1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "Driver.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/DWARF.h" 17 #include "lld/Common/ErrorHandler.h" 18 #include "lld/Common/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Endian.h" 29 #include "llvm/Support/Path.h" 30 #include "llvm/Support/RISCVAttributeParser.h" 31 #include "llvm/Support/TarWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 using namespace llvm::ELF; 36 using namespace llvm::object; 37 using namespace llvm::sys; 38 using namespace llvm::sys::fs; 39 using namespace llvm::support::endian; 40 using namespace lld; 41 using namespace lld::elf; 42 43 bool InputFile::isInGroup; 44 uint32_t InputFile::nextGroupId; 45 46 std::vector<ArchiveFile *> elf::archiveFiles; 47 std::vector<BinaryFile *> elf::binaryFiles; 48 std::vector<BitcodeFile *> elf::bitcodeFiles; 49 std::vector<LazyObjFile *> elf::lazyObjFiles; 50 std::vector<InputFile *> elf::objectFiles; 51 std::vector<SharedFile *> elf::sharedFiles; 52 53 std::unique_ptr<TarWriter> elf::tar; 54 55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 56 std::string lld::toString(const InputFile *f) { 57 if (!f) 58 return "<internal>"; 59 60 if (f->toStringCache.empty()) { 61 if (f->archiveName.empty()) 62 f->toStringCache = std::string(f->getName()); 63 else 64 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str(); 65 } 66 return f->toStringCache; 67 } 68 69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) { 70 unsigned char size; 71 unsigned char endian; 72 std::tie(size, endian) = getElfArchType(mb.getBuffer()); 73 74 auto report = [&](StringRef msg) { 75 StringRef filename = mb.getBufferIdentifier(); 76 if (archiveName.empty()) 77 fatal(filename + ": " + msg); 78 else 79 fatal(archiveName + "(" + filename + "): " + msg); 80 }; 81 82 if (!mb.getBuffer().startswith(ElfMagic)) 83 report("not an ELF file"); 84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB) 85 report("corrupted ELF file: invalid data encoding"); 86 if (size != ELFCLASS32 && size != ELFCLASS64) 87 report("corrupted ELF file: invalid file class"); 88 89 size_t bufSize = mb.getBuffer().size(); 90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) || 91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr))) 92 report("corrupted ELF file: file is too short"); 93 94 if (size == ELFCLASS32) 95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 97 } 98 99 InputFile::InputFile(Kind k, MemoryBufferRef m) 100 : mb(m), groupId(nextGroupId), fileKind(k) { 101 // All files within the same --{start,end}-group get the same group ID. 102 // Otherwise, a new file will get a new group ID. 103 if (!isInGroup) 104 ++nextGroupId; 105 } 106 107 Optional<MemoryBufferRef> elf::readFile(StringRef path) { 108 llvm::TimeTraceScope timeScope("Load input files", path); 109 110 // The --chroot option changes our virtual root directory. 111 // This is useful when you are dealing with files created by --reproduce. 112 if (!config->chroot.empty() && path.startswith("/")) 113 path = saver.save(config->chroot + path); 114 115 log(path); 116 config->dependencyFiles.insert(llvm::CachedHashString(path)); 117 118 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false, 119 /*RequiresNullTerminator=*/false); 120 if (auto ec = mbOrErr.getError()) { 121 error("cannot open " + path + ": " + ec.message()); 122 return None; 123 } 124 125 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 126 MemoryBufferRef mbref = mb->getMemBufferRef(); 127 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership 128 129 if (tar) 130 tar->append(relativeToRoot(path), mbref.getBuffer()); 131 return mbref; 132 } 133 134 // All input object files must be for the same architecture 135 // (e.g. it does not make sense to link x86 object files with 136 // MIPS object files.) This function checks for that error. 137 static bool isCompatible(InputFile *file) { 138 if (!file->isElf() && !isa<BitcodeFile>(file)) 139 return true; 140 141 if (file->ekind == config->ekind && file->emachine == config->emachine) { 142 if (config->emachine != EM_MIPS) 143 return true; 144 if (isMipsN32Abi(file) == config->mipsN32Abi) 145 return true; 146 } 147 148 StringRef target = 149 !config->bfdname.empty() ? config->bfdname : config->emulation; 150 if (!target.empty()) { 151 error(toString(file) + " is incompatible with " + target); 152 return false; 153 } 154 155 InputFile *existing; 156 if (!objectFiles.empty()) 157 existing = objectFiles[0]; 158 else if (!sharedFiles.empty()) 159 existing = sharedFiles[0]; 160 else if (!bitcodeFiles.empty()) 161 existing = bitcodeFiles[0]; 162 else 163 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to " 164 "determine target emulation"); 165 166 error(toString(file) + " is incompatible with " + toString(existing)); 167 return false; 168 } 169 170 template <class ELFT> static void doParseFile(InputFile *file) { 171 if (!isCompatible(file)) 172 return; 173 174 // Binary file 175 if (auto *f = dyn_cast<BinaryFile>(file)) { 176 binaryFiles.push_back(f); 177 f->parse(); 178 return; 179 } 180 181 // .a file 182 if (auto *f = dyn_cast<ArchiveFile>(file)) { 183 archiveFiles.push_back(f); 184 f->parse(); 185 return; 186 } 187 188 // Lazy object file 189 if (auto *f = dyn_cast<LazyObjFile>(file)) { 190 lazyObjFiles.push_back(f); 191 f->parse<ELFT>(); 192 return; 193 } 194 195 if (config->trace) 196 message(toString(file)); 197 198 // .so file 199 if (auto *f = dyn_cast<SharedFile>(file)) { 200 f->parse<ELFT>(); 201 return; 202 } 203 204 // LLVM bitcode file 205 if (auto *f = dyn_cast<BitcodeFile>(file)) { 206 bitcodeFiles.push_back(f); 207 f->parse<ELFT>(); 208 return; 209 } 210 211 // Regular object file 212 objectFiles.push_back(file); 213 cast<ObjFile<ELFT>>(file)->parse(); 214 } 215 216 // Add symbols in File to the symbol table. 217 void elf::parseFile(InputFile *file) { 218 switch (config->ekind) { 219 case ELF32LEKind: 220 doParseFile<ELF32LE>(file); 221 return; 222 case ELF32BEKind: 223 doParseFile<ELF32BE>(file); 224 return; 225 case ELF64LEKind: 226 doParseFile<ELF64LE>(file); 227 return; 228 case ELF64BEKind: 229 doParseFile<ELF64BE>(file); 230 return; 231 default: 232 llvm_unreachable("unknown ELFT"); 233 } 234 } 235 236 // Concatenates arguments to construct a string representing an error location. 237 static std::string createFileLineMsg(StringRef path, unsigned line) { 238 std::string filename = std::string(path::filename(path)); 239 std::string lineno = ":" + std::to_string(line); 240 if (filename == path) 241 return filename + lineno; 242 return filename + lineno + " (" + path.str() + lineno + ")"; 243 } 244 245 template <class ELFT> 246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym, 247 InputSectionBase &sec, uint64_t offset) { 248 // In DWARF, functions and variables are stored to different places. 249 // First, lookup a function for a given offset. 250 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset)) 251 return createFileLineMsg(info->FileName, info->Line); 252 253 // If it failed, lookup again as a variable. 254 if (Optional<std::pair<std::string, unsigned>> fileLine = 255 file.getVariableLoc(sym.getName())) 256 return createFileLineMsg(fileLine->first, fileLine->second); 257 258 // File.sourceFile contains STT_FILE symbol, and that is a last resort. 259 return std::string(file.sourceFile); 260 } 261 262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec, 263 uint64_t offset) { 264 if (kind() != ObjKind) 265 return ""; 266 switch (config->ekind) { 267 default: 268 llvm_unreachable("Invalid kind"); 269 case ELF32LEKind: 270 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset); 271 case ELF32BEKind: 272 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset); 273 case ELF64LEKind: 274 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset); 275 case ELF64BEKind: 276 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset); 277 } 278 } 279 280 StringRef InputFile::getNameForScript() const { 281 if (archiveName.empty()) 282 return getName(); 283 284 if (nameForScriptCache.empty()) 285 nameForScriptCache = (archiveName + Twine(':') + getName()).str(); 286 287 return nameForScriptCache; 288 } 289 290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() { 291 llvm::call_once(initDwarf, [this]() { 292 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>( 293 std::make_unique<LLDDwarfObj<ELFT>>(this), "", 294 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); }, 295 [&](Error warning) { 296 warn(getName() + ": " + toString(std::move(warning))); 297 })); 298 }); 299 300 return dwarf.get(); 301 } 302 303 // Returns the pair of file name and line number describing location of data 304 // object (variable, array, etc) definition. 305 template <class ELFT> 306 Optional<std::pair<std::string, unsigned>> 307 ObjFile<ELFT>::getVariableLoc(StringRef name) { 308 return getDwarf()->getVariableLoc(name); 309 } 310 311 // Returns source line information for a given offset 312 // using DWARF debug info. 313 template <class ELFT> 314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s, 315 uint64_t offset) { 316 // Detect SectionIndex for specified section. 317 uint64_t sectionIndex = object::SectionedAddress::UndefSection; 318 ArrayRef<InputSectionBase *> sections = s->file->getSections(); 319 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) { 320 if (s == sections[curIndex]) { 321 sectionIndex = curIndex; 322 break; 323 } 324 } 325 326 return getDwarf()->getDILineInfo(offset, sectionIndex); 327 } 328 329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) { 330 ekind = getELFKind(mb, ""); 331 332 switch (ekind) { 333 case ELF32LEKind: 334 init<ELF32LE>(); 335 break; 336 case ELF32BEKind: 337 init<ELF32BE>(); 338 break; 339 case ELF64LEKind: 340 init<ELF64LE>(); 341 break; 342 case ELF64BEKind: 343 init<ELF64BE>(); 344 break; 345 default: 346 llvm_unreachable("getELFKind"); 347 } 348 } 349 350 template <typename Elf_Shdr> 351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) { 352 for (const Elf_Shdr &sec : sections) 353 if (sec.sh_type == type) 354 return &sec; 355 return nullptr; 356 } 357 358 template <class ELFT> void ELFFileBase::init() { 359 using Elf_Shdr = typename ELFT::Shdr; 360 using Elf_Sym = typename ELFT::Sym; 361 362 // Initialize trivial attributes. 363 const ELFFile<ELFT> &obj = getObj<ELFT>(); 364 emachine = obj.getHeader().e_machine; 365 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI]; 366 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION]; 367 368 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 369 370 // Find a symbol table. 371 bool isDSO = 372 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object); 373 const Elf_Shdr *symtabSec = 374 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB); 375 376 if (!symtabSec) 377 return; 378 379 // Initialize members corresponding to a symbol table. 380 firstGlobal = symtabSec->sh_info; 381 382 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this); 383 if (firstGlobal == 0 || firstGlobal > eSyms.size()) 384 fatal(toString(this) + ": invalid sh_info in symbol table"); 385 386 elfSyms = reinterpret_cast<const void *>(eSyms.data()); 387 numELFSyms = eSyms.size(); 388 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this); 389 } 390 391 template <class ELFT> 392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const { 393 return CHECK( 394 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable), 395 this); 396 } 397 398 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 399 if (this->symbols.empty()) 400 return {}; 401 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1); 402 } 403 404 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 405 return makeArrayRef(this->symbols).slice(this->firstGlobal); 406 } 407 408 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) { 409 // Read a section table. justSymbols is usually false. 410 if (this->justSymbols) 411 initializeJustSymbols(); 412 else 413 initializeSections(ignoreComdats); 414 415 // Read a symbol table. 416 initializeSymbols(); 417 } 418 419 // Sections with SHT_GROUP and comdat bits define comdat section groups. 420 // They are identified and deduplicated by group name. This function 421 // returns a group name. 422 template <class ELFT> 423 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections, 424 const Elf_Shdr &sec) { 425 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>(); 426 if (sec.sh_info >= symbols.size()) 427 fatal(toString(this) + ": invalid symbol index"); 428 const typename ELFT::Sym &sym = symbols[sec.sh_info]; 429 StringRef signature = CHECK(sym.getName(this->stringTable), this); 430 431 // As a special case, if a symbol is a section symbol and has no name, 432 // we use a section name as a signature. 433 // 434 // Such SHT_GROUP sections are invalid from the perspective of the ELF 435 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 436 // older produce such sections as outputs for the -r option, so we need 437 // a bug-compatibility. 438 if (signature.empty() && sym.getType() == STT_SECTION) 439 return getSectionName(sec); 440 return signature; 441 } 442 443 template <class ELFT> 444 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) { 445 if (!(sec.sh_flags & SHF_MERGE)) 446 return false; 447 448 // On a regular link we don't merge sections if -O0 (default is -O1). This 449 // sometimes makes the linker significantly faster, although the output will 450 // be bigger. 451 // 452 // Doing the same for -r would create a problem as it would combine sections 453 // with different sh_entsize. One option would be to just copy every SHF_MERGE 454 // section as is to the output. While this would produce a valid ELF file with 455 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 456 // they see two .debug_str. We could have separate logic for combining 457 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 458 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 459 // logic for -r. 460 if (config->optimize == 0 && !config->relocatable) 461 return false; 462 463 // A mergeable section with size 0 is useless because they don't have 464 // any data to merge. A mergeable string section with size 0 can be 465 // argued as invalid because it doesn't end with a null character. 466 // We'll avoid a mess by handling them as if they were non-mergeable. 467 if (sec.sh_size == 0) 468 return false; 469 470 // Check for sh_entsize. The ELF spec is not clear about the zero 471 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 472 // the section does not hold a table of fixed-size entries". We know 473 // that Rust 1.13 produces a string mergeable section with a zero 474 // sh_entsize. Here we just accept it rather than being picky about it. 475 uint64_t entSize = sec.sh_entsize; 476 if (entSize == 0) 477 return false; 478 if (sec.sh_size % entSize) 479 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" + 480 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" + 481 Twine(entSize) + ")"); 482 483 if (sec.sh_flags & SHF_WRITE) 484 fatal(toString(this) + ":(" + name + 485 "): writable SHF_MERGE section is not supported"); 486 487 return true; 488 } 489 490 // This is for --just-symbols. 491 // 492 // --just-symbols is a very minor feature that allows you to link your 493 // output against other existing program, so that if you load both your 494 // program and the other program into memory, your output can refer the 495 // other program's symbols. 496 // 497 // When the option is given, we link "just symbols". The section table is 498 // initialized with null pointers. 499 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 500 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this); 501 this->sections.resize(sections.size()); 502 } 503 504 // An ELF object file may contain a `.deplibs` section. If it exists, the 505 // section contains a list of library specifiers such as `m` for libm. This 506 // function resolves a given name by finding the first matching library checking 507 // the various ways that a library can be specified to LLD. This ELF extension 508 // is a form of autolinking and is called `dependent libraries`. It is currently 509 // unique to LLVM and lld. 510 static void addDependentLibrary(StringRef specifier, const InputFile *f) { 511 if (!config->dependentLibraries) 512 return; 513 if (fs::exists(specifier)) 514 driver->addFile(specifier, /*withLOption=*/false); 515 else if (Optional<std::string> s = findFromSearchPaths(specifier)) 516 driver->addFile(*s, /*withLOption=*/true); 517 else if (Optional<std::string> s = searchLibraryBaseName(specifier)) 518 driver->addFile(*s, /*withLOption=*/true); 519 else 520 error(toString(f) + 521 ": unable to find library from dependent library specifier: " + 522 specifier); 523 } 524 525 // Record the membership of a section group so that in the garbage collection 526 // pass, section group members are kept or discarded as a unit. 527 template <class ELFT> 528 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections, 529 ArrayRef<typename ELFT::Word> entries) { 530 bool hasAlloc = false; 531 for (uint32_t index : entries.slice(1)) { 532 if (index >= sections.size()) 533 return; 534 if (InputSectionBase *s = sections[index]) 535 if (s != &InputSection::discarded && s->flags & SHF_ALLOC) 536 hasAlloc = true; 537 } 538 539 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage 540 // collection. See the comment in markLive(). This rule retains .debug_types 541 // and .rela.debug_types. 542 if (!hasAlloc) 543 return; 544 545 // Connect the members in a circular doubly-linked list via 546 // nextInSectionGroup. 547 InputSectionBase *head; 548 InputSectionBase *prev = nullptr; 549 for (uint32_t index : entries.slice(1)) { 550 InputSectionBase *s = sections[index]; 551 if (!s || s == &InputSection::discarded) 552 continue; 553 if (prev) 554 prev->nextInSectionGroup = s; 555 else 556 head = s; 557 prev = s; 558 } 559 if (prev) 560 prev->nextInSectionGroup = head; 561 } 562 563 template <class ELFT> 564 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) { 565 const ELFFile<ELFT> &obj = this->getObj(); 566 567 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this); 568 uint64_t size = objSections.size(); 569 this->sections.resize(size); 570 this->sectionStringTable = 571 CHECK(obj.getSectionStringTable(objSections), this); 572 573 std::vector<ArrayRef<Elf_Word>> selectedGroups; 574 575 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 576 if (this->sections[i] == &InputSection::discarded) 577 continue; 578 const Elf_Shdr &sec = objSections[i]; 579 580 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 581 cgProfile = 582 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec)); 583 584 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 585 // if -r is given, we'll let the final link discard such sections. 586 // This is compatible with GNU. 587 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) { 588 if (sec.sh_type == SHT_LLVM_ADDRSIG) { 589 // We ignore the address-significance table if we know that the object 590 // file was created by objcopy or ld -r. This is because these tools 591 // will reorder the symbols in the symbol table, invalidating the data 592 // in the address-significance table, which refers to symbols by index. 593 if (sec.sh_link != 0) 594 this->addrsigSec = &sec; 595 else if (config->icf == ICFLevel::Safe) 596 warn(toString(this) + 597 ": --icf=safe conservatively ignores " 598 "SHT_LLVM_ADDRSIG [index " + 599 Twine(i) + 600 "] with sh_link=0 " 601 "(likely created using objcopy or ld -r)"); 602 } 603 this->sections[i] = &InputSection::discarded; 604 continue; 605 } 606 607 switch (sec.sh_type) { 608 case SHT_GROUP: { 609 // De-duplicate section groups by their signatures. 610 StringRef signature = getShtGroupSignature(objSections, sec); 611 this->sections[i] = &InputSection::discarded; 612 613 ArrayRef<Elf_Word> entries = 614 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this); 615 if (entries.empty()) 616 fatal(toString(this) + ": empty SHT_GROUP"); 617 618 Elf_Word flag = entries[0]; 619 if (flag && flag != GRP_COMDAT) 620 fatal(toString(this) + ": unsupported SHT_GROUP format"); 621 622 bool keepGroup = 623 (flag & GRP_COMDAT) == 0 || ignoreComdats || 624 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this) 625 .second; 626 if (keepGroup) { 627 if (config->relocatable) 628 this->sections[i] = createInputSection(sec); 629 selectedGroups.push_back(entries); 630 continue; 631 } 632 633 // Otherwise, discard group members. 634 for (uint32_t secIndex : entries.slice(1)) { 635 if (secIndex >= size) 636 fatal(toString(this) + 637 ": invalid section index in group: " + Twine(secIndex)); 638 this->sections[secIndex] = &InputSection::discarded; 639 } 640 break; 641 } 642 case SHT_SYMTAB_SHNDX: 643 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this); 644 break; 645 case SHT_SYMTAB: 646 case SHT_STRTAB: 647 case SHT_REL: 648 case SHT_RELA: 649 case SHT_NULL: 650 break; 651 default: 652 this->sections[i] = createInputSection(sec); 653 } 654 } 655 656 // We have a second loop. It is used to: 657 // 1) handle SHF_LINK_ORDER sections. 658 // 2) create SHT_REL[A] sections. In some cases the section header index of a 659 // relocation section may be smaller than that of the relocated section. In 660 // such cases, the relocation section would attempt to reference a target 661 // section that has not yet been created. For simplicity, delay creation of 662 // relocation sections until now. 663 for (size_t i = 0, e = objSections.size(); i < e; ++i) { 664 if (this->sections[i] == &InputSection::discarded) 665 continue; 666 const Elf_Shdr &sec = objSections[i]; 667 668 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) 669 this->sections[i] = createInputSection(sec); 670 671 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have 672 // the flag. 673 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link) 674 continue; 675 676 InputSectionBase *linkSec = nullptr; 677 if (sec.sh_link < this->sections.size()) 678 linkSec = this->sections[sec.sh_link]; 679 if (!linkSec) 680 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link)); 681 682 // A SHF_LINK_ORDER section is discarded if its linked-to section is 683 // discarded. 684 InputSection *isec = cast<InputSection>(this->sections[i]); 685 linkSec->dependentSections.push_back(isec); 686 if (!isa<InputSection>(linkSec)) 687 error("a section " + isec->name + 688 " with SHF_LINK_ORDER should not refer a non-regular section: " + 689 toString(linkSec)); 690 } 691 692 for (ArrayRef<Elf_Word> entries : selectedGroups) 693 handleSectionGroup<ELFT>(this->sections, entries); 694 } 695 696 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 697 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 698 // the input objects have been compiled. 699 static void updateARMVFPArgs(const ARMAttributeParser &attributes, 700 const InputFile *f) { 701 Optional<unsigned> attr = 702 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 703 if (!attr.hasValue()) 704 // If an ABI tag isn't present then it is implicitly given the value of 0 705 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 706 // including some in glibc that don't use FP args (and should have value 3) 707 // don't have the attribute so we do not consider an implicit value of 0 708 // as a clash. 709 return; 710 711 unsigned vfpArgs = attr.getValue(); 712 ARMVFPArgKind arg; 713 switch (vfpArgs) { 714 case ARMBuildAttrs::BaseAAPCS: 715 arg = ARMVFPArgKind::Base; 716 break; 717 case ARMBuildAttrs::HardFPAAPCS: 718 arg = ARMVFPArgKind::VFP; 719 break; 720 case ARMBuildAttrs::ToolChainFPPCS: 721 // Tool chain specific convention that conforms to neither AAPCS variant. 722 arg = ARMVFPArgKind::ToolChain; 723 break; 724 case ARMBuildAttrs::CompatibleFPAAPCS: 725 // Object compatible with all conventions. 726 return; 727 default: 728 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs)); 729 return; 730 } 731 // Follow ld.bfd and error if there is a mix of calling conventions. 732 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default) 733 error(toString(f) + ": incompatible Tag_ABI_VFP_args"); 734 else 735 config->armVFPArgs = arg; 736 } 737 738 // The ARM support in lld makes some use of instructions that are not available 739 // on all ARM architectures. Namely: 740 // - Use of BLX instruction for interworking between ARM and Thumb state. 741 // - Use of the extended Thumb branch encoding in relocation. 742 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 743 // The ARM Attributes section contains information about the architecture chosen 744 // at compile time. We follow the convention that if at least one input object 745 // is compiled with an architecture that supports these features then lld is 746 // permitted to use them. 747 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) { 748 Optional<unsigned> attr = 749 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 750 if (!attr.hasValue()) 751 return; 752 auto arch = attr.getValue(); 753 switch (arch) { 754 case ARMBuildAttrs::Pre_v4: 755 case ARMBuildAttrs::v4: 756 case ARMBuildAttrs::v4T: 757 // Architectures prior to v5 do not support BLX instruction 758 break; 759 case ARMBuildAttrs::v5T: 760 case ARMBuildAttrs::v5TE: 761 case ARMBuildAttrs::v5TEJ: 762 case ARMBuildAttrs::v6: 763 case ARMBuildAttrs::v6KZ: 764 case ARMBuildAttrs::v6K: 765 config->armHasBlx = true; 766 // Architectures used in pre-Cortex processors do not support 767 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 768 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 769 break; 770 default: 771 // All other Architectures have BLX and extended branch encoding 772 config->armHasBlx = true; 773 config->armJ1J2BranchEncoding = true; 774 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M) 775 // All Architectures used in Cortex processors with the exception 776 // of v6-M and v6S-M have the MOVT and MOVW instructions. 777 config->armHasMovtMovw = true; 778 break; 779 } 780 } 781 782 // If a source file is compiled with x86 hardware-assisted call flow control 783 // enabled, the generated object file contains feature flags indicating that 784 // fact. This function reads the feature flags and returns it. 785 // 786 // Essentially we want to read a single 32-bit value in this function, but this 787 // function is rather complicated because the value is buried deep inside a 788 // .note.gnu.property section. 789 // 790 // The section consists of one or more NOTE records. Each NOTE record consists 791 // of zero or more type-length-value fields. We want to find a field of a 792 // certain type. It seems a bit too much to just store a 32-bit value, perhaps 793 // the ABI is unnecessarily complicated. 794 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) { 795 using Elf_Nhdr = typename ELFT::Nhdr; 796 using Elf_Note = typename ELFT::Note; 797 798 uint32_t featuresSet = 0; 799 ArrayRef<uint8_t> data = sec.data(); 800 auto reportFatal = [&](const uint8_t *place, const char *msg) { 801 fatal(toString(sec.file) + ":(" + sec.name + "+0x" + 802 Twine::utohexstr(place - sec.data().data()) + "): " + msg); 803 }; 804 while (!data.empty()) { 805 // Read one NOTE record. 806 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data()); 807 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize()) 808 reportFatal(data.data(), "data is too short"); 809 810 Elf_Note note(*nhdr); 811 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") { 812 data = data.slice(nhdr->getSize()); 813 continue; 814 } 815 816 uint32_t featureAndType = config->emachine == EM_AARCH64 817 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND 818 : GNU_PROPERTY_X86_FEATURE_1_AND; 819 820 // Read a body of a NOTE record, which consists of type-length-value fields. 821 ArrayRef<uint8_t> desc = note.getDesc(); 822 while (!desc.empty()) { 823 const uint8_t *place = desc.data(); 824 if (desc.size() < 8) 825 reportFatal(place, "program property is too short"); 826 uint32_t type = read32<ELFT::TargetEndianness>(desc.data()); 827 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4); 828 desc = desc.slice(8); 829 if (desc.size() < size) 830 reportFatal(place, "program property is too short"); 831 832 if (type == featureAndType) { 833 // We found a FEATURE_1_AND field. There may be more than one of these 834 // in a .note.gnu.property section, for a relocatable object we 835 // accumulate the bits set. 836 if (size < 4) 837 reportFatal(place, "FEATURE_1_AND entry is too short"); 838 featuresSet |= read32<ELFT::TargetEndianness>(desc.data()); 839 } 840 841 // Padding is present in the note descriptor, if necessary. 842 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size)); 843 } 844 845 // Go to next NOTE record to look for more FEATURE_1_AND descriptions. 846 data = data.slice(nhdr->getSize()); 847 } 848 849 return featuresSet; 850 } 851 852 template <class ELFT> 853 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) { 854 uint32_t idx = sec.sh_info; 855 if (idx >= this->sections.size()) 856 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx)); 857 InputSectionBase *target = this->sections[idx]; 858 859 // Strictly speaking, a relocation section must be included in the 860 // group of the section it relocates. However, LLVM 3.3 and earlier 861 // would fail to do so, so we gracefully handle that case. 862 if (target == &InputSection::discarded) 863 return nullptr; 864 865 if (!target) 866 fatal(toString(this) + ": unsupported relocation reference"); 867 return target; 868 } 869 870 // Create a regular InputSection class that has the same contents 871 // as a given section. 872 static InputSection *toRegularSection(MergeInputSection *sec) { 873 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment, 874 sec->data(), sec->name); 875 } 876 877 template <class ELFT> 878 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) { 879 StringRef name = getSectionName(sec); 880 881 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) { 882 ARMAttributeParser attributes; 883 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 884 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind 885 ? support::little 886 : support::big)) { 887 auto *isec = make<InputSection>(*this, sec, name); 888 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 889 } else { 890 updateSupportedARMFeatures(attributes); 891 updateARMVFPArgs(attributes, this); 892 893 // FIXME: Retain the first attribute section we see. The eglibc ARM 894 // dynamic loaders require the presence of an attribute section for dlopen 895 // to work. In a full implementation we would merge all attribute 896 // sections. 897 if (in.attributes == nullptr) { 898 in.attributes = make<InputSection>(*this, sec, name); 899 return in.attributes; 900 } 901 return &InputSection::discarded; 902 } 903 } 904 905 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) { 906 RISCVAttributeParser attributes; 907 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec)); 908 if (Error e = attributes.parse(contents, support::little)) { 909 auto *isec = make<InputSection>(*this, sec, name); 910 warn(toString(isec) + ": " + llvm::toString(std::move(e))); 911 } else { 912 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is 913 // present. 914 915 // FIXME: Retain the first attribute section we see. Tools such as 916 // llvm-objdump make use of the attribute section to determine which 917 // standard extensions to enable. In a full implementation we would merge 918 // all attribute sections. 919 if (in.attributes == nullptr) { 920 in.attributes = make<InputSection>(*this, sec, name); 921 return in.attributes; 922 } 923 return &InputSection::discarded; 924 } 925 } 926 927 switch (sec.sh_type) { 928 case SHT_LLVM_DEPENDENT_LIBRARIES: { 929 if (config->relocatable) 930 break; 931 ArrayRef<char> data = 932 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this); 933 if (!data.empty() && data.back() != '\0') { 934 error(toString(this) + 935 ": corrupted dependent libraries section (unterminated string): " + 936 name); 937 return &InputSection::discarded; 938 } 939 for (const char *d = data.begin(), *e = data.end(); d < e;) { 940 StringRef s(d); 941 addDependentLibrary(s, this); 942 d += s.size() + 1; 943 } 944 return &InputSection::discarded; 945 } 946 case SHT_RELA: 947 case SHT_REL: { 948 // Find a relocation target section and associate this section with that. 949 // Target may have been discarded if it is in a different section group 950 // and the group is discarded, even though it's a violation of the 951 // spec. We handle that situation gracefully by discarding dangling 952 // relocation sections. 953 InputSectionBase *target = getRelocTarget(sec); 954 if (!target) 955 return nullptr; 956 957 // ELF spec allows mergeable sections with relocations, but they are 958 // rare, and it is in practice hard to merge such sections by contents, 959 // because applying relocations at end of linking changes section 960 // contents. So, we simply handle such sections as non-mergeable ones. 961 // Degrading like this is acceptable because section merging is optional. 962 if (auto *ms = dyn_cast<MergeInputSection>(target)) { 963 target = toRegularSection(ms); 964 this->sections[sec.sh_info] = target; 965 } 966 967 if (target->firstRelocation) 968 fatal(toString(this) + 969 ": multiple relocation sections to one section are not supported"); 970 971 if (sec.sh_type == SHT_RELA) { 972 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this); 973 target->firstRelocation = rels.begin(); 974 target->numRelocations = rels.size(); 975 target->areRelocsRela = true; 976 } else { 977 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this); 978 target->firstRelocation = rels.begin(); 979 target->numRelocations = rels.size(); 980 target->areRelocsRela = false; 981 } 982 assert(isUInt<31>(target->numRelocations)); 983 984 // Relocation sections are usually removed from the output, so return 985 // `nullptr` for the normal case. However, if -r or --emit-relocs is 986 // specified, we need to copy them to the output. (Some post link analysis 987 // tools specify --emit-relocs to obtain the information.) 988 if (!config->relocatable && !config->emitRelocs) 989 return nullptr; 990 InputSection *relocSec = make<InputSection>(*this, sec, name); 991 // If the relocated section is discarded (due to /DISCARD/ or 992 // --gc-sections), the relocation section should be discarded as well. 993 target->dependentSections.push_back(relocSec); 994 return relocSec; 995 } 996 } 997 998 // The GNU linker uses .note.GNU-stack section as a marker indicating 999 // that the code in the object file does not expect that the stack is 1000 // executable (in terms of NX bit). If all input files have the marker, 1001 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 1002 // make the stack non-executable. Most object files have this section as 1003 // of 2017. 1004 // 1005 // But making the stack non-executable is a norm today for security 1006 // reasons. Failure to do so may result in a serious security issue. 1007 // Therefore, we make LLD always add PT_GNU_STACK unless it is 1008 // explicitly told to do otherwise (by -z execstack). Because the stack 1009 // executable-ness is controlled solely by command line options, 1010 // .note.GNU-stack sections are simply ignored. 1011 if (name == ".note.GNU-stack") 1012 return &InputSection::discarded; 1013 1014 // Object files that use processor features such as Intel Control-Flow 1015 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a 1016 // .note.gnu.property section containing a bitfield of feature bits like the 1017 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag. 1018 // 1019 // Since we merge bitmaps from multiple object files to create a new 1020 // .note.gnu.property containing a single AND'ed bitmap, we discard an input 1021 // file's .note.gnu.property section. 1022 if (name == ".note.gnu.property") { 1023 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name)); 1024 return &InputSection::discarded; 1025 } 1026 1027 // Split stacks is a feature to support a discontiguous stack, 1028 // commonly used in the programming language Go. For the details, 1029 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 1030 // for split stack will include a .note.GNU-split-stack section. 1031 if (name == ".note.GNU-split-stack") { 1032 if (config->relocatable) { 1033 error("cannot mix split-stack and non-split-stack in a relocatable link"); 1034 return &InputSection::discarded; 1035 } 1036 this->splitStack = true; 1037 return &InputSection::discarded; 1038 } 1039 1040 // An object file cmpiled for split stack, but where some of the 1041 // functions were compiled with the no_split_stack_attribute will 1042 // include a .note.GNU-no-split-stack section. 1043 if (name == ".note.GNU-no-split-stack") { 1044 this->someNoSplitStack = true; 1045 return &InputSection::discarded; 1046 } 1047 1048 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 1049 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 1050 // sections. Drop those sections to avoid duplicate symbol errors. 1051 // FIXME: This is glibc PR20543, we should remove this hack once that has been 1052 // fixed for a while. 1053 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 1054 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 1055 return &InputSection::discarded; 1056 1057 // If we are creating a new .build-id section, strip existing .build-id 1058 // sections so that the output won't have more than one .build-id. 1059 // This is not usually a problem because input object files normally don't 1060 // have .build-id sections, but you can create such files by 1061 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 1062 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None) 1063 return &InputSection::discarded; 1064 1065 // The linker merges EH (exception handling) frames and creates a 1066 // .eh_frame_hdr section for runtime. So we handle them with a special 1067 // class. For relocatable outputs, they are just passed through. 1068 if (name == ".eh_frame" && !config->relocatable) 1069 return make<EhInputSection>(*this, sec, name); 1070 1071 if (shouldMerge(sec, name)) 1072 return make<MergeInputSection>(*this, sec, name); 1073 return make<InputSection>(*this, sec, name); 1074 } 1075 1076 template <class ELFT> 1077 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) { 1078 return CHECK(getObj().getSectionName(sec, sectionStringTable), this); 1079 } 1080 1081 // Initialize this->Symbols. this->Symbols is a parallel array as 1082 // its corresponding ELF symbol table. 1083 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 1084 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>(); 1085 this->symbols.resize(eSyms.size()); 1086 1087 // Fill in InputFile::symbols. Some entries have been initialized 1088 // because of LazyObjFile. 1089 for (size_t i = 0, end = eSyms.size(); i != end; ++i) { 1090 if (this->symbols[i]) 1091 continue; 1092 const Elf_Sym &eSym = eSyms[i]; 1093 uint32_t secIdx = getSectionIndex(eSym); 1094 if (secIdx >= this->sections.size()) 1095 fatal(toString(this) + ": invalid section index: " + Twine(secIdx)); 1096 if (eSym.getBinding() != STB_LOCAL) { 1097 if (i < firstGlobal) 1098 error(toString(this) + ": non-local symbol (" + Twine(i) + 1099 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) + 1100 ")"); 1101 this->symbols[i] = 1102 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this)); 1103 continue; 1104 } 1105 1106 // Handle local symbols. Local symbols are not added to the symbol 1107 // table because they are not visible from other object files. We 1108 // allocate symbol instances and add their pointers to symbols. 1109 if (i >= firstGlobal) 1110 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) + 1111 ") found at index >= .symtab's sh_info (" + 1112 Twine(firstGlobal) + ")"); 1113 1114 InputSectionBase *sec = this->sections[secIdx]; 1115 uint8_t type = eSym.getType(); 1116 if (type == STT_FILE) 1117 sourceFile = CHECK(eSym.getName(this->stringTable), this); 1118 if (this->stringTable.size() <= eSym.st_name) 1119 fatal(toString(this) + ": invalid symbol name offset"); 1120 StringRefZ name = this->stringTable.data() + eSym.st_name; 1121 1122 if (eSym.st_shndx == SHN_UNDEF) 1123 this->symbols[i] = 1124 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type); 1125 else if (sec == &InputSection::discarded) 1126 this->symbols[i] = 1127 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type, 1128 /*discardedSecIdx=*/secIdx); 1129 else 1130 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other, 1131 type, eSym.st_value, eSym.st_size, sec); 1132 } 1133 1134 // Symbol resolution of non-local symbols. 1135 SmallVector<unsigned, 32> unds; 1136 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) { 1137 const Elf_Sym &eSym = eSyms[i]; 1138 uint8_t binding = eSym.getBinding(); 1139 if (binding == STB_LOCAL) 1140 continue; // Errored above. 1141 1142 uint32_t secIdx = getSectionIndex(eSym); 1143 InputSectionBase *sec = this->sections[secIdx]; 1144 uint8_t stOther = eSym.st_other; 1145 uint8_t type = eSym.getType(); 1146 uint64_t value = eSym.st_value; 1147 uint64_t size = eSym.st_size; 1148 StringRefZ name = this->stringTable.data() + eSym.st_name; 1149 1150 // Handle global undefined symbols. 1151 if (eSym.st_shndx == SHN_UNDEF) { 1152 unds.push_back(i); 1153 continue; 1154 } 1155 1156 // Handle global common symbols. 1157 if (eSym.st_shndx == SHN_COMMON) { 1158 if (value == 0 || value >= UINT32_MAX) 1159 fatal(toString(this) + ": common symbol '" + StringRef(name.data) + 1160 "' has invalid alignment: " + Twine(value)); 1161 this->symbols[i]->resolve( 1162 CommonSymbol{this, name, binding, stOther, type, value, size}); 1163 continue; 1164 } 1165 1166 // If a defined symbol is in a discarded section, handle it as if it 1167 // were an undefined symbol. Such symbol doesn't comply with the 1168 // standard, but in practice, a .eh_frame often directly refer 1169 // COMDAT member sections, and if a comdat group is discarded, some 1170 // defined symbol in a .eh_frame becomes dangling symbols. 1171 if (sec == &InputSection::discarded) { 1172 Undefined und{this, name, binding, stOther, type, secIdx}; 1173 Symbol *sym = this->symbols[i]; 1174 // !ArchiveFile::parsed or LazyObjFile::fetched means that the file 1175 // containing this object has not finished processing, i.e. this symbol is 1176 // a result of a lazy symbol fetch. We should demote the lazy symbol to an 1177 // Undefined so that any relocations outside of the group to it will 1178 // trigger a discarded section error. 1179 if ((sym->symbolKind == Symbol::LazyArchiveKind && 1180 !cast<ArchiveFile>(sym->file)->parsed) || 1181 (sym->symbolKind == Symbol::LazyObjectKind && 1182 cast<LazyObjFile>(sym->file)->fetched)) 1183 sym->replace(und); 1184 else 1185 sym->resolve(und); 1186 continue; 1187 } 1188 1189 // Handle global defined symbols. 1190 if (binding == STB_GLOBAL || binding == STB_WEAK || 1191 binding == STB_GNU_UNIQUE) { 1192 this->symbols[i]->resolve( 1193 Defined{this, name, binding, stOther, type, value, size, sec}); 1194 continue; 1195 } 1196 1197 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding)); 1198 } 1199 1200 // Undefined symbols (excluding those defined relative to non-prevailing 1201 // sections) can trigger recursive fetch. Process defined symbols first so 1202 // that the relative order between a defined symbol and an undefined symbol 1203 // does not change the symbol resolution behavior. In addition, a set of 1204 // interconnected symbols will all be resolved to the same file, instead of 1205 // being resolved to different files. 1206 for (unsigned i : unds) { 1207 const Elf_Sym &eSym = eSyms[i]; 1208 StringRefZ name = this->stringTable.data() + eSym.st_name; 1209 this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(), 1210 eSym.st_other, eSym.getType()}); 1211 this->symbols[i]->referenced = true; 1212 } 1213 } 1214 1215 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file) 1216 : InputFile(ArchiveKind, file->getMemoryBufferRef()), 1217 file(std::move(file)) {} 1218 1219 void ArchiveFile::parse() { 1220 for (const Archive::Symbol &sym : file->symbols()) 1221 symtab->addSymbol(LazyArchive{*this, sym}); 1222 1223 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this 1224 // archive has been processed. 1225 parsed = true; 1226 } 1227 1228 // Returns a buffer pointing to a member file containing a given symbol. 1229 void ArchiveFile::fetch(const Archive::Symbol &sym) { 1230 Archive::Child c = 1231 CHECK(sym.getMember(), toString(this) + 1232 ": could not get the member for symbol " + 1233 toELFString(sym)); 1234 1235 if (!seen.insert(c.getChildOffset()).second) 1236 return; 1237 1238 MemoryBufferRef mb = 1239 CHECK(c.getMemoryBufferRef(), 1240 toString(this) + 1241 ": could not get the buffer for the member defining symbol " + 1242 toELFString(sym)); 1243 1244 if (tar && c.getParent()->isThin()) 1245 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer()); 1246 1247 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset()); 1248 file->groupId = groupId; 1249 parseFile(file); 1250 } 1251 1252 // The handling of tentative definitions (COMMON symbols) in archives is murky. 1253 // A tentative definition will be promoted to a global definition if there are 1254 // no non-tentative definitions to dominate it. When we hold a tentative 1255 // definition to a symbol and are inspecting archive members for inclusion 1256 // there are 2 ways we can proceed: 1257 // 1258 // 1) Consider the tentative definition a 'real' definition (ie promotion from 1259 // tentative to real definition has already happened) and not inspect 1260 // archive members for Global/Weak definitions to replace the tentative 1261 // definition. An archive member would only be included if it satisfies some 1262 // other undefined symbol. This is the behavior Gold uses. 1263 // 1264 // 2) Consider the tentative definition as still undefined (ie the promotion to 1265 // a real definition happens only after all symbol resolution is done). 1266 // The linker searches archive members for global or weak definitions to 1267 // replace the tentative definition with. This is the behavior used by 1268 // GNU ld. 1269 // 1270 // The second behavior is inherited from SysVR4, which based it on the FORTRAN 1271 // COMMON BLOCK model. This behavior is needed for proper initialization in old 1272 // (pre F90) FORTRAN code that is packaged into an archive. 1273 // 1274 // The following functions search archive members for definitions to replace 1275 // tentative definitions (implementing behavior 2). 1276 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName, 1277 StringRef archiveName) { 1278 IRSymtabFile symtabFile = check(readIRSymtab(mb)); 1279 for (const irsymtab::Reader::SymbolRef &sym : 1280 symtabFile.TheReader.symbols()) { 1281 if (sym.isGlobal() && sym.getName() == symName) 1282 return !sym.isUndefined() && !sym.isCommon(); 1283 } 1284 return false; 1285 } 1286 1287 template <class ELFT> 1288 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1289 StringRef archiveName) { 1290 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName); 1291 StringRef stringtable = obj->getStringTable(); 1292 1293 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) { 1294 Expected<StringRef> name = sym.getName(stringtable); 1295 if (name && name.get() == symName) 1296 return sym.isDefined() && !sym.isCommon(); 1297 } 1298 return false; 1299 } 1300 1301 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName, 1302 StringRef archiveName) { 1303 switch (getELFKind(mb, archiveName)) { 1304 case ELF32LEKind: 1305 return isNonCommonDef<ELF32LE>(mb, symName, archiveName); 1306 case ELF32BEKind: 1307 return isNonCommonDef<ELF32BE>(mb, symName, archiveName); 1308 case ELF64LEKind: 1309 return isNonCommonDef<ELF64LE>(mb, symName, archiveName); 1310 case ELF64BEKind: 1311 return isNonCommonDef<ELF64BE>(mb, symName, archiveName); 1312 default: 1313 llvm_unreachable("getELFKind"); 1314 } 1315 } 1316 1317 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) { 1318 Archive::Child c = 1319 CHECK(sym.getMember(), toString(this) + 1320 ": could not get the member for symbol " + 1321 toELFString(sym)); 1322 MemoryBufferRef mb = 1323 CHECK(c.getMemoryBufferRef(), 1324 toString(this) + 1325 ": could not get the buffer for the member defining symbol " + 1326 toELFString(sym)); 1327 1328 if (isBitcode(mb)) 1329 return isBitcodeNonCommonDef(mb, sym.getName(), getName()); 1330 1331 return isNonCommonDef(mb, sym.getName(), getName()); 1332 } 1333 1334 size_t ArchiveFile::getMemberCount() const { 1335 size_t count = 0; 1336 Error err = Error::success(); 1337 for (const Archive::Child &c : file->children(err)) { 1338 (void)c; 1339 ++count; 1340 } 1341 // This function is used by --print-archive-stats=, where an error does not 1342 // really matter. 1343 consumeError(std::move(err)); 1344 return count; 1345 } 1346 1347 unsigned SharedFile::vernauxNum; 1348 1349 // Parse the version definitions in the object file if present, and return a 1350 // vector whose nth element contains a pointer to the Elf_Verdef for version 1351 // identifier n. Version identifiers that are not definitions map to nullptr. 1352 template <typename ELFT> 1353 static std::vector<const void *> parseVerdefs(const uint8_t *base, 1354 const typename ELFT::Shdr *sec) { 1355 if (!sec) 1356 return {}; 1357 1358 // We cannot determine the largest verdef identifier without inspecting 1359 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 1360 // sequentially starting from 1, so we predict that the largest identifier 1361 // will be verdefCount. 1362 unsigned verdefCount = sec->sh_info; 1363 std::vector<const void *> verdefs(verdefCount + 1); 1364 1365 // Build the Verdefs array by following the chain of Elf_Verdef objects 1366 // from the start of the .gnu.version_d section. 1367 const uint8_t *verdef = base + sec->sh_offset; 1368 for (unsigned i = 0; i != verdefCount; ++i) { 1369 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef); 1370 verdef += curVerdef->vd_next; 1371 unsigned verdefIndex = curVerdef->vd_ndx; 1372 verdefs.resize(verdefIndex + 1); 1373 verdefs[verdefIndex] = curVerdef; 1374 } 1375 return verdefs; 1376 } 1377 1378 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined 1379 // symbol. We detect fatal issues which would cause vulnerabilities, but do not 1380 // implement sophisticated error checking like in llvm-readobj because the value 1381 // of such diagnostics is low. 1382 template <typename ELFT> 1383 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj, 1384 const typename ELFT::Shdr *sec) { 1385 if (!sec) 1386 return {}; 1387 std::vector<uint32_t> verneeds; 1388 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this); 1389 const uint8_t *verneedBuf = data.begin(); 1390 for (unsigned i = 0; i != sec->sh_info; ++i) { 1391 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end()) 1392 fatal(toString(this) + " has an invalid Verneed"); 1393 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf); 1394 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux; 1395 for (unsigned j = 0; j != vn->vn_cnt; ++j) { 1396 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end()) 1397 fatal(toString(this) + " has an invalid Vernaux"); 1398 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf); 1399 if (aux->vna_name >= this->stringTable.size()) 1400 fatal(toString(this) + " has a Vernaux with an invalid vna_name"); 1401 uint16_t version = aux->vna_other & VERSYM_VERSION; 1402 if (version >= verneeds.size()) 1403 verneeds.resize(version + 1); 1404 verneeds[version] = aux->vna_name; 1405 vernauxBuf += aux->vna_next; 1406 } 1407 verneedBuf += vn->vn_next; 1408 } 1409 return verneeds; 1410 } 1411 1412 // We do not usually care about alignments of data in shared object 1413 // files because the loader takes care of it. However, if we promote a 1414 // DSO symbol to point to .bss due to copy relocation, we need to keep 1415 // the original alignment requirements. We infer it in this function. 1416 template <typename ELFT> 1417 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections, 1418 const typename ELFT::Sym &sym) { 1419 uint64_t ret = UINT64_MAX; 1420 if (sym.st_value) 1421 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value); 1422 if (0 < sym.st_shndx && sym.st_shndx < sections.size()) 1423 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign); 1424 return (ret > UINT32_MAX) ? 0 : ret; 1425 } 1426 1427 // Fully parse the shared object file. 1428 // 1429 // This function parses symbol versions. If a DSO has version information, 1430 // the file has a ".gnu.version_d" section which contains symbol version 1431 // definitions. Each symbol is associated to one version through a table in 1432 // ".gnu.version" section. That table is a parallel array for the symbol 1433 // table, and each table entry contains an index in ".gnu.version_d". 1434 // 1435 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 1436 // VER_NDX_GLOBAL. There's no table entry for these special versions in 1437 // ".gnu.version_d". 1438 // 1439 // The file format for symbol versioning is perhaps a bit more complicated 1440 // than necessary, but you can easily understand the code if you wrap your 1441 // head around the data structure described above. 1442 template <class ELFT> void SharedFile::parse() { 1443 using Elf_Dyn = typename ELFT::Dyn; 1444 using Elf_Shdr = typename ELFT::Shdr; 1445 using Elf_Sym = typename ELFT::Sym; 1446 using Elf_Verdef = typename ELFT::Verdef; 1447 using Elf_Versym = typename ELFT::Versym; 1448 1449 ArrayRef<Elf_Dyn> dynamicTags; 1450 const ELFFile<ELFT> obj = this->getObj<ELFT>(); 1451 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this); 1452 1453 const Elf_Shdr *versymSec = nullptr; 1454 const Elf_Shdr *verdefSec = nullptr; 1455 const Elf_Shdr *verneedSec = nullptr; 1456 1457 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 1458 for (const Elf_Shdr &sec : sections) { 1459 switch (sec.sh_type) { 1460 default: 1461 continue; 1462 case SHT_DYNAMIC: 1463 dynamicTags = 1464 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this); 1465 break; 1466 case SHT_GNU_versym: 1467 versymSec = &sec; 1468 break; 1469 case SHT_GNU_verdef: 1470 verdefSec = &sec; 1471 break; 1472 case SHT_GNU_verneed: 1473 verneedSec = &sec; 1474 break; 1475 } 1476 } 1477 1478 if (versymSec && numELFSyms == 0) { 1479 error("SHT_GNU_versym should be associated with symbol table"); 1480 return; 1481 } 1482 1483 // Search for a DT_SONAME tag to initialize this->soName. 1484 for (const Elf_Dyn &dyn : dynamicTags) { 1485 if (dyn.d_tag == DT_NEEDED) { 1486 uint64_t val = dyn.getVal(); 1487 if (val >= this->stringTable.size()) 1488 fatal(toString(this) + ": invalid DT_NEEDED entry"); 1489 dtNeeded.push_back(this->stringTable.data() + val); 1490 } else if (dyn.d_tag == DT_SONAME) { 1491 uint64_t val = dyn.getVal(); 1492 if (val >= this->stringTable.size()) 1493 fatal(toString(this) + ": invalid DT_SONAME entry"); 1494 soName = this->stringTable.data() + val; 1495 } 1496 } 1497 1498 // DSOs are uniquified not by filename but by soname. 1499 DenseMap<StringRef, SharedFile *>::iterator it; 1500 bool wasInserted; 1501 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this); 1502 1503 // If a DSO appears more than once on the command line with and without 1504 // --as-needed, --no-as-needed takes precedence over --as-needed because a 1505 // user can add an extra DSO with --no-as-needed to force it to be added to 1506 // the dependency list. 1507 it->second->isNeeded |= isNeeded; 1508 if (!wasInserted) 1509 return; 1510 1511 sharedFiles.push_back(this); 1512 1513 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec); 1514 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec); 1515 1516 // Parse ".gnu.version" section which is a parallel array for the symbol 1517 // table. If a given file doesn't have a ".gnu.version" section, we use 1518 // VER_NDX_GLOBAL. 1519 size_t size = numELFSyms - firstGlobal; 1520 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL); 1521 if (versymSec) { 1522 ArrayRef<Elf_Versym> versym = 1523 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec), 1524 this) 1525 .slice(firstGlobal); 1526 for (size_t i = 0; i < size; ++i) 1527 versyms[i] = versym[i].vs_index; 1528 } 1529 1530 // System libraries can have a lot of symbols with versions. Using a 1531 // fixed buffer for computing the versions name (foo@ver) can save a 1532 // lot of allocations. 1533 SmallString<0> versionedNameBuffer; 1534 1535 // Add symbols to the symbol table. 1536 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>(); 1537 for (size_t i = 0; i < syms.size(); ++i) { 1538 const Elf_Sym &sym = syms[i]; 1539 1540 // ELF spec requires that all local symbols precede weak or global 1541 // symbols in each symbol table, and the index of first non-local symbol 1542 // is stored to sh_info. If a local symbol appears after some non-local 1543 // symbol, that's a violation of the spec. 1544 StringRef name = CHECK(sym.getName(this->stringTable), this); 1545 if (sym.getBinding() == STB_LOCAL) { 1546 warn("found local symbol '" + name + 1547 "' in global part of symbol table in file " + toString(this)); 1548 continue; 1549 } 1550 1551 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN; 1552 if (sym.isUndefined()) { 1553 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but 1554 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL. 1555 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) { 1556 if (idx >= verneeds.size()) { 1557 error("corrupt input file: version need index " + Twine(idx) + 1558 " for symbol " + name + " is out of bounds\n>>> defined in " + 1559 toString(this)); 1560 continue; 1561 } 1562 StringRef verName = this->stringTable.data() + verneeds[idx]; 1563 versionedNameBuffer.clear(); 1564 name = 1565 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer)); 1566 } 1567 Symbol *s = symtab->addSymbol( 1568 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()}); 1569 s->exportDynamic = true; 1570 continue; 1571 } 1572 1573 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1574 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1575 // workaround for this bug. 1576 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL && 1577 name == "_gp_disp") 1578 continue; 1579 1580 uint32_t alignment = getAlignment<ELFT>(sections, sym); 1581 if (!(versyms[i] & VERSYM_HIDDEN)) { 1582 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(), 1583 sym.st_other, sym.getType(), sym.st_value, 1584 sym.st_size, alignment, idx}); 1585 } 1586 1587 // Also add the symbol with the versioned name to handle undefined symbols 1588 // with explicit versions. 1589 if (idx == VER_NDX_GLOBAL) 1590 continue; 1591 1592 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) { 1593 error("corrupt input file: version definition index " + Twine(idx) + 1594 " for symbol " + name + " is out of bounds\n>>> defined in " + 1595 toString(this)); 1596 continue; 1597 } 1598 1599 StringRef verName = 1600 this->stringTable.data() + 1601 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name; 1602 versionedNameBuffer.clear(); 1603 name = (name + "@" + verName).toStringRef(versionedNameBuffer); 1604 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(), 1605 sym.st_other, sym.getType(), sym.st_value, 1606 sym.st_size, alignment, idx}); 1607 } 1608 } 1609 1610 static ELFKind getBitcodeELFKind(const Triple &t) { 1611 if (t.isLittleEndian()) 1612 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1613 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1614 } 1615 1616 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) { 1617 switch (t.getArch()) { 1618 case Triple::aarch64: 1619 case Triple::aarch64_be: 1620 return EM_AARCH64; 1621 case Triple::amdgcn: 1622 case Triple::r600: 1623 return EM_AMDGPU; 1624 case Triple::arm: 1625 case Triple::thumb: 1626 return EM_ARM; 1627 case Triple::avr: 1628 return EM_AVR; 1629 case Triple::mips: 1630 case Triple::mipsel: 1631 case Triple::mips64: 1632 case Triple::mips64el: 1633 return EM_MIPS; 1634 case Triple::msp430: 1635 return EM_MSP430; 1636 case Triple::ppc: 1637 case Triple::ppcle: 1638 return EM_PPC; 1639 case Triple::ppc64: 1640 case Triple::ppc64le: 1641 return EM_PPC64; 1642 case Triple::riscv32: 1643 case Triple::riscv64: 1644 return EM_RISCV; 1645 case Triple::x86: 1646 return t.isOSIAMCU() ? EM_IAMCU : EM_386; 1647 case Triple::x86_64: 1648 return EM_X86_64; 1649 default: 1650 error(path + ": could not infer e_machine from bitcode target triple " + 1651 t.str()); 1652 return EM_NONE; 1653 } 1654 } 1655 1656 static uint8_t getOsAbi(const Triple &t) { 1657 switch (t.getOS()) { 1658 case Triple::AMDHSA: 1659 return ELF::ELFOSABI_AMDGPU_HSA; 1660 case Triple::AMDPAL: 1661 return ELF::ELFOSABI_AMDGPU_PAL; 1662 case Triple::Mesa3D: 1663 return ELF::ELFOSABI_AMDGPU_MESA3D; 1664 default: 1665 return ELF::ELFOSABI_NONE; 1666 } 1667 } 1668 1669 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1670 uint64_t offsetInArchive) 1671 : InputFile(BitcodeKind, mb) { 1672 this->archiveName = std::string(archiveName); 1673 1674 std::string path = mb.getBufferIdentifier().str(); 1675 if (config->thinLTOIndexOnly) 1676 path = replaceThinLTOSuffix(mb.getBufferIdentifier()); 1677 1678 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1679 // name. If two archives define two members with the same name, this 1680 // causes a collision which result in only one of the objects being taken 1681 // into consideration at LTO time (which very likely causes undefined 1682 // symbols later in the link stage). So we append file offset to make 1683 // filename unique. 1684 StringRef name = 1685 archiveName.empty() 1686 ? saver.save(path) 1687 : saver.save(archiveName + "(" + path::filename(path) + " at " + 1688 utostr(offsetInArchive) + ")"); 1689 MemoryBufferRef mbref(mb.getBuffer(), name); 1690 1691 obj = CHECK(lto::InputFile::create(mbref), this); 1692 1693 Triple t(obj->getTargetTriple()); 1694 ekind = getBitcodeELFKind(t); 1695 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t); 1696 osabi = getOsAbi(t); 1697 } 1698 1699 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) { 1700 switch (gvVisibility) { 1701 case GlobalValue::DefaultVisibility: 1702 return STV_DEFAULT; 1703 case GlobalValue::HiddenVisibility: 1704 return STV_HIDDEN; 1705 case GlobalValue::ProtectedVisibility: 1706 return STV_PROTECTED; 1707 } 1708 llvm_unreachable("unknown visibility"); 1709 } 1710 1711 template <class ELFT> 1712 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats, 1713 const lto::InputFile::Symbol &objSym, 1714 BitcodeFile &f) { 1715 StringRef name = saver.save(objSym.getName()); 1716 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1717 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE; 1718 uint8_t visibility = mapVisibility(objSym.getVisibility()); 1719 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable(); 1720 1721 int c = objSym.getComdatIndex(); 1722 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) { 1723 Undefined newSym(&f, name, binding, visibility, type); 1724 if (canOmitFromDynSym) 1725 newSym.exportDynamic = false; 1726 Symbol *ret = symtab->addSymbol(newSym); 1727 ret->referenced = true; 1728 return ret; 1729 } 1730 1731 if (objSym.isCommon()) 1732 return symtab->addSymbol( 1733 CommonSymbol{&f, name, binding, visibility, STT_OBJECT, 1734 objSym.getCommonAlignment(), objSym.getCommonSize()}); 1735 1736 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr); 1737 if (canOmitFromDynSym) 1738 newSym.exportDynamic = false; 1739 return symtab->addSymbol(newSym); 1740 } 1741 1742 template <class ELFT> void BitcodeFile::parse() { 1743 std::vector<bool> keptComdats; 1744 for (StringRef s : obj->getComdatTable()) 1745 keptComdats.push_back( 1746 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second); 1747 1748 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1749 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this)); 1750 1751 for (auto l : obj->getDependentLibraries()) 1752 addDependentLibrary(l, this); 1753 } 1754 1755 void BinaryFile::parse() { 1756 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer()); 1757 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1758 8, data, ".data"); 1759 sections.push_back(section); 1760 1761 // For each input file foo that is embedded to a result as a binary 1762 // blob, we define _binary_foo_{start,end,size} symbols, so that 1763 // user programs can access blobs by name. Non-alphanumeric 1764 // characters in a filename are replaced with underscore. 1765 std::string s = "_binary_" + mb.getBufferIdentifier().str(); 1766 for (size_t i = 0; i < s.size(); ++i) 1767 if (!isAlnum(s[i])) 1768 s[i] = '_'; 1769 1770 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL, 1771 STV_DEFAULT, STT_OBJECT, 0, 0, section}); 1772 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL, 1773 STV_DEFAULT, STT_OBJECT, data.size(), 0, section}); 1774 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL, 1775 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr}); 1776 } 1777 1778 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName, 1779 uint64_t offsetInArchive) { 1780 if (isBitcode(mb)) 1781 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1782 1783 switch (getELFKind(mb, archiveName)) { 1784 case ELF32LEKind: 1785 return make<ObjFile<ELF32LE>>(mb, archiveName); 1786 case ELF32BEKind: 1787 return make<ObjFile<ELF32BE>>(mb, archiveName); 1788 case ELF64LEKind: 1789 return make<ObjFile<ELF64LE>>(mb, archiveName); 1790 case ELF64BEKind: 1791 return make<ObjFile<ELF64BE>>(mb, archiveName); 1792 default: 1793 llvm_unreachable("getELFKind"); 1794 } 1795 } 1796 1797 void LazyObjFile::fetch() { 1798 if (fetched) 1799 return; 1800 fetched = true; 1801 1802 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive); 1803 file->groupId = groupId; 1804 1805 // Copy symbol vector so that the new InputFile doesn't have to 1806 // insert the same defined symbols to the symbol table again. 1807 file->symbols = std::move(symbols); 1808 1809 parseFile(file); 1810 } 1811 1812 template <class ELFT> void LazyObjFile::parse() { 1813 using Elf_Sym = typename ELFT::Sym; 1814 1815 // A lazy object file wraps either a bitcode file or an ELF file. 1816 if (isBitcode(this->mb)) { 1817 std::unique_ptr<lto::InputFile> obj = 1818 CHECK(lto::InputFile::create(this->mb), this); 1819 for (const lto::InputFile::Symbol &sym : obj->symbols()) { 1820 if (sym.isUndefined()) 1821 continue; 1822 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())}); 1823 } 1824 return; 1825 } 1826 1827 if (getELFKind(this->mb, archiveName) != config->ekind) { 1828 error("incompatible file: " + this->mb.getBufferIdentifier()); 1829 return; 1830 } 1831 1832 // Find a symbol table. 1833 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer())); 1834 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this); 1835 1836 for (const typename ELFT::Shdr &sec : sections) { 1837 if (sec.sh_type != SHT_SYMTAB) 1838 continue; 1839 1840 // A symbol table is found. 1841 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this); 1842 uint32_t firstGlobal = sec.sh_info; 1843 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this); 1844 this->symbols.resize(eSyms.size()); 1845 1846 // Get existing symbols or insert placeholder symbols. 1847 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) 1848 if (eSyms[i].st_shndx != SHN_UNDEF) 1849 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this)); 1850 1851 // Replace existing symbols with LazyObject symbols. 1852 // 1853 // resolve() may trigger this->fetch() if an existing symbol is an 1854 // undefined symbol. If that happens, this LazyObjFile has served 1855 // its purpose, and we can exit from the loop early. 1856 for (Symbol *sym : this->symbols) { 1857 if (!sym) 1858 continue; 1859 sym->resolve(LazyObject{*this, sym->getName()}); 1860 1861 // If fetched, stop iterating because this->symbols has been transferred 1862 // to the instantiated ObjFile. 1863 if (fetched) 1864 return; 1865 } 1866 return; 1867 } 1868 } 1869 1870 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) { 1871 if (isBitcode(mb)) 1872 return isBitcodeNonCommonDef(mb, name, archiveName); 1873 1874 return isNonCommonDef(mb, name, archiveName); 1875 } 1876 1877 std::string elf::replaceThinLTOSuffix(StringRef path) { 1878 StringRef suffix = config->thinLTOObjectSuffixReplace.first; 1879 StringRef repl = config->thinLTOObjectSuffixReplace.second; 1880 1881 if (path.consume_back(suffix)) 1882 return (path + repl).str(); 1883 return std::string(path); 1884 } 1885 1886 template void BitcodeFile::parse<ELF32LE>(); 1887 template void BitcodeFile::parse<ELF32BE>(); 1888 template void BitcodeFile::parse<ELF64LE>(); 1889 template void BitcodeFile::parse<ELF64BE>(); 1890 1891 template void LazyObjFile::parse<ELF32LE>(); 1892 template void LazyObjFile::parse<ELF32BE>(); 1893 template void LazyObjFile::parse<ELF64LE>(); 1894 template void LazyObjFile::parse<ELF64BE>(); 1895 1896 template class elf::ObjFile<ELF32LE>; 1897 template class elf::ObjFile<ELF32BE>; 1898 template class elf::ObjFile<ELF64LE>; 1899 template class elf::ObjFile<ELF64BE>; 1900 1901 template void SharedFile::parse<ELF32LE>(); 1902 template void SharedFile::parse<ELF32BE>(); 1903 template void SharedFile::parse<ELF64LE>(); 1904 template void SharedFile::parse<ELF64BE>(); 1905