 } 298 } 299 300 // Use fake address calcuated by adding section file offset and offset in 301 // section. See comments for ObjectInfo class. 302 DILineInfo Info; 303 for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) { 304 if (LT->getFileLineInfoForAddress( 305 {S->getOffsetInFile() + Offset, SectionIndex}, nullptr, 306 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) 307 return Info; 308 } 309 return None; 310 } 311 312 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 313 std::string lld::toString(const InputFile *F) { 314 if (!F) 315 return "<internal>"; 316 317 if (F->ToStringCache.empty()) { 318 if (F->ArchiveName.empty()) 319 F->ToStringCache = F->getName(); 320 else 321 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 322 } 323 return F->ToStringCache; 324 } 325 326 ELFFileBase::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {} 327 328 template <class ELFT> void ELFFileBase::parseHeader() { 329 if (ELFT::TargetEndianness == support::little) 330 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 331 else 332 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 333 334 EMachine = getObj<ELFT>().getHeader()->e_machine; 335 OSABI = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 336 ABIVersion = getObj<ELFT>().getHeader()->e_ident[llvm::ELF::EI_ABIVERSION]; 337 } 338 339 template <class ELFT> 340 void ELFFileBase::initSymtab(ArrayRef<typename ELFT::Shdr> Sections, 341 const typename ELFT::Shdr *Symtab) { 342 FirstGlobal = Symtab->sh_info; 343 ArrayRef<typename ELFT::Sym> ELFSyms = 344 CHECK(getObj<ELFT>().symbols(Symtab), this); 345 if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size()) 346 fatal(toString(this) + ": invalid sh_info in symbol table"); 347 this->ELFSyms = reinterpret_cast<const void *>(ELFSyms.data()); 348 this->NumELFSyms = ELFSyms.size(); 349 350 StringTable = 351 CHECK(getObj<ELFT>().getStringTableForSymtab(*Symtab, Sections), this); 352 } 353 354 template <class ELFT> 355 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 356 : ELFFileBase(ObjKind, M) { 357 parseHeader<ELFT>(); 358 this->ArchiveName = ArchiveName; 359 } 360 361 template <class ELFT> 362 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 363 return CHECK( 364 this->getObj().getSectionIndex(&Sym, getELFSyms<ELFT>(), ShndxTable), 365 this); 366 } 367 368 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 369 if (this->Symbols.empty()) 370 return {}; 371 return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); 372 } 373 374 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 375 return makeArrayRef(this->Symbols).slice(this->FirstGlobal); 376 } 377 378 template <class ELFT> 379 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 380 // Read a section table. JustSymbols is usually false. 381 if (this->JustSymbols) 382 initializeJustSymbols(); 383 else 384 initializeSections(ComdatGroups); 385 386 // Read a symbol table. 387 initializeSymbols(); 388 } 389 390 // Sections with SHT_GROUP and comdat bits define comdat section groups. 391 // They are identified and deduplicated by group name. This function 392 // returns a group name. 393 template <class ELFT> 394 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 395 const Elf_Shdr &Sec) { 396 // Group signatures are stored as symbol names in object files. 397 // sh_info contains a symbol index, so we fetch a symbol and read its name. 398 if (this->getELFSyms<ELFT>().empty()) 399 this->initSymtab<ELFT>( 400 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 401 402 const Elf_Sym *Sym = 403 CHECK(object::getSymbol<ELFT>(this->getELFSyms<ELFT>(), Sec.sh_info), this); 404 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 405 406 // As a special case, if a symbol is a section symbol and has no name, 407 // we use a section name as a signature. 408 // 409 // Such SHT_GROUP sections are invalid from the perspective of the ELF 410 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 411 // older produce such sections as outputs for the -r option, so we need 412 // a bug-compatibility. 413 if (Signature.empty() && Sym->getType() == STT_SECTION) 414 return getSectionName(Sec); 415 return Signature; 416 } 417 418 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 419 // On a regular link we don't merge sections if -O0 (default is -O1). This 420 // sometimes makes the linker significantly faster, although the output will 421 // be bigger. 422 // 423 // Doing the same for -r would create a problem as it would combine sections 424 // with different sh_entsize. One option would be to just copy every SHF_MERGE 425 // section as is to the output. While this would produce a valid ELF file with 426 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 427 // they see two .debug_str. We could have separate logic for combining 428 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 429 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 430 // logic for -r. 431 if (Config->Optimize == 0 && !Config->Relocatable) 432 return false; 433 434 // A mergeable section with size 0 is useless because they don't have 435 // any data to merge. A mergeable string section with size 0 can be 436 // argued as invalid because it doesn't end with a null character. 437 // We'll avoid a mess by handling them as if they were non-mergeable. 438 if (Sec.sh_size == 0) 439 return false; 440 441 // Check for sh_entsize. The ELF spec is not clear about the zero 442 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 443 // the section does not hold a table of fixed-size entries". We know 444 // that Rust 1.13 produces a string mergeable section with a zero 445 // sh_entsize. Here we just accept it rather than being picky about it. 446 uint64_t EntSize = Sec.sh_entsize; 447 if (EntSize == 0) 448 return false; 449 if (Sec.sh_size % EntSize) 450 fatal(toString(this) + 451 ": SHF_MERGE section size must be a multiple of sh_entsize"); 452 453 uint64_t Flags = Sec.sh_flags; 454 if (!(Flags & SHF_MERGE)) 455 return false; 456 if (Flags & SHF_WRITE) 457 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 458 459 return true; 460 } 461 462 // This is for --just-symbols. 463 // 464 // --just-symbols is a very minor feature that allows you to link your 465 // output against other existing program, so that if you load both your 466 // program and the other program into memory, your output can refer the 467 // other program's symbols. 468 // 469 // When the option is given, we link "just symbols". The section table is 470 // initialized with null pointers. 471 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 472 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 473 this->Sections.resize(ObjSections.size()); 474 475 for (const Elf_Shdr &Sec : ObjSections) { 476 if (Sec.sh_type != SHT_SYMTAB) 477 continue; 478 this->initSymtab<ELFT>(ObjSections, &Sec); 479 return; 480 } 481 } 482 483 template <class ELFT> 484 void ObjFile<ELFT>::initializeSections( 485 DenseSet<CachedHashStringRef> &ComdatGroups) { 486 const ELFFile<ELFT> &Obj = this->getObj(); 487 488 ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); 489 uint64_t Size = ObjSections.size(); 490 this->Sections.resize(Size); 491 this->SectionStringTable = 492 CHECK(Obj.getSectionStringTable(ObjSections), this); 493 494 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 495 if (this->Sections[I] == &InputSection::Discarded) 496 continue; 497 const Elf_Shdr &Sec = ObjSections[I]; 498 499 if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 500 CGProfile = 501 check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec)); 502 503 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 504 // if -r is given, we'll let the final link discard such sections. 505 // This is compatible with GNU. 506 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 507 if (Sec.sh_type == SHT_LLVM_ADDRSIG) { 508 // We ignore the address-significance table if we know that the object 509 // file was created by objcopy or ld -r. This is because these tools 510 // will reorder the symbols in the symbol table, invalidating the data 511 // in the address-significance table, which refers to symbols by index. 512 if (Sec.sh_link != 0) 513 this->AddrsigSec = &Sec; 514 else if (Config->ICF == ICFLevel::Safe) 515 warn(toString(this) + ": --icf=safe is incompatible with object " 516 "files created using objcopy or ld -r"); 517 } 518 this->Sections[I] = &InputSection::Discarded; 519 continue; 520 } 521 522 switch (Sec.sh_type) { 523 case SHT_GROUP: { 524 // De-duplicate section groups by their signatures. 525 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 526 this->Sections[I] = &InputSection::Discarded; 527 528 529 ArrayRef<Elf_Word> Entries = 530 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 531 if (Entries.empty()) 532 fatal(toString(this) + ": empty SHT_GROUP"); 533 534 // The first word of a SHT_GROUP section contains flags. Currently, 535 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 536 // An group with the empty flag doesn't define anything; such sections 537 // are just skipped. 538 if (Entries[0] == 0) 539 continue; 540 541 if (Entries[0] != GRP_COMDAT) 542 fatal(toString(this) + ": unsupported SHT_GROUP format"); 543 544 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 545 if (IsNew) { 546 if (Config->Relocatable) 547 this->Sections[I] = createInputSection(Sec); 548 continue; 549 } 550 551 // Otherwise, discard group members. 552 for (uint32_t SecIndex : Entries.slice(1)) { 553 if (SecIndex >= Size) 554 fatal(toString(this) + 555 ": invalid section index in group: " + Twine(SecIndex)); 556 this->Sections[SecIndex] = &InputSection::Discarded; 557 } 558 break; 559 } 560 case SHT_SYMTAB: 561 this->initSymtab<ELFT>(ObjSections, &Sec); 562 break; 563 case SHT_SYMTAB_SHNDX: 564 ShndxTable = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 565 break; 566 case SHT_STRTAB: 567 case SHT_NULL: 568 break; 569 default: 570 this->Sections[I] = createInputSection(Sec); 571 } 572 573 // .ARM.exidx sections have a reverse dependency on the InputSection they 574 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 575 if (Sec.sh_flags & SHF_LINK_ORDER) { 576 InputSectionBase *LinkSec = nullptr; 577 if (Sec.sh_link < this->Sections.size()) 578 LinkSec = this->Sections[Sec.sh_link]; 579 if (!LinkSec) 580 fatal(toString(this) + 581 ": invalid sh_link index: " + Twine(Sec.sh_link)); 582 583 InputSection *IS = cast<InputSection>(this->Sections[I]); 584 LinkSec->DependentSections.push_back(IS); 585 if (!isa<InputSection>(LinkSec)) 586 error("a section " + IS->Name + 587 " with SHF_LINK_ORDER should not refer a non-regular " 588 "section: " + 589 toString(LinkSec)); 590 } 591 } 592 } 593 594 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 595 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 596 // the input objects have been compiled. 597 static void updateARMVFPArgs(const ARMAttributeParser &Attributes, 598 const InputFile *F) { 599 if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 600 // If an ABI tag isn't present then it is implicitly given the value of 0 601 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 602 // including some in glibc that don't use FP args (and should have value 3) 603 // don't have the attribute so we do not consider an implicit value of 0 604 // as a clash. 605 return; 606 607 unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 608 ARMVFPArgKind Arg; 609 switch (VFPArgs) { 610 case ARMBuildAttrs::BaseAAPCS: 611 Arg = ARMVFPArgKind::Base; 612 break; 613 case ARMBuildAttrs::HardFPAAPCS: 614 Arg = ARMVFPArgKind::VFP; 615 break; 616 case ARMBuildAttrs::ToolChainFPPCS: 617 // Tool chain specific convention that conforms to neither AAPCS variant. 618 Arg = ARMVFPArgKind::ToolChain; 619 break; 620 case ARMBuildAttrs::CompatibleFPAAPCS: 621 // Object compatible with all conventions. 622 return; 623 default: 624 error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); 625 return; 626 } 627 // Follow ld.bfd and error if there is a mix of calling conventions. 628 if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) 629 error(toString(F) + ": incompatible Tag_ABI_VFP_args"); 630 else 631 Config->ARMVFPArgs = Arg; 632 } 633 634 // The ARM support in lld makes some use of instructions that are not available 635 // on all ARM architectures. Namely: 636 // - Use of BLX instruction for interworking between ARM and Thumb state. 637 // - Use of the extended Thumb branch encoding in relocation. 638 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 639 // The ARM Attributes section contains information about the architecture chosen 640 // at compile time. We follow the convention that if at least one input object 641 // is compiled with an architecture that supports these features then lld is 642 // permitted to use them. 643 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 644 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 645 return; 646 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 647 switch (Arch) { 648 case ARMBuildAttrs::Pre_v4: 649 case ARMBuildAttrs::v4: 650 case ARMBuildAttrs::v4T: 651 // Architectures prior to v5 do not support BLX instruction 652 break; 653 case ARMBuildAttrs::v5T: 654 case ARMBuildAttrs::v5TE: 655 case ARMBuildAttrs::v5TEJ: 656 case ARMBuildAttrs::v6: 657 case ARMBuildAttrs::v6KZ: 658 case ARMBuildAttrs::v6K: 659 Config->ARMHasBlx = true; 660 // Architectures used in pre-Cortex processors do not support 661 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 662 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 663 break; 664 default: 665 // All other Architectures have BLX and extended branch encoding 666 Config->ARMHasBlx = true; 667 Config->ARMJ1J2BranchEncoding = true; 668 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 669 // All Architectures used in Cortex processors with the exception 670 // of v6-M and v6S-M have the MOVT and MOVW instructions. 671 Config->ARMHasMovtMovw = true; 672 break; 673 } 674 } 675 676 template <class ELFT> 677 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 678 uint32_t Idx = Sec.sh_info; 679 if (Idx >= this->Sections.size()) 680 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 681 InputSectionBase *Target = this->Sections[Idx]; 682 683 // Strictly speaking, a relocation section must be included in the 684 // group of the section it relocates. However, LLVM 3.3 and earlier 685 // would fail to do so, so we gracefully handle that case. 686 if (Target == &InputSection::Discarded) 687 return nullptr; 688 689 if (!Target) 690 fatal(toString(this) + ": unsupported relocation reference"); 691 return Target; 692 } 693 694 // Create a regular InputSection class that has the same contents 695 // as a given section. 696 static InputSection *toRegularSection(MergeInputSection *Sec) { 697 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 698 Sec->data(), Sec->Name); 699 } 700 701 template <class ELFT> 702 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 703 StringRef Name = getSectionName(Sec); 704 705 switch (Sec.sh_type) { 706 case SHT_ARM_ATTRIBUTES: { 707 if (Config->EMachine != EM_ARM) 708 break; 709 ARMAttributeParser Attributes; 710 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 711 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 712 updateSupportedARMFeatures(Attributes); 713 updateARMVFPArgs(Attributes, this); 714 715 // FIXME: Retain the first attribute section we see. The eglibc ARM 716 // dynamic loaders require the presence of an attribute section for dlopen 717 // to work. In a full implementation we would merge all attribute sections. 718 if (In.ARMAttributes == nullptr) { 719 In.ARMAttributes = make<InputSection>(*this, Sec, Name); 720 return In.ARMAttributes; 721 } 722 return &InputSection::Discarded; 723 } 724 case SHT_RELA: 725 case SHT_REL: { 726 // Find a relocation target section and associate this section with that. 727 // Target may have been discarded if it is in a different section group 728 // and the group is discarded, even though it's a violation of the 729 // spec. We handle that situation gracefully by discarding dangling 730 // relocation sections. 731 InputSectionBase *Target = getRelocTarget(Sec); 732 if (!Target) 733 return nullptr; 734 735 // This section contains relocation information. 736 // If -r is given, we do not interpret or apply relocation 737 // but just copy relocation sections to output. 738 if (Config->Relocatable) { 739 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 740 // We want to add a dependency to target, similar like we do for 741 // -emit-relocs below. This is useful for the case when linker script 742 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 743 // -r, but we faced it in the Linux kernel and have to handle such case 744 // and not to crash. 745 Target->DependentSections.push_back(RelocSec); 746 return RelocSec; 747 } 748 749 if (Target->FirstRelocation) 750 fatal(toString(this) + 751 ": multiple relocation sections to one section are not supported"); 752 753 // ELF spec allows mergeable sections with relocations, but they are 754 // rare, and it is in practice hard to merge such sections by contents, 755 // because applying relocations at end of linking changes section 756 // contents. So, we simply handle such sections as non-mergeable ones. 757 // Degrading like this is acceptable because section merging is optional. 758 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 759 Target = toRegularSection(MS); 760 this->Sections[Sec.sh_info] = Target; 761 } 762 763 if (Sec.sh_type == SHT_RELA) { 764 ArrayRef<Elf_Rela> Rels = CHECK(getObj().relas(&Sec), this); 765 Target->FirstRelocation = Rels.begin(); 766 Target->NumRelocations = Rels.size(); 767 Target->AreRelocsRela = true; 768 } else { 769 ArrayRef<Elf_Rel> Rels = CHECK(getObj().rels(&Sec), this); 770 Target->FirstRelocation = Rels.begin(); 771 Target->NumRelocations = Rels.size(); 772 Target->AreRelocsRela = false; 773 } 774 assert(isUInt<31>(Target->NumRelocations)); 775 776 // Relocation sections processed by the linker are usually removed 777 // from the output, so returning `nullptr` for the normal case. 778 // However, if -emit-relocs is given, we need to leave them in the output. 779 // (Some post link analysis tools need this information.) 780 if (Config->EmitRelocs) { 781 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 782 // We will not emit relocation section if target was discarded. 783 Target->DependentSections.push_back(RelocSec); 784 return RelocSec; 785 } 786 return nullptr; 787 } 788 } 789 790 // The GNU linker uses .note.GNU-stack section as a marker indicating 791 // that the code in the object file does not expect that the stack is 792 // executable (in terms of NX bit). If all input files have the marker, 793 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 794 // make the stack non-executable. Most object files have this section as 795 // of 2017. 796 // 797 // But making the stack non-executable is a norm today for security 798 // reasons. Failure to do so may result in a serious security issue. 799 // Therefore, we make LLD always add PT_GNU_STACK unless it is 800 // explicitly told to do otherwise (by -z execstack). Because the stack 801 // executable-ness is controlled solely by command line options, 802 // .note.GNU-stack sections are simply ignored. 803 if (Name == ".note.GNU-stack") 804 return &InputSection::Discarded; 805 806 // Split stacks is a feature to support a discontiguous stack, 807 // commonly used in the programming language Go. For the details, 808 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 809 // for split stack will include a .note.GNU-split-stack section. 810 if (Name == ".note.GNU-split-stack") { 811 if (Config->Relocatable) { 812 error("cannot mix split-stack and non-split-stack in a relocatable link"); 813 return &InputSection::Discarded; 814 } 815 this->SplitStack = true; 816 return &InputSection::Discarded; 817 } 818 819 // An object file cmpiled for split stack, but where some of the 820 // functions were compiled with the no_split_stack_attribute will 821 // include a .note.GNU-no-split-stack section. 822 if (Name == ".note.GNU-no-split-stack") { 823 this->SomeNoSplitStack = true; 824 return &InputSection::Discarded; 825 } 826 827 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 828 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 829 // sections. Drop those sections to avoid duplicate symbol errors. 830 // FIXME: This is glibc PR20543, we should remove this hack once that has been 831 // fixed for a while. 832 if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 833 Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 834 return &InputSection::Discarded; 835 836 // If we are creating a new .build-id section, strip existing .build-id 837 // sections so that the output won't have more than one .build-id. 838 // This is not usually a problem because input object files normally don't 839 // have .build-id sections, but you can create such files by 840 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 841 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 842 return &InputSection::Discarded; 843 844 // The linker merges EH (exception handling) frames and creates a 845 // .eh_frame_hdr section for runtime. So we handle them with a special 846 // class. For relocatable outputs, they are just passed through. 847 if (Name == ".eh_frame" && !Config->Relocatable) 848 return make<EhInputSection>(*this, Sec, Name); 849 850 if (shouldMerge(Sec)) 851 return make<MergeInputSection>(*this, Sec, Name); 852 return make<InputSection>(*this, Sec, Name); 853 } 854 855 template <class ELFT> 856 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 857 return CHECK(getObj().getSectionName(&Sec, SectionStringTable), this); 858 } 859 860 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 861 this->Symbols.reserve(this->getELFSyms<ELFT>().size()); 862 for (const Elf_Sym &Sym : this->getELFSyms<ELFT>()) 863 this->Symbols.push_back(createSymbol(&Sym)); 864 } 865 866 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 867 int Binding = Sym->getBinding(); 868 869 uint32_t SecIdx = getSectionIndex(*Sym); 870 if (SecIdx >= this->Sections.size()) 871 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 872 873 InputSectionBase *Sec = this->Sections[SecIdx]; 874 uint8_t StOther = Sym->st_other; 875 uint8_t Type = Sym->getType(); 876 uint64_t Value = Sym->st_value; 877 uint64_t Size = Sym->st_size; 878 879 if (Binding == STB_LOCAL) { 880 if (Sym->getType() == STT_FILE) 881 SourceFile = CHECK(Sym->getName(this->StringTable), this); 882 883 if (this->StringTable.size() <= Sym->st_name) 884 fatal(toString(this) + ": invalid symbol name offset"); 885 886 StringRefZ Name = this->StringTable.data() + Sym->st_name; 887 if (Sym->st_shndx == SHN_UNDEF) 888 return make<Undefined>(this, Name, Binding, StOther, Type); 889 890 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 891 } 892 893 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 894 895 switch (Sym->st_shndx) { 896 case SHN_UNDEF: 897 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 898 /*CanOmitFromDynSym=*/false, this); 899 case SHN_COMMON: 900 if (Value == 0 || Value >= UINT32_MAX) 901 fatal(toString(this) + ": common symbol '" + Name + 902 "' has invalid alignment: " + Twine(Value)); 903 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this); 904 } 905 906 switch (Binding) { 907 default: 908 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 909 case STB_GLOBAL: 910 case STB_WEAK: 911 case STB_GNU_UNIQUE: 912 if (Sec == &InputSection::Discarded) 913 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 914 /*CanOmitFromDynSym=*/false, this); 915 return Symtab->addDefined(Name, StOther, Type, Value, Size, Binding, Sec, 916 this); 917 } 918 } 919 920 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 921 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 922 File(std::move(File)) {} 923 924 template <class ELFT> void ArchiveFile::parse() { 925 for (const Archive::Symbol &Sym : File->symbols()) 926 Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym); 927 } 928 929 // Returns a buffer pointing to a member file containing a given symbol. 930 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) { 931 Archive::Child C = 932 CHECK(Sym.getMember(), toString(this) + 933 ": could not get the member for symbol " + 934 Sym.getName()); 935 936 if (!Seen.insert(C.getChildOffset()).second) 937 return nullptr; 938 939 MemoryBufferRef MB = 940 CHECK(C.getMemoryBufferRef(), 941 toString(this) + 942 ": could not get the buffer for the member defining symbol " + 943 Sym.getName()); 944 945 if (Tar && C.getParent()->isThin()) 946 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); 947 948 InputFile *File = createObjectFile( 949 MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); 950 File->GroupId = GroupId; 951 return File; 952 } 953 954 unsigned SharedFile::VernauxNum; 955 956 SharedFile::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 957 : ELFFileBase(SharedKind, M), SoName(DefaultSoName), 958 IsNeeded(!Config->AsNeeded) {} 959 960 // Parse the version definitions in the object file if present, and return a 961 // vector whose nth element contains a pointer to the Elf_Verdef for version 962 // identifier n. Version identifiers that are not definitions map to nullptr. 963 template <typename ELFT> 964 static std::vector<const void *> parseVerdefs(const uint8_t *Base, 965 const typename ELFT::Shdr *Sec) { 966 if (!Sec) 967 return {}; 968 969 // We cannot determine the largest verdef identifier without inspecting 970 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 971 // sequentially starting from 1, so we predict that the largest identifier 972 // will be VerdefCount. 973 unsigned VerdefCount = Sec->sh_info; 974 std::vector<const void *> Verdefs(VerdefCount + 1); 975 976 // Build the Verdefs array by following the chain of Elf_Verdef objects 977 // from the start of the .gnu.version_d section. 978 const uint8_t *Verdef = Base + Sec->sh_offset; 979 for (unsigned I = 0; I != VerdefCount; ++I) { 980 auto *CurVerdef = reinterpret_cast<const typename ELFT::Verdef *>(Verdef); 981 Verdef += CurVerdef->vd_next; 982 unsigned VerdefIndex = CurVerdef->vd_ndx; 983 Verdefs.resize(VerdefIndex + 1); 984 Verdefs[VerdefIndex] = CurVerdef; 985 } 986 return Verdefs; 987 } 988 989 // We do not usually care about alignments of data in shared object 990 // files because the loader takes care of it. However, if we promote a 991 // DSO symbol to point to .bss due to copy relocation, we need to keep 992 // the original alignment requirements. We infer it in this function. 993 template <typename ELFT> 994 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> Sections, 995 const typename ELFT::Sym &Sym) { 996 uint64_t Ret = UINT64_MAX; 997 if (Sym.st_value) 998 Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 999 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) 1000 Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); 1001 return (Ret > UINT32_MAX) ? 0 : Ret; 1002 } 1003 1004 // Fully parse the shared object file. 1005 // 1006 // This function parses symbol versions. If a DSO has version information, 1007 // the file has a ".gnu.version_d" section which contains symbol version 1008 // definitions. Each symbol is associated to one version through a table in 1009 // ".gnu.version" section. That table is a parallel array for the symbol 1010 // table, and each table entry contains an index in ".gnu.version_d". 1011 // 1012 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1013 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1014 // ".gnu.version_d". 1015 // 1016 // The file format for symbol versioning is perhaps a bit more complicated 1017 // than necessary, but you can easily understand the code if you wrap your 1018 // head around the data structure described above. 1019 template <class ELFT> void SharedFile::parse() { 1020 using Elf_Dyn = typename ELFT::Dyn; 1021 using Elf_Shdr = typename ELFT::Shdr; 1022 using Elf_Sym = typename ELFT::Sym; 1023 using Elf_Verdef = typename ELFT::Verdef; 1024 using Elf_Versym = typename ELFT::Versym; 1025 1026 ArrayRef<Elf_Dyn> DynamicTags; 1027 const ELFFile<ELFT> Obj = this->getObj<ELFT>(); 1028 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 1029 1030 const Elf_Shdr *VersymSec = nullptr; 1031 const Elf_Shdr *VerdefSec = nullptr; 1032 1033 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1034 for (const Elf_Shdr &Sec : Sections) { 1035 switch (Sec.sh_type) { 1036 default: 1037 continue; 1038 case SHT_DYNSYM: 1039 this->initSymtab<ELFT>(Sections, &Sec); 1040 break; 1041 case SHT_DYNAMIC: 1042 DynamicTags = 1043 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(&Sec), this); 1044 break; 1045 case SHT_GNU_versym: 1046 VersymSec = &Sec; 1047 break; 1048 case SHT_GNU_verdef: 1049 VerdefSec = &Sec; 1050 break; 1051 } 1052 } 1053 1054 if (VersymSec && this->getELFSyms<ELFT>().empty()) { 1055 error("SHT_GNU_versym should be associated with symbol table"); 1056 return; 1057 } 1058 1059 // Search for a DT_SONAME tag to initialize this->SoName. 1060 for (const Elf_Dyn &Dyn : DynamicTags) { 1061 if (Dyn.d_tag == DT_NEEDED) { 1062 uint64_t Val = Dyn.getVal(); 1063 if (Val >= this->StringTable.size()) 1064 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1065 DtNeeded.push_back(this->StringTable.data() + Val); 1066 } else if (Dyn.d_tag == DT_SONAME) { 1067 uint64_t Val = Dyn.getVal(); 1068 if (Val >= this->StringTable.size()) 1069 fatal(toString(this) + ": invalid DT_SONAME entry"); 1070 SoName = this->StringTable.data() + Val; 1071 } 1072 } 1073 1074 // DSOs are uniquified not by filename but by soname. 1075 DenseMap<StringRef, SharedFile *>::iterator It; 1076 bool WasInserted; 1077 std::tie(It, WasInserted) = Symtab->SoNames.try_emplace(SoName, this); 1078 1079 // If a DSO appears more than once on the command line with and without 1080 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1081 // user can add an extra DSO with --no-as-needed to force it to be added to 1082 // the dependency list. 1083 It->second->IsNeeded |= IsNeeded; 1084 if (!WasInserted) 1085 return; 1086 1087 SharedFiles.push_back(this); 1088 1089 Verdefs = parseVerdefs<ELFT>(Obj.base(), VerdefSec); 1090 1091 // Parse ".gnu.version" section which is a parallel array for the symbol 1092 // table. If a given file doesn't have a ".gnu.version" section, we use 1093 // VER_NDX_GLOBAL. 1094 size_t Size = this->getELFSyms<ELFT>().size() - this->FirstGlobal; 1095 std::vector<uint32_t> Versyms(Size, VER_NDX_GLOBAL); 1096 if (VersymSec) { 1097 ArrayRef<Elf_Versym> Versym = 1098 CHECK(Obj.template getSectionContentsAsArray<Elf_Versym>(VersymSec), 1099 this) 1100 .slice(FirstGlobal); 1101 for (size_t I = 0; I < Size; ++I) 1102 Versyms[I] = Versym[I].vs_index; 1103 } 1104 1105 // System libraries can have a lot of symbols with versions. Using a 1106 // fixed buffer for computing the versions name (foo@ver) can save a 1107 // lot of allocations. 1108 SmallString<0> VersionedNameBuffer; 1109 1110 // Add symbols to the symbol table. 1111 ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms<ELFT>(); 1112 for (size_t I = 0; I < Syms.size(); ++I) { 1113 const Elf_Sym &Sym = Syms[I]; 1114 1115 // ELF spec requires that all local symbols precede weak or global 1116 // symbols in each symbol table, and the index of first non-local symbol 1117 // is stored to sh_info. If a local symbol appears after some non-local 1118 // symbol, that's a violation of the spec. 1119 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 1120 if (Sym.getBinding() == STB_LOCAL) { 1121 warn("found local symbol '" + Name + 1122 "' in global part of symbol table in file " + toString(this)); 1123 continue; 1124 } 1125 1126 if (Sym.isUndefined()) { 1127 Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(), 1128 Sym.st_other, Sym.getType(), 1129 /*CanOmitFromDynSym=*/false, this); 1130 S->ExportDynamic = true; 1131 continue; 1132 } 1133 1134 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1135 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1136 // workaround for this bug. 1137 uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; 1138 if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && 1139 Name == "_gp_disp") 1140 continue; 1141 1142 uint64_t Alignment = getAlignment<ELFT>(Sections, Sym); 1143 if (!(Versyms[I] & VERSYM_HIDDEN)) 1144 Symtab->addShared(Name, Sym.getBinding(), Sym.st_other, Sym.getType(), 1145 Sym.st_value, Sym.st_size, Alignment, Idx, this); 1146 1147 // Also add the symbol with the versioned name to handle undefined symbols 1148 // with explicit versions. 1149 if (Idx == VER_NDX_GLOBAL) 1150 continue; 1151 1152 if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { 1153 error("corrupt input file: version definition index " + Twine(Idx) + 1154 " for symbol " + Name + " is out of bounds\n>>> defined in " + 1155 toString(this)); 1156 continue; 1157 } 1158 1159 StringRef VerName = 1160 this->StringTable.data() + 1161 reinterpret_cast<const Elf_Verdef *>(Verdefs[Idx])->getAux()->vda_name; 1162 VersionedNameBuffer.clear(); 1163 Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); 1164 Symtab->addShared(Saver.save(Name), Sym.getBinding(), Sym.st_other, 1165 Sym.getType(), Sym.st_value, Sym.st_size, Alignment, Idx, 1166 this); 1167 } 1168 } 1169 1170 static ELFKind getBitcodeELFKind(const Triple &T) { 1171 if (T.isLittleEndian()) 1172 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1173 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1174 } 1175 1176 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 1177 switch (T.getArch()) { 1178 case Triple::aarch64: 1179 return EM_AARCH64; 1180 case Triple::amdgcn: 1181 case Triple::r600: 1182 return EM_AMDGPU; 1183 case Triple::arm: 1184 case Triple::thumb: 1185 return EM_ARM; 1186 case Triple::avr: 1187 return EM_AVR; 1188 case Triple::mips: 1189 case Triple::mipsel: 1190 case Triple::mips64: 1191 case Triple::mips64el: 1192 return EM_MIPS; 1193 case Triple::msp430: 1194 return EM_MSP430; 1195 case Triple::ppc: 1196 return EM_PPC; 1197 case Triple::ppc64: 1198 case Triple::ppc64le: 1199 return EM_PPC64; 1200 case Triple::x86: 1201 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 1202 case Triple::x86_64: 1203 return EM_X86_64; 1204 default: 1205 error(Path + ": could not infer e_machine from bitcode target triple " + 1206 T.str()); 1207 return EM_NONE; 1208 } 1209 } 1210 1211 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 1212 uint64_t OffsetInArchive) 1213 : InputFile(BitcodeKind, MB) { 1214 this->ArchiveName = ArchiveName; 1215 1216 std::string Path = MB.getBufferIdentifier().str(); 1217 if (Config->ThinLTOIndexOnly) 1218 Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); 1219 1220 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1221 // name. If two archives define two members with the same name, this 1222 // causes a collision which result in only one of the objects being taken 1223 // into consideration at LTO time (which very likely causes undefined 1224 // symbols later in the link stage). So we append file offset to make 1225 // filename unique. 1226 MemoryBufferRef MBRef( 1227 MB.getBuffer(), 1228 Saver.save(ArchiveName + Path + 1229 (ArchiveName.empty() ? "" : utostr(OffsetInArchive)))); 1230 1231 Obj = CHECK(lto::InputFile::create(MBRef), this); 1232 1233 Triple T(Obj->getTargetTriple()); 1234 EKind = getBitcodeELFKind(T); 1235 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 1236 } 1237 1238 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 1239 switch (GvVisibility) { 1240 case GlobalValue::DefaultVisibility: 1241 return STV_DEFAULT; 1242 case GlobalValue::HiddenVisibility: 1243 return STV_HIDDEN; 1244 case GlobalValue::ProtectedVisibility: 1245 return STV_PROTECTED; 1246 } 1247 llvm_unreachable("unknown visibility"); 1248 } 1249 1250 template <class ELFT> 1251 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 1252 const lto::InputFile::Symbol &ObjSym, 1253 BitcodeFile &F) { 1254 StringRef Name = Saver.save(ObjSym.getName()); 1255 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1256 1257 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 1258 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 1259 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 1260 1261 int C = ObjSym.getComdatIndex(); 1262 if (C != -1 && !KeptComdats[C]) 1263 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1264 CanOmitFromDynSym, &F); 1265 1266 if (ObjSym.isUndefined()) 1267 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1268 CanOmitFromDynSym, &F); 1269 1270 if (ObjSym.isCommon()) 1271 return Symtab->addCommon(Name, ObjSym.getCommonSize(), 1272 ObjSym.getCommonAlignment(), Binding, Visibility, 1273 STT_OBJECT, F); 1274 1275 return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym, 1276 F); 1277 } 1278 1279 template <class ELFT> 1280 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 1281 std::vector<bool> KeptComdats; 1282 for (StringRef S : Obj->getComdatTable()) 1283 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 1284 1285 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1286 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1287 } 1288 1289 static ELFKind getELFKind(MemoryBufferRef MB, StringRef ArchiveName) { 1290 unsigned char Size; 1291 unsigned char Endian; 1292 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 1293 1294 auto Fatal = [&](StringRef Msg) { 1295 StringRef Filename = MB.getBufferIdentifier(); 1296 if (ArchiveName.empty()) 1297 fatal(Filename + ": " + Msg); 1298 else 1299 fatal(ArchiveName + "(" + Filename + "): " + Msg); 1300 }; 1301 1302 if (!MB.getBuffer().startswith(ElfMagic)) 1303 Fatal("not an ELF file"); 1304 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 1305 Fatal("corrupted ELF file: invalid data encoding"); 1306 if (Size != ELFCLASS32 && Size != ELFCLASS64) 1307 Fatal("corrupted ELF file: invalid file class"); 1308 1309 size_t BufSize = MB.getBuffer().size(); 1310 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 1311 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 1312 Fatal("corrupted ELF file: file is too short"); 1313 1314 if (Size == ELFCLASS32) 1315 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 1316 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 1317 } 1318 1319 void BinaryFile::parse() { 1320 ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer()); 1321 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1322 8, Data, ".data"); 1323 Sections.push_back(Section); 1324 1325 // For each input file foo that is embedded to a result as a binary 1326 // blob, we define _binary_foo_{start,end,size} symbols, so that 1327 // user programs can access blobs by name. Non-alphanumeric 1328 // characters in a filename are replaced with underscore. 1329 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1330 for (size_t I = 0; I < S.size(); ++I) 1331 if (!isAlnum(S[I])) 1332 S[I] = '_'; 1333 1334 Symtab->addDefined(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0, 1335 STB_GLOBAL, Section, nullptr); 1336 Symtab->addDefined(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1337 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1338 Symtab->addDefined(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1339 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1340 } 1341 1342 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1343 uint64_t OffsetInArchive) { 1344 if (isBitcode(MB)) 1345 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1346 1347 switch (getELFKind(MB, ArchiveName)) { 1348 case ELF32LEKind: 1349 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1350 case ELF32BEKind: 1351 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1352 case ELF64LEKind: 1353 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1354 case ELF64BEKind: 1355 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1356 default: 1357 llvm_unreachable("getELFKind"); 1358 } 1359 } 1360 1361 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1362 auto *F = make<SharedFile>(MB, DefaultSoName); 1363 switch (getELFKind(MB, "")) { 1364 case ELF32LEKind: 1365 F->parseHeader<ELF32LE>(); 1366 break; 1367 case ELF32BEKind: 1368 F->parseHeader<ELF32BE>(); 1369 break; 1370 case ELF64LEKind: 1371 F->parseHeader<ELF64LE>(); 1372 break; 1373 case ELF64BEKind: 1374 F->parseHeader<ELF64BE>(); 1375 break; 1376 default: 1377 llvm_unreachable("getELFKind"); 1378 } 1379 return F; 1380 } 1381 1382 MemoryBufferRef LazyObjFile::getBuffer() { 1383 if (AddedToLink) 1384 return MemoryBufferRef(); 1385 AddedToLink = true; 1386 return MB; 1387 } 1388 1389 InputFile *LazyObjFile::fetch() { 1390 MemoryBufferRef MBRef = getBuffer(); 1391 if (MBRef.getBuffer().empty()) 1392 return nullptr; 1393 1394 InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1395 File->GroupId = GroupId; 1396 return File; 1397 } 1398 1399 template <class ELFT> void LazyObjFile::parse() { 1400 // A lazy object file wraps either a bitcode file or an ELF file. 1401 if (isBitcode(this->MB)) { 1402 std::unique_ptr<lto::InputFile> Obj = 1403 CHECK(lto::InputFile::create(this->MB), this); 1404 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1405 if (!Sym.isUndefined()) 1406 Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this); 1407 return; 1408 } 1409 1410 if (getELFKind(this->MB, ArchiveName) != Config->EKind) { 1411 error("incompatible file: " + this->MB.getBufferIdentifier()); 1412 return; 1413 } 1414 1415 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); 1416 ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); 1417 1418 for (const typename ELFT::Shdr &Sec : Sections) { 1419 if (Sec.sh_type != SHT_SYMTAB) 1420 continue; 1421 1422 typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this); 1423 uint32_t FirstGlobal = Sec.sh_info; 1424 StringRef StringTable = 1425 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1426 1427 for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal)) 1428 if (Sym.st_shndx != SHN_UNDEF) 1429 Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this), 1430 *this); 1431 return; 1432 } 1433 } 1434 1435 std::string elf::replaceThinLTOSuffix(StringRef Path) { 1436 StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; 1437 StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; 1438 1439 if (Path.consume_back(Suffix)) 1440 return (Path + Repl).str(); 1441 return Path; 1442 } 1443 1444 template void elf::parseFile<ELF32LE>(InputFile *); 1445 template void elf::parseFile<ELF32BE>(InputFile *); 1446 template void elf::parseFile<ELF64LE>(InputFile *); 1447 template void elf::parseFile<ELF64BE>(InputFile *); 1448 1449 template void ArchiveFile::parse<ELF32LE>(); 1450 template void ArchiveFile::parse<ELF32BE>(); 1451 template void ArchiveFile::parse<ELF64LE>(); 1452 template void ArchiveFile::parse<ELF64BE>(); 1453 1454 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1455 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1456 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1457 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1458 1459 template void LazyObjFile::parse<ELF32LE>(); 1460 template void LazyObjFile::parse<ELF32BE>(); 1461 template void LazyObjFile::parse<ELF64LE>(); 1462 template void LazyObjFile::parse<ELF64BE>(); 1463 1464 template class elf::ObjFile<ELF32LE>; 1465 template class elf::ObjFile<ELF32BE>; 1466 template class elf::ObjFile<ELF64LE>; 1467 template class elf::ObjFile<ELF64BE>; 1468 1469 template void SharedFile::parse<ELF32LE>(); 1470 template void SharedFile::parse<ELF32BE>(); 1471 template void SharedFile::parse<ELF64LE>(); 1472 template void SharedFile::parse<ELF64BE>(); 1473