1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys::fs; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 std::vector<BinaryFile *> elf::BinaryFiles; 41 std::vector<BitcodeFile *> elf::BitcodeFiles; 42 std::vector<InputFile *> elf::ObjectFiles; 43 std::vector<InputFile *> elf::SharedFiles; 44 45 TarWriter *elf::Tar; 46 47 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 48 49 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 50 // The --chroot option changes our virtual root directory. 51 // This is useful when you are dealing with files created by --reproduce. 52 if (!Config->Chroot.empty() && Path.startswith("/")) 53 Path = Saver.save(Config->Chroot + Path); 54 55 log(Path); 56 57 auto MBOrErr = MemoryBuffer::getFile(Path); 58 if (auto EC = MBOrErr.getError()) { 59 error("cannot open " + Path + ": " + EC.message()); 60 return None; 61 } 62 63 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 64 MemoryBufferRef MBRef = MB->getMemBufferRef(); 65 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 66 67 if (Tar) 68 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 69 return MBRef; 70 } 71 72 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 73 DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this)); 74 const DWARFObject &Obj = Dwarf.getDWARFObj(); 75 DwarfLine.reset(new DWARFDebugLine); 76 DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, 77 Config->Wordsize); 78 79 // The second parameter is offset in .debug_line section 80 // for compilation unit (CU) of interest. We have only one 81 // CU (object file), so offset is always 0. 82 // FIXME: Provide the associated DWARFUnit if there is one. DWARF v5 83 // needs it in order to find indirect strings. 84 const DWARFDebugLine::LineTable *LT = 85 DwarfLine->getOrParseLineTable(LineData, 0, nullptr); 86 87 // Return if there is no debug information about CU available. 88 if (!Dwarf.getNumCompileUnits()) 89 return; 90 91 // Loop over variable records and insert them to VariableLoc. 92 DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0); 93 for (const auto &Entry : CU->dies()) { 94 DWARFDie Die(CU, &Entry); 95 // Skip all tags that are not variables. 96 if (Die.getTag() != dwarf::DW_TAG_variable) 97 continue; 98 99 // Skip if a local variable because we don't need them for generating error 100 // messages. In general, only non-local symbols can fail to be linked. 101 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 102 continue; 103 104 // Get the source filename index for the variable. 105 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 106 if (!LT->hasFileAtIndex(File)) 107 continue; 108 109 // Get the line number on which the variable is declared. 110 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 111 112 // Get the name of the variable and add the collected information to 113 // VariableLoc. Usually Name is non-empty, but it can be empty if the input 114 // object file lacks some debug info. 115 StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), ""); 116 if (!Name.empty()) 117 VariableLoc.insert({Name, {File, Line}}); 118 } 119 } 120 121 // Returns the pair of file name and line number describing location of data 122 // object (variable, array, etc) definition. 123 template <class ELFT> 124 Optional<std::pair<std::string, unsigned>> 125 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 126 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 127 128 // There is always only one CU so it's offset is 0. 129 const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0); 130 if (!LT) 131 return None; 132 133 // Return if we have no debug information about data object. 134 auto It = VariableLoc.find(Name); 135 if (It == VariableLoc.end()) 136 return None; 137 138 // Take file name string from line table. 139 std::string FileName; 140 if (!LT->getFileNameByIndex( 141 It->second.first /* File */, nullptr, 142 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 143 return None; 144 145 return std::make_pair(FileName, It->second.second /*Line*/); 146 } 147 148 // Returns source line information for a given offset 149 // using DWARF debug info. 150 template <class ELFT> 151 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 152 uint64_t Offset) { 153 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 154 155 // The offset to CU is 0. 156 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 157 if (!Tbl) 158 return None; 159 160 // Use fake address calcuated by adding section file offset and offset in 161 // section. See comments for ObjectInfo class. 162 DILineInfo Info; 163 Tbl->getFileLineInfoForAddress( 164 S->getOffsetInFile() + Offset, nullptr, 165 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 166 if (Info.Line == 0) 167 return None; 168 return Info; 169 } 170 171 // Returns source line information for a given offset 172 // using DWARF debug info. 173 template <class ELFT> 174 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) { 175 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 176 return Info->FileName + ":" + std::to_string(Info->Line); 177 return ""; 178 } 179 180 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 181 std::string lld::toString(const InputFile *F) { 182 if (!F) 183 return "<internal>"; 184 185 if (F->ToStringCache.empty()) { 186 if (F->ArchiveName.empty()) 187 F->ToStringCache = F->getName(); 188 else 189 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 190 } 191 return F->ToStringCache; 192 } 193 194 template <class ELFT> 195 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 196 if (ELFT::TargetEndianness == support::little) 197 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 198 else 199 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 200 201 EMachine = getObj().getHeader()->e_machine; 202 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 203 } 204 205 template <class ELFT> 206 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 207 return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end()); 208 } 209 210 template <class ELFT> 211 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 212 return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this); 213 } 214 215 template <class ELFT> 216 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 217 const Elf_Shdr *Symtab) { 218 FirstNonLocal = Symtab->sh_info; 219 ELFSyms = CHECK(getObj().symbols(Symtab), this); 220 if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size()) 221 fatal(toString(this) + ": invalid sh_info in symbol table"); 222 223 StringTable = 224 CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this); 225 } 226 227 template <class ELFT> 228 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 229 : ELFFileBase<ELFT>(Base::ObjKind, M) { 230 this->ArchiveName = ArchiveName; 231 } 232 233 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 234 if (this->Symbols.empty()) 235 return {}; 236 return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1); 237 } 238 239 template <class ELFT> 240 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 241 // Read section and symbol tables. 242 initializeSections(ComdatGroups); 243 initializeSymbols(); 244 } 245 246 // Sections with SHT_GROUP and comdat bits define comdat section groups. 247 // They are identified and deduplicated by group name. This function 248 // returns a group name. 249 template <class ELFT> 250 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 251 const Elf_Shdr &Sec) { 252 // Group signatures are stored as symbol names in object files. 253 // sh_info contains a symbol index, so we fetch a symbol and read its name. 254 if (this->ELFSyms.empty()) 255 this->initSymtab( 256 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 257 258 const Elf_Sym *Sym = 259 CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this); 260 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 261 262 // As a special case, if a symbol is a section symbol and has no name, 263 // we use a section name as a signature. 264 // 265 // Such SHT_GROUP sections are invalid from the perspective of the ELF 266 // standard, but GNU gold 1.14 (the neweset version as of July 2017) or 267 // older produce such sections as outputs for the -r option, so we need 268 // a bug-compatibility. 269 if (Signature.empty() && Sym->getType() == STT_SECTION) 270 return getSectionName(Sec); 271 return Signature; 272 } 273 274 template <class ELFT> 275 ArrayRef<typename ObjFile<ELFT>::Elf_Word> 276 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 277 const ELFFile<ELFT> &Obj = this->getObj(); 278 ArrayRef<Elf_Word> Entries = 279 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 280 if (Entries.empty() || Entries[0] != GRP_COMDAT) 281 fatal(toString(this) + ": unsupported SHT_GROUP format"); 282 return Entries.slice(1); 283 } 284 285 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 286 // We don't merge sections if -O0 (default is -O1). This makes sometimes 287 // the linker significantly faster, although the output will be bigger. 288 if (Config->Optimize == 0) 289 return false; 290 291 // A mergeable section with size 0 is useless because they don't have 292 // any data to merge. A mergeable string section with size 0 can be 293 // argued as invalid because it doesn't end with a null character. 294 // We'll avoid a mess by handling them as if they were non-mergeable. 295 if (Sec.sh_size == 0) 296 return false; 297 298 // Check for sh_entsize. The ELF spec is not clear about the zero 299 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 300 // the section does not hold a table of fixed-size entries". We know 301 // that Rust 1.13 produces a string mergeable section with a zero 302 // sh_entsize. Here we just accept it rather than being picky about it. 303 uint64_t EntSize = Sec.sh_entsize; 304 if (EntSize == 0) 305 return false; 306 if (Sec.sh_size % EntSize) 307 fatal(toString(this) + 308 ": SHF_MERGE section size must be a multiple of sh_entsize"); 309 310 uint64_t Flags = Sec.sh_flags; 311 if (!(Flags & SHF_MERGE)) 312 return false; 313 if (Flags & SHF_WRITE) 314 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 315 316 return true; 317 } 318 319 template <class ELFT> 320 void ObjFile<ELFT>::initializeSections( 321 DenseSet<CachedHashStringRef> &ComdatGroups) { 322 const ELFFile<ELFT> &Obj = this->getObj(); 323 324 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 325 uint64_t Size = ObjSections.size(); 326 this->Sections.resize(Size); 327 this->SectionStringTable = 328 CHECK(Obj.getSectionStringTable(ObjSections), this); 329 330 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 331 if (this->Sections[I] == &InputSection::Discarded) 332 continue; 333 const Elf_Shdr &Sec = ObjSections[I]; 334 335 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 336 // if -r is given, we'll let the final link discard such sections. 337 // This is compatible with GNU. 338 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 339 this->Sections[I] = &InputSection::Discarded; 340 continue; 341 } 342 343 switch (Sec.sh_type) { 344 case SHT_GROUP: { 345 // De-duplicate section groups by their signatures. 346 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 347 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 348 this->Sections[I] = &InputSection::Discarded; 349 350 // If it is a new section group, we want to keep group members. 351 // Group leader sections, which contain indices of group members, are 352 // discarded because they are useless beyond this point. The only 353 // exception is the -r option because in order to produce re-linkable 354 // object files, we want to pass through basically everything. 355 if (IsNew) { 356 if (Config->Relocatable) 357 this->Sections[I] = createInputSection(Sec); 358 continue; 359 } 360 361 // Otherwise, discard group members. 362 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 363 if (SecIndex >= Size) 364 fatal(toString(this) + 365 ": invalid section index in group: " + Twine(SecIndex)); 366 this->Sections[SecIndex] = &InputSection::Discarded; 367 } 368 break; 369 } 370 case SHT_SYMTAB: 371 this->initSymtab(ObjSections, &Sec); 372 break; 373 case SHT_SYMTAB_SHNDX: 374 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 375 break; 376 case SHT_STRTAB: 377 case SHT_NULL: 378 break; 379 default: 380 this->Sections[I] = createInputSection(Sec); 381 } 382 383 // .ARM.exidx sections have a reverse dependency on the InputSection they 384 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 385 if (Sec.sh_flags & SHF_LINK_ORDER) { 386 if (Sec.sh_link >= this->Sections.size()) 387 fatal(toString(this) + ": invalid sh_link index: " + 388 Twine(Sec.sh_link)); 389 this->Sections[Sec.sh_link]->DependentSections.push_back( 390 cast<InputSection>(this->Sections[I])); 391 } 392 } 393 } 394 395 // The ARM support in lld makes some use of instructions that are not available 396 // on all ARM architectures. Namely: 397 // - Use of BLX instruction for interworking between ARM and Thumb state. 398 // - Use of the extended Thumb branch encoding in relocation. 399 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 400 // The ARM Attributes section contains information about the architecture chosen 401 // at compile time. We follow the convention that if at least one input object 402 // is compiled with an architecture that supports these features then lld is 403 // permitted to use them. 404 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 405 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 406 return; 407 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 408 switch (Arch) { 409 case ARMBuildAttrs::Pre_v4: 410 case ARMBuildAttrs::v4: 411 case ARMBuildAttrs::v4T: 412 // Architectures prior to v5 do not support BLX instruction 413 break; 414 case ARMBuildAttrs::v5T: 415 case ARMBuildAttrs::v5TE: 416 case ARMBuildAttrs::v5TEJ: 417 case ARMBuildAttrs::v6: 418 case ARMBuildAttrs::v6KZ: 419 case ARMBuildAttrs::v6K: 420 Config->ARMHasBlx = true; 421 // Architectures used in pre-Cortex processors do not support 422 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 423 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 424 break; 425 default: 426 // All other Architectures have BLX and extended branch encoding 427 Config->ARMHasBlx = true; 428 Config->ARMJ1J2BranchEncoding = true; 429 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 430 // All Architectures used in Cortex processors with the exception 431 // of v6-M and v6S-M have the MOVT and MOVW instructions. 432 Config->ARMHasMovtMovw = true; 433 break; 434 } 435 } 436 437 template <class ELFT> 438 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 439 uint32_t Idx = Sec.sh_info; 440 if (Idx >= this->Sections.size()) 441 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 442 InputSectionBase *Target = this->Sections[Idx]; 443 444 // Strictly speaking, a relocation section must be included in the 445 // group of the section it relocates. However, LLVM 3.3 and earlier 446 // would fail to do so, so we gracefully handle that case. 447 if (Target == &InputSection::Discarded) 448 return nullptr; 449 450 if (!Target) 451 fatal(toString(this) + ": unsupported relocation reference"); 452 return Target; 453 } 454 455 // Create a regular InputSection class that has the same contents 456 // as a given section. 457 InputSectionBase *toRegularSection(MergeInputSection *Sec) { 458 auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, 459 Sec->Data, Sec->Name); 460 Ret->File = Sec->File; 461 return Ret; 462 } 463 464 template <class ELFT> 465 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 466 StringRef Name = getSectionName(Sec); 467 468 switch (Sec.sh_type) { 469 case SHT_ARM_ATTRIBUTES: { 470 if (Config->EMachine != EM_ARM) 471 break; 472 ARMAttributeParser Attributes; 473 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 474 Attributes.Parse(Contents, /*isLittle*/Config->EKind == ELF32LEKind); 475 updateSupportedARMFeatures(Attributes); 476 // FIXME: Retain the first attribute section we see. The eglibc ARM 477 // dynamic loaders require the presence of an attribute section for dlopen 478 // to work. In a full implementation we would merge all attribute sections. 479 if (InX::ARMAttributes == nullptr) { 480 InX::ARMAttributes = make<InputSection>(this, &Sec, Name); 481 return InX::ARMAttributes; 482 } 483 return &InputSection::Discarded; 484 } 485 case SHT_RELA: 486 case SHT_REL: { 487 // Find the relocation target section and associate this 488 // section with it. Target can be discarded, for example 489 // if it is a duplicated member of SHT_GROUP section, we 490 // do not create or proccess relocatable sections then. 491 InputSectionBase *Target = getRelocTarget(Sec); 492 if (!Target) 493 return nullptr; 494 495 // This section contains relocation information. 496 // If -r is given, we do not interpret or apply relocation 497 // but just copy relocation sections to output. 498 if (Config->Relocatable) 499 return make<InputSection>(this, &Sec, Name); 500 501 if (Target->FirstRelocation) 502 fatal(toString(this) + 503 ": multiple relocation sections to one section are not supported"); 504 505 // Mergeable sections with relocations are tricky because relocations 506 // need to be taken into account when comparing section contents for 507 // merging. It's not worth supporting such mergeable sections because 508 // they are rare and it'd complicates the internal design (we usually 509 // have to determine if two sections are mergeable early in the link 510 // process much before applying relocations). We simply handle mergeable 511 // sections with relocations as non-mergeable. 512 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 513 Target = toRegularSection(MS); 514 this->Sections[Sec.sh_info] = Target; 515 } 516 517 size_t NumRelocations; 518 if (Sec.sh_type == SHT_RELA) { 519 ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this); 520 Target->FirstRelocation = Rels.begin(); 521 NumRelocations = Rels.size(); 522 Target->AreRelocsRela = true; 523 } else { 524 ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this); 525 Target->FirstRelocation = Rels.begin(); 526 NumRelocations = Rels.size(); 527 Target->AreRelocsRela = false; 528 } 529 assert(isUInt<31>(NumRelocations)); 530 Target->NumRelocations = NumRelocations; 531 532 // Relocation sections processed by the linker are usually removed 533 // from the output, so returning `nullptr` for the normal case. 534 // However, if -emit-relocs is given, we need to leave them in the output. 535 // (Some post link analysis tools need this information.) 536 if (Config->EmitRelocs) { 537 InputSection *RelocSec = make<InputSection>(this, &Sec, Name); 538 // We will not emit relocation section if target was discarded. 539 Target->DependentSections.push_back(RelocSec); 540 return RelocSec; 541 } 542 return nullptr; 543 } 544 } 545 546 // The GNU linker uses .note.GNU-stack section as a marker indicating 547 // that the code in the object file does not expect that the stack is 548 // executable (in terms of NX bit). If all input files have the marker, 549 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 550 // make the stack non-executable. Most object files have this section as 551 // of 2017. 552 // 553 // But making the stack non-executable is a norm today for security 554 // reasons. Failure to do so may result in a serious security issue. 555 // Therefore, we make LLD always add PT_GNU_STACK unless it is 556 // explicitly told to do otherwise (by -z execstack). Because the stack 557 // executable-ness is controlled solely by command line options, 558 // .note.GNU-stack sections are simply ignored. 559 if (Name == ".note.GNU-stack") 560 return &InputSection::Discarded; 561 562 // Split stacks is a feature to support a discontiguous stack. At least 563 // as of 2017, it seems that the feature is not being used widely. 564 // Only GNU gold supports that. We don't. For the details about that, 565 // see https://gcc.gnu.org/wiki/SplitStacks 566 if (Name == ".note.GNU-split-stack") { 567 error(toString(this) + 568 ": object file compiled with -fsplit-stack is not supported"); 569 return &InputSection::Discarded; 570 } 571 572 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 573 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 574 // sections. Drop those sections to avoid duplicate symbol errors. 575 // FIXME: This is glibc PR20543, we should remove this hack once that has been 576 // fixed for a while. 577 if (Name.startswith(".gnu.linkonce.")) 578 return &InputSection::Discarded; 579 580 // The linker merges EH (exception handling) frames and creates a 581 // .eh_frame_hdr section for runtime. So we handle them with a special 582 // class. For relocatable outputs, they are just passed through. 583 if (Name == ".eh_frame" && !Config->Relocatable) 584 return make<EhInputSection>(this, &Sec, Name); 585 586 if (shouldMerge(Sec)) 587 return make<MergeInputSection>(this, &Sec, Name); 588 return make<InputSection>(this, &Sec, Name); 589 } 590 591 template <class ELFT> 592 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 593 return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this); 594 } 595 596 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 597 this->Symbols.reserve(this->ELFSyms.size()); 598 for (const Elf_Sym &Sym : this->ELFSyms) 599 this->Symbols.push_back(createSymbol(&Sym)); 600 } 601 602 template <class ELFT> 603 InputSectionBase *ObjFile<ELFT>::getSection(uint32_t Index) const { 604 if (Index == 0) 605 return nullptr; 606 if (Index >= this->Sections.size()) 607 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 608 return this->Sections[Index]; 609 } 610 611 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 612 int Binding = Sym->getBinding(); 613 InputSectionBase *Sec = getSection(this->getSectionIndex(*Sym)); 614 615 uint8_t StOther = Sym->st_other; 616 uint8_t Type = Sym->getType(); 617 uint64_t Value = Sym->st_value; 618 uint64_t Size = Sym->st_size; 619 620 if (Binding == STB_LOCAL) { 621 if (Sym->getType() == STT_FILE) 622 SourceFile = CHECK(Sym->getName(this->StringTable), this); 623 624 if (this->StringTable.size() <= Sym->st_name) 625 fatal(toString(this) + ": invalid symbol name offset"); 626 627 StringRefZ Name = this->StringTable.data() + Sym->st_name; 628 if (Sym->st_shndx == SHN_UNDEF) 629 return make<Undefined>(this, Name, Binding, StOther, Type); 630 631 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 632 } 633 634 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 635 636 switch (Sym->st_shndx) { 637 case SHN_UNDEF: 638 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 639 /*CanOmitFromDynSym=*/false, this); 640 case SHN_COMMON: 641 if (Value == 0 || Value >= UINT32_MAX) 642 fatal(toString(this) + ": common symbol '" + Name + 643 "' has invalid alignment: " + Twine(Value)); 644 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this); 645 } 646 647 switch (Binding) { 648 default: 649 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 650 case STB_GLOBAL: 651 case STB_WEAK: 652 case STB_GNU_UNIQUE: 653 if (Sec == &InputSection::Discarded) 654 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 655 /*CanOmitFromDynSym=*/false, this); 656 return Symtab->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding, 657 Sec, this); 658 } 659 } 660 661 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 662 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 663 File(std::move(File)) {} 664 665 template <class ELFT> void ArchiveFile::parse() { 666 Symbols.reserve(File->getNumberOfSymbols()); 667 for (const Archive::Symbol &Sym : File->symbols()) 668 Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym)); 669 } 670 671 // Returns a buffer pointing to a member file containing a given symbol. 672 std::pair<MemoryBufferRef, uint64_t> 673 ArchiveFile::getMember(const Archive::Symbol *Sym) { 674 Archive::Child C = 675 CHECK(Sym->getMember(), toString(this) + 676 ": could not get the member for symbol " + 677 Sym->getName()); 678 679 if (!Seen.insert(C.getChildOffset()).second) 680 return {MemoryBufferRef(), 0}; 681 682 MemoryBufferRef Ret = 683 CHECK(C.getMemoryBufferRef(), 684 toString(this) + 685 ": could not get the buffer for the member defining symbol " + 686 Sym->getName()); 687 688 if (C.getParent()->isThin() && Tar) 689 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), Ret.getBuffer()); 690 if (C.getParent()->isThin()) 691 return {Ret, 0}; 692 return {Ret, C.getChildOffset()}; 693 } 694 695 template <class ELFT> 696 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 697 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 698 IsNeeded(!Config->AsNeeded) {} 699 700 // Partially parse the shared object file so that we can call 701 // getSoName on this object. 702 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 703 const Elf_Shdr *DynamicSec = nullptr; 704 const ELFFile<ELFT> Obj = this->getObj(); 705 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 706 707 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 708 for (const Elf_Shdr &Sec : Sections) { 709 switch (Sec.sh_type) { 710 default: 711 continue; 712 case SHT_DYNSYM: 713 this->initSymtab(Sections, &Sec); 714 break; 715 case SHT_DYNAMIC: 716 DynamicSec = &Sec; 717 break; 718 case SHT_SYMTAB_SHNDX: 719 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this); 720 break; 721 case SHT_GNU_versym: 722 this->VersymSec = &Sec; 723 break; 724 case SHT_GNU_verdef: 725 this->VerdefSec = &Sec; 726 break; 727 } 728 } 729 730 if (this->VersymSec && this->ELFSyms.empty()) 731 error("SHT_GNU_versym should be associated with symbol table"); 732 733 // Search for a DT_SONAME tag to initialize this->SoName. 734 if (!DynamicSec) 735 return; 736 ArrayRef<Elf_Dyn> Arr = 737 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this); 738 for (const Elf_Dyn &Dyn : Arr) { 739 if (Dyn.d_tag == DT_SONAME) { 740 uint64_t Val = Dyn.getVal(); 741 if (Val >= this->StringTable.size()) 742 fatal(toString(this) + ": invalid DT_SONAME entry"); 743 SoName = this->StringTable.data() + Val; 744 return; 745 } 746 } 747 } 748 749 // Parse the version definitions in the object file if present. Returns a vector 750 // whose nth element contains a pointer to the Elf_Verdef for version identifier 751 // n. Version identifiers that are not definitions map to nullptr. The array 752 // always has at least length 1. 753 template <class ELFT> 754 std::vector<const typename ELFT::Verdef *> 755 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 756 std::vector<const Elf_Verdef *> Verdefs(1); 757 // We only need to process symbol versions for this DSO if it has both a 758 // versym and a verdef section, which indicates that the DSO contains symbol 759 // version definitions. 760 if (!VersymSec || !VerdefSec) 761 return Verdefs; 762 763 // The location of the first global versym entry. 764 const char *Base = this->MB.getBuffer().data(); 765 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 766 this->FirstNonLocal; 767 768 // We cannot determine the largest verdef identifier without inspecting 769 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 770 // sequentially starting from 1, so we predict that the largest identifier 771 // will be VerdefCount. 772 unsigned VerdefCount = VerdefSec->sh_info; 773 Verdefs.resize(VerdefCount + 1); 774 775 // Build the Verdefs array by following the chain of Elf_Verdef objects 776 // from the start of the .gnu.version_d section. 777 const char *Verdef = Base + VerdefSec->sh_offset; 778 for (unsigned I = 0; I != VerdefCount; ++I) { 779 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 780 Verdef += CurVerdef->vd_next; 781 unsigned VerdefIndex = CurVerdef->vd_ndx; 782 if (Verdefs.size() <= VerdefIndex) 783 Verdefs.resize(VerdefIndex + 1); 784 Verdefs[VerdefIndex] = CurVerdef; 785 } 786 787 return Verdefs; 788 } 789 790 // Fully parse the shared object file. This must be called after parseSoName(). 791 template <class ELFT> void SharedFile<ELFT>::parseRest() { 792 // Create mapping from version identifiers to Elf_Verdef entries. 793 const Elf_Versym *Versym = nullptr; 794 Verdefs = parseVerdefs(Versym); 795 796 ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); 797 798 // Add symbols to the symbol table. 799 Elf_Sym_Range Syms = this->getGlobalELFSyms(); 800 for (const Elf_Sym &Sym : Syms) { 801 unsigned VersymIndex = 0; 802 if (Versym) { 803 VersymIndex = Versym->vs_index; 804 ++Versym; 805 } 806 bool Hidden = VersymIndex & VERSYM_HIDDEN; 807 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 808 809 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 810 if (Sym.isUndefined()) { 811 Undefs.push_back(Name); 812 continue; 813 } 814 815 // Ignore local symbols. 816 if (Versym && VersymIndex == VER_NDX_LOCAL) 817 continue; 818 const Elf_Verdef *Ver = nullptr; 819 if (VersymIndex != VER_NDX_GLOBAL) { 820 if (VersymIndex >= Verdefs.size()) { 821 error("corrupt input file: version definition index " + 822 Twine(VersymIndex) + " for symbol " + Name + 823 " is out of bounds\n>>> defined in " + toString(this)); 824 continue; 825 } 826 Ver = Verdefs[VersymIndex]; 827 } else { 828 VersymIndex = 0; 829 } 830 831 // We do not usually care about alignments of data in shared object 832 // files because the loader takes care of it. However, if we promote a 833 // DSO symbol to point to .bss due to copy relocation, we need to keep 834 // the original alignment requirements. We infer it here. 835 uint64_t Alignment = 1; 836 if (Sym.st_value) 837 Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 838 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) { 839 uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign; 840 Alignment = std::min(Alignment, SecAlign); 841 } 842 if (Alignment > UINT32_MAX) 843 error(toString(this) + ": alignment too large: " + Name); 844 845 if (!Hidden) 846 Symtab->addShared(Name, this, Sym, Alignment, VersymIndex); 847 848 // Also add the symbol with the versioned name to handle undefined symbols 849 // with explicit versions. 850 if (Ver) { 851 StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name; 852 Name = Saver.save(Name + "@" + VerName); 853 Symtab->addShared(Name, this, Sym, Alignment, VersymIndex); 854 } 855 } 856 } 857 858 static ELFKind getBitcodeELFKind(const Triple &T) { 859 if (T.isLittleEndian()) 860 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 861 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 862 } 863 864 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 865 switch (T.getArch()) { 866 case Triple::aarch64: 867 return EM_AARCH64; 868 case Triple::arm: 869 case Triple::thumb: 870 return EM_ARM; 871 case Triple::avr: 872 return EM_AVR; 873 case Triple::mips: 874 case Triple::mipsel: 875 case Triple::mips64: 876 case Triple::mips64el: 877 return EM_MIPS; 878 case Triple::ppc: 879 return EM_PPC; 880 case Triple::ppc64: 881 return EM_PPC64; 882 case Triple::x86: 883 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 884 case Triple::x86_64: 885 return EM_X86_64; 886 default: 887 fatal(Path + ": could not infer e_machine from bitcode target triple " + 888 T.str()); 889 } 890 } 891 892 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 893 uint64_t OffsetInArchive) 894 : InputFile(BitcodeKind, MB) { 895 this->ArchiveName = ArchiveName; 896 897 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 898 // (the fully resolved path of the archive) + member name + offset of the 899 // member in the archive. 900 // ThinLTO uses the MemoryBufferRef identifier to access its internal 901 // data structures and if two archives define two members with the same name, 902 // this causes a collision which result in only one of the objects being 903 // taken into consideration at LTO time (which very likely causes undefined 904 // symbols later in the link stage). 905 MemoryBufferRef MBRef(MB.getBuffer(), 906 Saver.save(ArchiveName + MB.getBufferIdentifier() + 907 utostr(OffsetInArchive))); 908 Obj = CHECK(lto::InputFile::create(MBRef), this); 909 910 Triple T(Obj->getTargetTriple()); 911 EKind = getBitcodeELFKind(T); 912 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 913 } 914 915 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 916 switch (GvVisibility) { 917 case GlobalValue::DefaultVisibility: 918 return STV_DEFAULT; 919 case GlobalValue::HiddenVisibility: 920 return STV_HIDDEN; 921 case GlobalValue::ProtectedVisibility: 922 return STV_PROTECTED; 923 } 924 llvm_unreachable("unknown visibility"); 925 } 926 927 template <class ELFT> 928 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 929 const lto::InputFile::Symbol &ObjSym, 930 BitcodeFile *F) { 931 StringRef NameRef = Saver.save(ObjSym.getName()); 932 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 933 934 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 935 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 936 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 937 938 int C = ObjSym.getComdatIndex(); 939 if (C != -1 && !KeptComdats[C]) 940 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 941 CanOmitFromDynSym, F); 942 943 if (ObjSym.isUndefined()) 944 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 945 CanOmitFromDynSym, F); 946 947 if (ObjSym.isCommon()) 948 return Symtab->addCommon(NameRef, ObjSym.getCommonSize(), 949 ObjSym.getCommonAlignment(), Binding, Visibility, 950 STT_OBJECT, F); 951 952 return Symtab->addBitcode(NameRef, Binding, Visibility, Type, 953 CanOmitFromDynSym, F); 954 } 955 956 template <class ELFT> 957 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 958 std::vector<bool> KeptComdats; 959 for (StringRef S : Obj->getComdatTable()) 960 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 961 962 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 963 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 964 } 965 966 static ELFKind getELFKind(MemoryBufferRef MB) { 967 unsigned char Size; 968 unsigned char Endian; 969 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 970 971 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 972 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 973 if (Size != ELFCLASS32 && Size != ELFCLASS64) 974 fatal(MB.getBufferIdentifier() + ": invalid file class"); 975 976 size_t BufSize = MB.getBuffer().size(); 977 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 978 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 979 fatal(MB.getBufferIdentifier() + ": file is too short"); 980 981 if (Size == ELFCLASS32) 982 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 983 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 984 } 985 986 template <class ELFT> void BinaryFile::parse() { 987 ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); 988 auto *Section = 989 make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); 990 Sections.push_back(Section); 991 992 // For each input file foo that is embedded to a result as a binary 993 // blob, we define _binary_foo_{start,end,size} symbols, so that 994 // user programs can access blobs by name. Non-alphanumeric 995 // characters in a filename are replaced with underscore. 996 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 997 for (size_t I = 0; I < S.size(); ++I) 998 if (!isAlnum(S[I])) 999 S[I] = '_'; 1000 1001 Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 1002 0, 0, STB_GLOBAL, Section, nullptr); 1003 Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1004 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1005 Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1006 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1007 } 1008 1009 static bool isBitcode(MemoryBufferRef MB) { 1010 using namespace sys::fs; 1011 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 1012 } 1013 1014 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1015 uint64_t OffsetInArchive) { 1016 if (isBitcode(MB)) 1017 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1018 1019 switch (getELFKind(MB)) { 1020 case ELF32LEKind: 1021 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1022 case ELF32BEKind: 1023 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1024 case ELF64LEKind: 1025 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1026 case ELF64BEKind: 1027 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1028 default: 1029 llvm_unreachable("getELFKind"); 1030 } 1031 } 1032 1033 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1034 switch (getELFKind(MB)) { 1035 case ELF32LEKind: 1036 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 1037 case ELF32BEKind: 1038 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1039 case ELF64LEKind: 1040 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1041 case ELF64BEKind: 1042 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1043 default: 1044 llvm_unreachable("getELFKind"); 1045 } 1046 } 1047 1048 MemoryBufferRef LazyObjFile::getBuffer() { 1049 if (Seen) 1050 return MemoryBufferRef(); 1051 Seen = true; 1052 return MB; 1053 } 1054 1055 InputFile *LazyObjFile::fetch() { 1056 MemoryBufferRef MBRef = getBuffer(); 1057 if (MBRef.getBuffer().empty()) 1058 return nullptr; 1059 return createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1060 } 1061 1062 template <class ELFT> void LazyObjFile::parse() { 1063 for (StringRef Sym : getSymbolNames()) 1064 Symtab->addLazyObject<ELFT>(Sym, *this); 1065 } 1066 1067 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() { 1068 typedef typename ELFT::Shdr Elf_Shdr; 1069 typedef typename ELFT::Sym Elf_Sym; 1070 typedef typename ELFT::SymRange Elf_Sym_Range; 1071 1072 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer())); 1073 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 1074 for (const Elf_Shdr &Sec : Sections) { 1075 if (Sec.sh_type != SHT_SYMTAB) 1076 continue; 1077 1078 Elf_Sym_Range Syms = CHECK(Obj.symbols(&Sec), this); 1079 uint32_t FirstNonLocal = Sec.sh_info; 1080 StringRef StringTable = 1081 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1082 std::vector<StringRef> V; 1083 1084 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 1085 if (Sym.st_shndx != SHN_UNDEF) 1086 V.push_back(CHECK(Sym.getName(StringTable), this)); 1087 return V; 1088 } 1089 return {}; 1090 } 1091 1092 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() { 1093 std::unique_ptr<lto::InputFile> Obj = 1094 CHECK(lto::InputFile::create(this->MB), this); 1095 std::vector<StringRef> V; 1096 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1097 if (!Sym.isUndefined()) 1098 V.push_back(Saver.save(Sym.getName())); 1099 return V; 1100 } 1101 1102 // Returns a vector of globally-visible defined symbol names. 1103 std::vector<StringRef> LazyObjFile::getSymbolNames() { 1104 if (isBitcode(this->MB)) 1105 return getBitcodeSymbols(); 1106 1107 switch (getELFKind(this->MB)) { 1108 case ELF32LEKind: 1109 return getElfSymbols<ELF32LE>(); 1110 case ELF32BEKind: 1111 return getElfSymbols<ELF32BE>(); 1112 case ELF64LEKind: 1113 return getElfSymbols<ELF64LE>(); 1114 case ELF64BEKind: 1115 return getElfSymbols<ELF64BE>(); 1116 default: 1117 llvm_unreachable("getELFKind"); 1118 } 1119 } 1120 1121 template void ArchiveFile::parse<ELF32LE>(); 1122 template void ArchiveFile::parse<ELF32BE>(); 1123 template void ArchiveFile::parse<ELF64LE>(); 1124 template void ArchiveFile::parse<ELF64BE>(); 1125 1126 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1127 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1128 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1129 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1130 1131 template void LazyObjFile::parse<ELF32LE>(); 1132 template void LazyObjFile::parse<ELF32BE>(); 1133 template void LazyObjFile::parse<ELF64LE>(); 1134 template void LazyObjFile::parse<ELF64BE>(); 1135 1136 template class elf::ELFFileBase<ELF32LE>; 1137 template class elf::ELFFileBase<ELF32BE>; 1138 template class elf::ELFFileBase<ELF64LE>; 1139 template class elf::ELFFileBase<ELF64BE>; 1140 1141 template class elf::ObjFile<ELF32LE>; 1142 template class elf::ObjFile<ELF32BE>; 1143 template class elf::ObjFile<ELF64LE>; 1144 template class elf::ObjFile<ELF64BE>; 1145 1146 template class elf::SharedFile<ELF32LE>; 1147 template class elf::SharedFile<ELF32BE>; 1148 template class elf::SharedFile<ELF64LE>; 1149 template class elf::SharedFile<ELF64BE>; 1150 1151 template void BinaryFile::parse<ELF32LE>(); 1152 template void BinaryFile::parse<ELF32BE>(); 1153 template void BinaryFile::parse<ELF64LE>(); 1154 template void BinaryFile::parse<ELF64BE>(); 1155