1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Error.h"
12 #include "InputSection.h"
13 #include "LinkerScript.h"
14 #include "Memory.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Bitcode/BitcodeReader.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/LTO/LTO.h"
25 #include "llvm/MC/StringTableBuilder.h"
26 #include "llvm/Object/ELFObjectFile.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/TarWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 using namespace llvm::ELF;
33 using namespace llvm::object;
34 using namespace llvm::sys::fs;
35 
36 using namespace lld;
37 using namespace lld::elf;
38 
39 TarWriter *elf::Tar;
40 
41 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {}
42 
43 namespace {
44 // In ELF object file all section addresses are zero. If we have multiple
45 // .text sections (when using -ffunction-section or comdat group) then
46 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless
47 // we assign each section some unique address. This callback method assigns
48 // each section an address equal to its offset in ELF object file.
49 class ObjectInfo : public LoadedObjectInfo {
50 public:
51   uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override {
52     return static_cast<const ELFSectionRef &>(Sec).getOffset();
53   }
54   std::unique_ptr<LoadedObjectInfo> clone() const override {
55     return std::unique_ptr<LoadedObjectInfo>();
56   }
57 };
58 }
59 
60 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
61   log(Path);
62   auto MBOrErr = MemoryBuffer::getFile(Path);
63   if (auto EC = MBOrErr.getError()) {
64     error("cannot open " + Path + ": " + EC.message());
65     return None;
66   }
67 
68   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
69   MemoryBufferRef MBRef = MB->getMemBufferRef();
70   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
71 
72   if (Tar)
73     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
74   return MBRef;
75 }
76 
77 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() {
78   std::unique_ptr<object::ObjectFile> Obj =
79       check(object::ObjectFile::createObjectFile(this->MB), toString(this));
80 
81   ObjectInfo ObjInfo;
82   DWARFContextInMemory Dwarf(*Obj, &ObjInfo);
83   DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs));
84   DataExtractor LineData(Dwarf.getLineSection().Data, Config->IsLE,
85                          Config->Wordsize);
86 
87   // The second parameter is offset in .debug_line section
88   // for compilation unit (CU) of interest. We have only one
89   // CU (object file), so offset is always 0.
90   DwarfLine->getOrParseLineTable(LineData, 0);
91 }
92 
93 // Returns source line information for a given offset
94 // using DWARF debug info.
95 template <class ELFT>
96 Optional<DILineInfo> elf::ObjectFile<ELFT>::getDILineInfo(InputSectionBase *S,
97                                                           uint64_t Offset) {
98   if (!DwarfLine)
99     initializeDwarfLine();
100 
101   // The offset to CU is 0.
102   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
103   if (!Tbl)
104     return None;
105 
106   // Use fake address calcuated by adding section file offset and offset in
107   // section. See comments for ObjectInfo class.
108   DILineInfo Info;
109   Tbl->getFileLineInfoForAddress(
110       S->getOffsetInFile() + Offset, nullptr,
111       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
112   if (Info.Line == 0)
113     return None;
114   return Info;
115 }
116 
117 // Returns source line information for a given offset
118 // using DWARF debug info.
119 template <class ELFT>
120 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase *S,
121                                                uint64_t Offset) {
122   if (Optional<DILineInfo> Info = getDILineInfo(S, Offset))
123     return Info->FileName + ":" + std::to_string(Info->Line);
124   return "";
125 }
126 
127 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
128 std::string lld::toString(const InputFile *F) {
129   if (!F)
130     return "(internal)";
131 
132   if (F->ToStringCache.empty()) {
133     if (F->ArchiveName.empty())
134       F->ToStringCache = F->getName();
135     else
136       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
137   }
138   return F->ToStringCache;
139 }
140 
141 template <class ELFT> static ELFKind getELFKind() {
142   if (ELFT::TargetEndianness == support::little)
143     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
144   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
145 }
146 
147 template <class ELFT>
148 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
149   EKind = getELFKind<ELFT>();
150   EMachine = getObj().getHeader()->e_machine;
151   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
152 }
153 
154 template <class ELFT>
155 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() {
156   return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end());
157 }
158 
159 template <class ELFT>
160 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
161   return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX),
162                toString(this));
163 }
164 
165 template <class ELFT>
166 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
167                                    const Elf_Shdr *Symtab) {
168   FirstNonLocal = Symtab->sh_info;
169   Symbols = check(getObj().symbols(Symtab), toString(this));
170   if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size())
171     fatal(toString(this) + ": invalid sh_info in symbol table");
172 
173   StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections),
174                       toString(this));
175 }
176 
177 template <class ELFT>
178 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
179     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
180 
181 template <class ELFT>
182 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
183   return makeArrayRef(this->SymbolBodies).slice(this->FirstNonLocal);
184 }
185 
186 template <class ELFT>
187 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
188   if (this->SymbolBodies.empty())
189     return this->SymbolBodies;
190   return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1);
191 }
192 
193 template <class ELFT>
194 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
195   if (this->SymbolBodies.empty())
196     return this->SymbolBodies;
197   return makeArrayRef(this->SymbolBodies).slice(1);
198 }
199 
200 template <class ELFT>
201 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
202   // Read section and symbol tables.
203   initializeSections(ComdatGroups);
204   initializeSymbols();
205 }
206 
207 // Sections with SHT_GROUP and comdat bits define comdat section groups.
208 // They are identified and deduplicated by group name. This function
209 // returns a group name.
210 template <class ELFT>
211 StringRef
212 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
213                                             const Elf_Shdr &Sec) {
214   if (this->Symbols.empty())
215     this->initSymtab(
216         Sections,
217         check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this)));
218   const Elf_Sym *Sym = check(
219       object::getSymbol<ELFT>(this->Symbols, Sec.sh_info), toString(this));
220   return check(Sym->getName(this->StringTable), toString(this));
221 }
222 
223 template <class ELFT>
224 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
225 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
226   const ELFFile<ELFT> &Obj = this->getObj();
227   ArrayRef<Elf_Word> Entries = check(
228       Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this));
229   if (Entries.empty() || Entries[0] != GRP_COMDAT)
230     fatal(toString(this) + ": unsupported SHT_GROUP format");
231   return Entries.slice(1);
232 }
233 
234 template <class ELFT>
235 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
236   // We don't merge sections if -O0 (default is -O1). This makes sometimes
237   // the linker significantly faster, although the output will be bigger.
238   if (Config->Optimize == 0)
239     return false;
240 
241   // Do not merge sections if generating a relocatable object. It makes
242   // the code simpler because we do not need to update relocation addends
243   // to reflect changes introduced by merging. Instead of that we write
244   // such "merge" sections into separate OutputSections and keep SHF_MERGE
245   // / SHF_STRINGS flags and sh_entsize value to be able to perform merging
246   // later during a final linking.
247   if (Config->Relocatable)
248     return false;
249 
250   // A mergeable section with size 0 is useless because they don't have
251   // any data to merge. A mergeable string section with size 0 can be
252   // argued as invalid because it doesn't end with a null character.
253   // We'll avoid a mess by handling them as if they were non-mergeable.
254   if (Sec.sh_size == 0)
255     return false;
256 
257   // Check for sh_entsize. The ELF spec is not clear about the zero
258   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
259   // the section does not hold a table of fixed-size entries". We know
260   // that Rust 1.13 produces a string mergeable section with a zero
261   // sh_entsize. Here we just accept it rather than being picky about it.
262   uint64_t EntSize = Sec.sh_entsize;
263   if (EntSize == 0)
264     return false;
265   if (Sec.sh_size % EntSize)
266     fatal(toString(this) +
267           ": SHF_MERGE section size must be a multiple of sh_entsize");
268 
269   uint64_t Flags = Sec.sh_flags;
270   if (!(Flags & SHF_MERGE))
271     return false;
272   if (Flags & SHF_WRITE)
273     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
274 
275   // Don't try to merge if the alignment is larger than the sh_entsize and this
276   // is not SHF_STRINGS.
277   //
278   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
279   // It would be equivalent for the producer of the .o to just set a larger
280   // sh_entsize.
281   if (Flags & SHF_STRINGS)
282     return true;
283 
284   return Sec.sh_addralign <= EntSize;
285 }
286 
287 template <class ELFT>
288 void elf::ObjectFile<ELFT>::initializeSections(
289     DenseSet<CachedHashStringRef> &ComdatGroups) {
290   ArrayRef<Elf_Shdr> ObjSections =
291       check(this->getObj().sections(), toString(this));
292   const ELFFile<ELFT> &Obj = this->getObj();
293   uint64_t Size = ObjSections.size();
294   this->Sections.resize(Size);
295   unsigned I = -1;
296   StringRef SectionStringTable =
297       check(Obj.getSectionStringTable(ObjSections), toString(this));
298   for (const Elf_Shdr &Sec : ObjSections) {
299     ++I;
300     if (this->Sections[I] == &InputSection::Discarded)
301       continue;
302 
303     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
304     // if -r is given, we'll let the final link discard such sections.
305     // This is compatible with GNU.
306     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
307       this->Sections[I] = &InputSection::Discarded;
308       continue;
309     }
310 
311     switch (Sec.sh_type) {
312     case SHT_GROUP:
313       this->Sections[I] = &InputSection::Discarded;
314       if (ComdatGroups
315               .insert(
316                   CachedHashStringRef(getShtGroupSignature(ObjSections, Sec)))
317               .second)
318         continue;
319       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
320         if (SecIndex >= Size)
321           fatal(toString(this) +
322                 ": invalid section index in group: " + Twine(SecIndex));
323         this->Sections[SecIndex] = &InputSection::Discarded;
324       }
325       break;
326     case SHT_SYMTAB:
327       this->initSymtab(ObjSections, &Sec);
328       break;
329     case SHT_SYMTAB_SHNDX:
330       this->SymtabSHNDX =
331           check(Obj.getSHNDXTable(Sec, ObjSections), toString(this));
332       break;
333     case SHT_STRTAB:
334     case SHT_NULL:
335       break;
336     default:
337       this->Sections[I] = createInputSection(Sec, SectionStringTable);
338     }
339 
340     // .ARM.exidx sections have a reverse dependency on the InputSection they
341     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
342     if (Sec.sh_flags & SHF_LINK_ORDER) {
343       if (Sec.sh_link >= this->Sections.size())
344         fatal(toString(this) + ": invalid sh_link index: " +
345               Twine(Sec.sh_link));
346       this->Sections[Sec.sh_link]->DependentSections.push_back(
347           this->Sections[I]);
348     }
349   }
350 }
351 
352 template <class ELFT>
353 InputSectionBase *elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
354   uint32_t Idx = Sec.sh_info;
355   if (Idx >= this->Sections.size())
356     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
357   InputSectionBase *Target = this->Sections[Idx];
358 
359   // Strictly speaking, a relocation section must be included in the
360   // group of the section it relocates. However, LLVM 3.3 and earlier
361   // would fail to do so, so we gracefully handle that case.
362   if (Target == &InputSection::Discarded)
363     return nullptr;
364 
365   if (!Target)
366     fatal(toString(this) + ": unsupported relocation reference");
367   return Target;
368 }
369 
370 template <class ELFT>
371 InputSectionBase *
372 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec,
373                                           StringRef SectionStringTable) {
374   StringRef Name = check(
375       this->getObj().getSectionName(&Sec, SectionStringTable), toString(this));
376 
377   switch (Sec.sh_type) {
378   case SHT_ARM_ATTRIBUTES:
379     // FIXME: ARM meta-data section. Retain the first attribute section
380     // we see. The eglibc ARM dynamic loaders require the presence of an
381     // attribute section for dlopen to work.
382     // In a full implementation we would merge all attribute sections.
383     if (In<ELFT>::ARMAttributes == nullptr) {
384       In<ELFT>::ARMAttributes = make<InputSection>(this, &Sec, Name);
385       return In<ELFT>::ARMAttributes;
386     }
387     return &InputSection::Discarded;
388   case SHT_RELA:
389   case SHT_REL: {
390     // Find the relocation target section and associate this
391     // section with it. Target can be discarded, for example
392     // if it is a duplicated member of SHT_GROUP section, we
393     // do not create or proccess relocatable sections then.
394     InputSectionBase *Target = getRelocTarget(Sec);
395     if (!Target)
396       return nullptr;
397 
398     // This section contains relocation information.
399     // If -r is given, we do not interpret or apply relocation
400     // but just copy relocation sections to output.
401     if (Config->Relocatable)
402       return make<InputSection>(this, &Sec, Name);
403 
404     if (Target->FirstRelocation)
405       fatal(toString(this) +
406             ": multiple relocation sections to one section are not supported");
407     if (isa<MergeInputSection>(Target))
408       fatal(toString(this) +
409             ": relocations pointing to SHF_MERGE are not supported");
410 
411     size_t NumRelocations;
412     if (Sec.sh_type == SHT_RELA) {
413       ArrayRef<Elf_Rela> Rels =
414           check(this->getObj().relas(&Sec), toString(this));
415       Target->FirstRelocation = Rels.begin();
416       NumRelocations = Rels.size();
417       Target->AreRelocsRela = true;
418     } else {
419       ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this));
420       Target->FirstRelocation = Rels.begin();
421       NumRelocations = Rels.size();
422       Target->AreRelocsRela = false;
423     }
424     assert(isUInt<31>(NumRelocations));
425     Target->NumRelocations = NumRelocations;
426 
427     // Relocation sections processed by the linker are usually removed
428     // from the output, so returning `nullptr` for the normal case.
429     // However, if -emit-relocs is given, we need to leave them in the output.
430     // (Some post link analysis tools need this information.)
431     if (Config->EmitRelocs) {
432       InputSection *RelocSec = make<InputSection>(this, &Sec, Name);
433       // We will not emit relocation section if target was discarded.
434       Target->DependentSections.push_back(RelocSec);
435       return RelocSec;
436     }
437     return nullptr;
438   }
439   }
440 
441   // The GNU linker uses .note.GNU-stack section as a marker indicating
442   // that the code in the object file does not expect that the stack is
443   // executable (in terms of NX bit). If all input files have the marker,
444   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
445   // make the stack non-executable. Most object files have this section as
446   // of 2017.
447   //
448   // But making the stack non-executable is a norm today for security
449   // reasons. Failure to do so may result in a serious security issue.
450   // Therefore, we make LLD always add PT_GNU_STACK unless it is
451   // explicitly told to do otherwise (by -z execstack). Because the stack
452   // executable-ness is controlled solely by command line options,
453   // .note.GNU-stack sections are simply ignored.
454   if (Name == ".note.GNU-stack")
455     return &InputSection::Discarded;
456 
457   // Split stacks is a feature to support a discontiguous stack. At least
458   // as of 2017, it seems that the feature is not being used widely.
459   // Only GNU gold supports that. We don't. For the details about that,
460   // see https://gcc.gnu.org/wiki/SplitStacks
461   if (Name == ".note.GNU-split-stack") {
462     error(toString(this) +
463           ": object file compiled with -fsplit-stack is not supported");
464     return &InputSection::Discarded;
465   }
466 
467   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
468     return &InputSection::Discarded;
469 
470   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
471   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
472   // sections. Drop those sections to avoid duplicate symbol errors.
473   // FIXME: This is glibc PR20543, we should remove this hack once that has been
474   // fixed for a while.
475   if (Name.startswith(".gnu.linkonce."))
476     return &InputSection::Discarded;
477 
478   // The linker merges EH (exception handling) frames and creates a
479   // .eh_frame_hdr section for runtime. So we handle them with a special
480   // class. For relocatable outputs, they are just passed through.
481   if (Name == ".eh_frame" && !Config->Relocatable)
482     return make<EhInputSection>(this, &Sec, Name);
483 
484   if (shouldMerge(Sec))
485     return make<MergeInputSection>(this, &Sec, Name);
486   return make<InputSection>(this, &Sec, Name);
487 }
488 
489 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
490   SymbolBodies.reserve(this->Symbols.size());
491   for (const Elf_Sym &Sym : this->Symbols)
492     SymbolBodies.push_back(createSymbolBody(&Sym));
493 }
494 
495 template <class ELFT>
496 InputSectionBase *elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
497   uint32_t Index = this->getSectionIndex(Sym);
498   if (Index >= this->Sections.size())
499     fatal(toString(this) + ": invalid section index: " + Twine(Index));
500   InputSectionBase *S = this->Sections[Index];
501 
502   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could
503   // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be
504   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
505   // In this case it is fine for section to be null here as we do not
506   // allocate sections of these types.
507   if (!S) {
508     if (Index == 0 || Sym.getType() == STT_SECTION ||
509         Sym.getType() == STT_NOTYPE)
510       return nullptr;
511     fatal(toString(this) + ": invalid section index: " + Twine(Index));
512   }
513 
514   if (S == &InputSection::Discarded)
515     return S;
516   return S->Repl;
517 }
518 
519 template <class ELFT>
520 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
521   int Binding = Sym->getBinding();
522   InputSectionBase *Sec = getSection(*Sym);
523 
524   uint8_t StOther = Sym->st_other;
525   uint8_t Type = Sym->getType();
526   uint64_t Value = Sym->st_value;
527   uint64_t Size = Sym->st_size;
528 
529   if (Binding == STB_LOCAL) {
530     if (Sym->getType() == STT_FILE)
531       SourceFile = check(Sym->getName(this->StringTable), toString(this));
532 
533     if (this->StringTable.size() <= Sym->st_name)
534       fatal(toString(this) + ": invalid symbol name offset");
535 
536     StringRefZ Name = this->StringTable.data() + Sym->st_name;
537     if (Sym->st_shndx == SHN_UNDEF)
538       return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type, this);
539 
540     return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value,
541                                 Size, Sec, this);
542   }
543 
544   StringRef Name = check(Sym->getName(this->StringTable), toString(this));
545 
546   switch (Sym->st_shndx) {
547   case SHN_UNDEF:
548     return elf::Symtab<ELFT>::X
549         ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type,
550                        /*CanOmitFromDynSym=*/false, this)
551         ->body();
552   case SHN_COMMON:
553     if (Value == 0 || Value >= UINT32_MAX)
554       fatal(toString(this) + ": common symbol '" + Name +
555             "' has invalid alignment: " + Twine(Value));
556     return elf::Symtab<ELFT>::X
557         ->addCommon(Name, Size, Value, Binding, StOther, Type, this)
558         ->body();
559   }
560 
561   switch (Binding) {
562   default:
563     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
564   case STB_GLOBAL:
565   case STB_WEAK:
566   case STB_GNU_UNIQUE:
567     if (Sec == &InputSection::Discarded)
568       return elf::Symtab<ELFT>::X
569           ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type,
570                          /*CanOmitFromDynSym=*/false, this)
571           ->body();
572     return elf::Symtab<ELFT>::X
573         ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this)
574         ->body();
575   }
576 }
577 
578 template <class ELFT> void ArchiveFile::parse() {
579   File = check(Archive::create(MB),
580                MB.getBufferIdentifier() + ": failed to parse archive");
581 
582   // Read the symbol table to construct Lazy objects.
583   for (const Archive::Symbol &Sym : File->symbols()) {
584     Symtab<ELFT>::X->addLazyArchive(this, Sym);
585   }
586 
587   if (File->symbols().begin() == File->symbols().end())
588     Config->ArchiveWithoutSymbolsSeen = true;
589 }
590 
591 // Returns a buffer pointing to a member file containing a given symbol.
592 std::pair<MemoryBufferRef, uint64_t>
593 ArchiveFile::getMember(const Archive::Symbol *Sym) {
594   Archive::Child C =
595       check(Sym->getMember(), toString(this) +
596                                   ": could not get the member for symbol " +
597                                   Sym->getName());
598 
599   if (!Seen.insert(C.getChildOffset()).second)
600     return {MemoryBufferRef(), 0};
601 
602   MemoryBufferRef Ret =
603       check(C.getMemoryBufferRef(),
604             toString(this) +
605                 ": could not get the buffer for the member defining symbol " +
606                 Sym->getName());
607 
608   if (C.getParent()->isThin() && Tar)
609     Tar->append(relativeToRoot(check(C.getFullName(), toString(this))),
610                 Ret.getBuffer());
611   if (C.getParent()->isThin())
612     return {Ret, 0};
613   return {Ret, C.getChildOffset()};
614 }
615 
616 template <class ELFT>
617 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
618     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
619 
620 template <class ELFT>
621 const typename ELFT::Shdr *
622 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
623   return check(
624       this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX),
625       toString(this));
626 }
627 
628 // Partially parse the shared object file so that we can call
629 // getSoName on this object.
630 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
631   const Elf_Shdr *DynamicSec = nullptr;
632 
633   const ELFFile<ELFT> Obj = this->getObj();
634   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
635   for (const Elf_Shdr &Sec : Sections) {
636     switch (Sec.sh_type) {
637     default:
638       continue;
639     case SHT_DYNSYM:
640       this->initSymtab(Sections, &Sec);
641       break;
642     case SHT_DYNAMIC:
643       DynamicSec = &Sec;
644       break;
645     case SHT_SYMTAB_SHNDX:
646       this->SymtabSHNDX =
647           check(Obj.getSHNDXTable(Sec, Sections), toString(this));
648       break;
649     case SHT_GNU_versym:
650       this->VersymSec = &Sec;
651       break;
652     case SHT_GNU_verdef:
653       this->VerdefSec = &Sec;
654       break;
655     }
656   }
657 
658   if (this->VersymSec && this->Symbols.empty())
659     error("SHT_GNU_versym should be associated with symbol table");
660 
661   // DSOs are identified by soname, and they usually contain
662   // DT_SONAME tag in their header. But if they are missing,
663   // filenames are used as default sonames.
664   SoName = sys::path::filename(this->getName());
665 
666   if (!DynamicSec)
667     return;
668 
669   ArrayRef<Elf_Dyn> Arr =
670       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
671             toString(this));
672   for (const Elf_Dyn &Dyn : Arr) {
673     if (Dyn.d_tag == DT_SONAME) {
674       uint64_t Val = Dyn.getVal();
675       if (Val >= this->StringTable.size())
676         fatal(toString(this) + ": invalid DT_SONAME entry");
677       SoName = StringRef(this->StringTable.data() + Val);
678       return;
679     }
680   }
681 }
682 
683 // Parse the version definitions in the object file if present. Returns a vector
684 // whose nth element contains a pointer to the Elf_Verdef for version identifier
685 // n. Version identifiers that are not definitions map to nullptr. The array
686 // always has at least length 1.
687 template <class ELFT>
688 std::vector<const typename ELFT::Verdef *>
689 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
690   std::vector<const Elf_Verdef *> Verdefs(1);
691   // We only need to process symbol versions for this DSO if it has both a
692   // versym and a verdef section, which indicates that the DSO contains symbol
693   // version definitions.
694   if (!VersymSec || !VerdefSec)
695     return Verdefs;
696 
697   // The location of the first global versym entry.
698   const char *Base = this->MB.getBuffer().data();
699   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
700            this->FirstNonLocal;
701 
702   // We cannot determine the largest verdef identifier without inspecting
703   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
704   // sequentially starting from 1, so we predict that the largest identifier
705   // will be VerdefCount.
706   unsigned VerdefCount = VerdefSec->sh_info;
707   Verdefs.resize(VerdefCount + 1);
708 
709   // Build the Verdefs array by following the chain of Elf_Verdef objects
710   // from the start of the .gnu.version_d section.
711   const char *Verdef = Base + VerdefSec->sh_offset;
712   for (unsigned I = 0; I != VerdefCount; ++I) {
713     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
714     Verdef += CurVerdef->vd_next;
715     unsigned VerdefIndex = CurVerdef->vd_ndx;
716     if (Verdefs.size() <= VerdefIndex)
717       Verdefs.resize(VerdefIndex + 1);
718     Verdefs[VerdefIndex] = CurVerdef;
719   }
720 
721   return Verdefs;
722 }
723 
724 // Fully parse the shared object file. This must be called after parseSoName().
725 template <class ELFT> void SharedFile<ELFT>::parseRest() {
726   // Create mapping from version identifiers to Elf_Verdef entries.
727   const Elf_Versym *Versym = nullptr;
728   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
729 
730   Elf_Sym_Range Syms = this->getGlobalSymbols();
731   for (const Elf_Sym &Sym : Syms) {
732     unsigned VersymIndex = 0;
733     if (Versym) {
734       VersymIndex = Versym->vs_index;
735       ++Versym;
736     }
737     bool Hidden = VersymIndex & VERSYM_HIDDEN;
738     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
739 
740     StringRef Name = check(Sym.getName(this->StringTable), toString(this));
741     if (Sym.isUndefined()) {
742       Undefs.push_back(Name);
743       continue;
744     }
745 
746     // Ignore local symbols.
747     if (Versym && VersymIndex == VER_NDX_LOCAL)
748       continue;
749 
750     const Elf_Verdef *V =
751         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
752 
753     if (!Hidden)
754       elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
755 
756     // Also add the symbol with the versioned name to handle undefined symbols
757     // with explicit versions.
758     if (V) {
759       StringRef VerName = this->StringTable.data() + V->getAux()->vda_name;
760       Name = Saver.save(Twine(Name) + "@" + VerName);
761       elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
762     }
763   }
764 }
765 
766 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
767   Triple T(check(getBitcodeTargetTriple(MB), MB.getBufferIdentifier()));
768   if (T.isLittleEndian())
769     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
770   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
771 }
772 
773 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
774   Triple T(check(getBitcodeTargetTriple(MB), MB.getBufferIdentifier()));
775   switch (T.getArch()) {
776   case Triple::aarch64:
777     return EM_AARCH64;
778   case Triple::arm:
779   case Triple::thumb:
780     return EM_ARM;
781   case Triple::mips:
782   case Triple::mipsel:
783   case Triple::mips64:
784   case Triple::mips64el:
785     return EM_MIPS;
786   case Triple::ppc:
787     return EM_PPC;
788   case Triple::ppc64:
789     return EM_PPC64;
790   case Triple::x86:
791     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
792   case Triple::x86_64:
793     return EM_X86_64;
794   default:
795     fatal(MB.getBufferIdentifier() +
796           ": could not infer e_machine from bitcode target triple " + T.str());
797   }
798 }
799 
800 BitcodeFile::BitcodeFile(MemoryBufferRef MB, uint64_t OffsetInArchive)
801     : InputFile(BitcodeKind, MB), OffsetInArchive(OffsetInArchive) {
802   EKind = getBitcodeELFKind(MB);
803   EMachine = getBitcodeMachineKind(MB);
804 }
805 
806 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
807   switch (GvVisibility) {
808   case GlobalValue::DefaultVisibility:
809     return STV_DEFAULT;
810   case GlobalValue::HiddenVisibility:
811     return STV_HIDDEN;
812   case GlobalValue::ProtectedVisibility:
813     return STV_PROTECTED;
814   }
815   llvm_unreachable("unknown visibility");
816 }
817 
818 template <class ELFT>
819 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
820                                    const lto::InputFile::Symbol &ObjSym,
821                                    BitcodeFile *F) {
822   StringRef NameRef = Saver.save(ObjSym.getName());
823   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
824 
825   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
826   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
827   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
828 
829   int C = ObjSym.getComdatIndex();
830   if (C != -1 && !KeptComdats[C])
831     return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding,
832                                          Visibility, Type, CanOmitFromDynSym,
833                                          F);
834 
835   if (ObjSym.isUndefined())
836     return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding,
837                                          Visibility, Type, CanOmitFromDynSym,
838                                          F);
839 
840   if (ObjSym.isCommon())
841     return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(),
842                                       ObjSym.getCommonAlignment(), Binding,
843                                       Visibility, STT_OBJECT, F);
844 
845   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
846                                      CanOmitFromDynSym, F);
847 }
848 
849 template <class ELFT>
850 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
851 
852   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
853   // (the fully resolved path of the archive) + member name + offset of the
854   // member in the archive.
855   // ThinLTO uses the MemoryBufferRef identifier to access its internal
856   // data structures and if two archives define two members with the same name,
857   // this causes a collision which result in only one of the objects being
858   // taken into consideration at LTO time (which very likely causes undefined
859   // symbols later in the link stage).
860   MemoryBufferRef MBRef(MB.getBuffer(),
861                         Saver.save(ArchiveName + MB.getBufferIdentifier() +
862                                    utostr(OffsetInArchive)));
863   Obj = check(lto::InputFile::create(MBRef), toString(this));
864 
865   std::vector<bool> KeptComdats;
866   for (StringRef S : Obj->getComdatTable())
867     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
868 
869   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
870     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
871 }
872 
873 template <template <class> class T>
874 static InputFile *createELFFile(MemoryBufferRef MB) {
875   unsigned char Size;
876   unsigned char Endian;
877   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
878   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
879     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
880 
881   size_t BufSize = MB.getBuffer().size();
882   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
883       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
884     fatal(MB.getBufferIdentifier() + ": file is too short");
885 
886   InputFile *Obj;
887   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
888     Obj = make<T<ELF32LE>>(MB);
889   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
890     Obj = make<T<ELF32BE>>(MB);
891   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
892     Obj = make<T<ELF64LE>>(MB);
893   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
894     Obj = make<T<ELF64BE>>(MB);
895   else
896     fatal(MB.getBufferIdentifier() + ": invalid file class");
897 
898   if (!Config->FirstElf)
899     Config->FirstElf = Obj;
900   return Obj;
901 }
902 
903 template <class ELFT> void BinaryFile::parse() {
904   StringRef Buf = MB.getBuffer();
905   ArrayRef<uint8_t> Data =
906       makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size());
907 
908   std::string Filename = MB.getBufferIdentifier();
909   std::transform(Filename.begin(), Filename.end(), Filename.begin(),
910                  [](char C) { return isalnum(C) ? C : '_'; });
911   Filename = "_binary_" + Filename;
912   StringRef StartName = Saver.save(Twine(Filename) + "_start");
913   StringRef EndName = Saver.save(Twine(Filename) + "_end");
914   StringRef SizeName = Saver.save(Twine(Filename) + "_size");
915 
916   auto *Section =
917       make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data");
918   Sections.push_back(Section);
919 
920   elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0,
921                                    STB_GLOBAL, Section, nullptr);
922   elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT,
923                                    Data.size(), 0, STB_GLOBAL, Section,
924                                    nullptr);
925   elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT,
926                                    Data.size(), 0, STB_GLOBAL, nullptr,
927                                    nullptr);
928 }
929 
930 static bool isBitcode(MemoryBufferRef MB) {
931   using namespace sys::fs;
932   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
933 }
934 
935 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
936                                  uint64_t OffsetInArchive) {
937   InputFile *F = isBitcode(MB) ? make<BitcodeFile>(MB, OffsetInArchive)
938                                : createELFFile<ObjectFile>(MB);
939   F->ArchiveName = ArchiveName;
940   return F;
941 }
942 
943 InputFile *elf::createSharedFile(MemoryBufferRef MB) {
944   return createELFFile<SharedFile>(MB);
945 }
946 
947 MemoryBufferRef LazyObjectFile::getBuffer() {
948   if (Seen)
949     return MemoryBufferRef();
950   Seen = true;
951   return MB;
952 }
953 
954 template <class ELFT> void LazyObjectFile::parse() {
955   for (StringRef Sym : getSymbols())
956     Symtab<ELFT>::X->addLazyObject(Sym, *this);
957 }
958 
959 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
960   typedef typename ELFT::Shdr Elf_Shdr;
961   typedef typename ELFT::Sym Elf_Sym;
962   typedef typename ELFT::SymRange Elf_Sym_Range;
963 
964   const ELFFile<ELFT> Obj(this->MB.getBuffer());
965   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
966   for (const Elf_Shdr &Sec : Sections) {
967     if (Sec.sh_type != SHT_SYMTAB)
968       continue;
969 
970     Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this));
971     uint32_t FirstNonLocal = Sec.sh_info;
972     StringRef StringTable =
973         check(Obj.getStringTableForSymtab(Sec, Sections), toString(this));
974     std::vector<StringRef> V;
975 
976     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
977       if (Sym.st_shndx != SHN_UNDEF)
978         V.push_back(check(Sym.getName(StringTable), toString(this)));
979     return V;
980   }
981   return {};
982 }
983 
984 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
985   std::unique_ptr<lto::InputFile> Obj =
986       check(lto::InputFile::create(this->MB), toString(this));
987   std::vector<StringRef> V;
988   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
989     if (!Sym.isUndefined())
990       V.push_back(Saver.save(Sym.getName()));
991   return V;
992 }
993 
994 // Returns a vector of globally-visible defined symbol names.
995 std::vector<StringRef> LazyObjectFile::getSymbols() {
996   if (isBitcode(this->MB))
997     return getBitcodeSymbols();
998 
999   unsigned char Size;
1000   unsigned char Endian;
1001   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
1002   if (Size == ELFCLASS32) {
1003     if (Endian == ELFDATA2LSB)
1004       return getElfSymbols<ELF32LE>();
1005     return getElfSymbols<ELF32BE>();
1006   }
1007   if (Endian == ELFDATA2LSB)
1008     return getElfSymbols<ELF64LE>();
1009   return getElfSymbols<ELF64BE>();
1010 }
1011 
1012 template void ArchiveFile::parse<ELF32LE>();
1013 template void ArchiveFile::parse<ELF32BE>();
1014 template void ArchiveFile::parse<ELF64LE>();
1015 template void ArchiveFile::parse<ELF64BE>();
1016 
1017 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1018 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1019 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1020 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1021 
1022 template void LazyObjectFile::parse<ELF32LE>();
1023 template void LazyObjectFile::parse<ELF32BE>();
1024 template void LazyObjectFile::parse<ELF64LE>();
1025 template void LazyObjectFile::parse<ELF64BE>();
1026 
1027 template class elf::ELFFileBase<ELF32LE>;
1028 template class elf::ELFFileBase<ELF32BE>;
1029 template class elf::ELFFileBase<ELF64LE>;
1030 template class elf::ELFFileBase<ELF64BE>;
1031 
1032 template class elf::ObjectFile<ELF32LE>;
1033 template class elf::ObjectFile<ELF32BE>;
1034 template class elf::ObjectFile<ELF64LE>;
1035 template class elf::ObjectFile<ELF64BE>;
1036 
1037 template class elf::SharedFile<ELF32LE>;
1038 template class elf::SharedFile<ELF32BE>;
1039 template class elf::SharedFile<ELF64LE>;
1040 template class elf::SharedFile<ELF64BE>;
1041 
1042 template void BinaryFile::parse<ELF32LE>();
1043 template void BinaryFile::parse<ELF32BE>();
1044 template void BinaryFile::parse<ELF64LE>();
1045 template void BinaryFile::parse<ELF64BE>();
1046