1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = std::string(f->getName());
63     else
64       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
65   }
66   return f->toStringCache;
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   llvm::TimeTraceScope timeScope("Load input files", path);
109 
110   // The --chroot option changes our virtual root directory.
111   // This is useful when you are dealing with files created by --reproduce.
112   if (!config->chroot.empty() && path.startswith("/"))
113     path = saver.save(config->chroot + path);
114 
115   log(path);
116   config->dependencyFiles.insert(llvm::CachedHashString(path));
117 
118   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
119                                        /*RequiresNullTerminator=*/false);
120   if (auto ec = mbOrErr.getError()) {
121     error("cannot open " + path + ": " + ec.message());
122     return None;
123   }
124 
125   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
126   MemoryBufferRef mbref = mb->getMemBufferRef();
127   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
128 
129   if (tar)
130     tar->append(relativeToRoot(path), mbref.getBuffer());
131   return mbref;
132 }
133 
134 // All input object files must be for the same architecture
135 // (e.g. it does not make sense to link x86 object files with
136 // MIPS object files.) This function checks for that error.
137 static bool isCompatible(InputFile *file) {
138   if (!file->isElf() && !isa<BitcodeFile>(file))
139     return true;
140 
141   if (file->ekind == config->ekind && file->emachine == config->emachine) {
142     if (config->emachine != EM_MIPS)
143       return true;
144     if (isMipsN32Abi(file) == config->mipsN32Abi)
145       return true;
146   }
147 
148   StringRef target =
149       !config->bfdname.empty() ? config->bfdname : config->emulation;
150   if (!target.empty()) {
151     error(toString(file) + " is incompatible with " + target);
152     return false;
153   }
154 
155   InputFile *existing;
156   if (!objectFiles.empty())
157     existing = objectFiles[0];
158   else if (!sharedFiles.empty())
159     existing = sharedFiles[0];
160   else if (!bitcodeFiles.empty())
161     existing = bitcodeFiles[0];
162   else
163     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
164                      "determine target emulation");
165 
166   error(toString(file) + " is incompatible with " + toString(existing));
167   return false;
168 }
169 
170 template <class ELFT> static void doParseFile(InputFile *file) {
171   if (!isCompatible(file))
172     return;
173 
174   // Binary file
175   if (auto *f = dyn_cast<BinaryFile>(file)) {
176     binaryFiles.push_back(f);
177     f->parse();
178     return;
179   }
180 
181   // .a file
182   if (auto *f = dyn_cast<ArchiveFile>(file)) {
183     archiveFiles.push_back(f);
184     f->parse();
185     return;
186   }
187 
188   // Lazy object file
189   if (auto *f = dyn_cast<LazyObjFile>(file)) {
190     lazyObjFiles.push_back(f);
191     f->parse<ELFT>();
192     return;
193   }
194 
195   if (config->trace)
196     message(toString(file));
197 
198   // .so file
199   if (auto *f = dyn_cast<SharedFile>(file)) {
200     f->parse<ELFT>();
201     return;
202   }
203 
204   // LLVM bitcode file
205   if (auto *f = dyn_cast<BitcodeFile>(file)) {
206     bitcodeFiles.push_back(f);
207     f->parse<ELFT>();
208     return;
209   }
210 
211   // Regular object file
212   objectFiles.push_back(file);
213   cast<ObjFile<ELFT>>(file)->parse();
214 }
215 
216 // Add symbols in File to the symbol table.
217 void elf::parseFile(InputFile *file) {
218   switch (config->ekind) {
219   case ELF32LEKind:
220     doParseFile<ELF32LE>(file);
221     return;
222   case ELF32BEKind:
223     doParseFile<ELF32BE>(file);
224     return;
225   case ELF64LEKind:
226     doParseFile<ELF64LE>(file);
227     return;
228   case ELF64BEKind:
229     doParseFile<ELF64BE>(file);
230     return;
231   default:
232     llvm_unreachable("unknown ELFT");
233   }
234 }
235 
236 // Concatenates arguments to construct a string representing an error location.
237 static std::string createFileLineMsg(StringRef path, unsigned line) {
238   std::string filename = std::string(path::filename(path));
239   std::string lineno = ":" + std::to_string(line);
240   if (filename == path)
241     return filename + lineno;
242   return filename + lineno + " (" + path.str() + lineno + ")";
243 }
244 
245 template <class ELFT>
246 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
247                                 InputSectionBase &sec, uint64_t offset) {
248   // In DWARF, functions and variables are stored to different places.
249   // First, lookup a function for a given offset.
250   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
251     return createFileLineMsg(info->FileName, info->Line);
252 
253   // If it failed, lookup again as a variable.
254   if (Optional<std::pair<std::string, unsigned>> fileLine =
255           file.getVariableLoc(sym.getName()))
256     return createFileLineMsg(fileLine->first, fileLine->second);
257 
258   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
259   return std::string(file.sourceFile);
260 }
261 
262 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
263                                  uint64_t offset) {
264   if (kind() != ObjKind)
265     return "";
266   switch (config->ekind) {
267   default:
268     llvm_unreachable("Invalid kind");
269   case ELF32LEKind:
270     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
271   case ELF32BEKind:
272     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
273   case ELF64LEKind:
274     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
275   case ELF64BEKind:
276     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
277   }
278 }
279 
280 StringRef InputFile::getNameForScript() const {
281   if (archiveName.empty())
282     return getName();
283 
284   if (nameForScriptCache.empty())
285     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
286 
287   return nameForScriptCache;
288 }
289 
290 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
291   llvm::call_once(initDwarf, [this]() {
292     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
293         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
294         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
295         [&](Error warning) {
296           warn(getName() + ": " + toString(std::move(warning)));
297         }));
298   });
299 
300   return dwarf.get();
301 }
302 
303 // Returns the pair of file name and line number describing location of data
304 // object (variable, array, etc) definition.
305 template <class ELFT>
306 Optional<std::pair<std::string, unsigned>>
307 ObjFile<ELFT>::getVariableLoc(StringRef name) {
308   return getDwarf()->getVariableLoc(name);
309 }
310 
311 // Returns source line information for a given offset
312 // using DWARF debug info.
313 template <class ELFT>
314 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
315                                                   uint64_t offset) {
316   // Detect SectionIndex for specified section.
317   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
318   ArrayRef<InputSectionBase *> sections = s->file->getSections();
319   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
320     if (s == sections[curIndex]) {
321       sectionIndex = curIndex;
322       break;
323     }
324   }
325 
326   return getDwarf()->getDILineInfo(offset, sectionIndex);
327 }
328 
329 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
330   ekind = getELFKind(mb, "");
331 
332   switch (ekind) {
333   case ELF32LEKind:
334     init<ELF32LE>();
335     break;
336   case ELF32BEKind:
337     init<ELF32BE>();
338     break;
339   case ELF64LEKind:
340     init<ELF64LE>();
341     break;
342   case ELF64BEKind:
343     init<ELF64BE>();
344     break;
345   default:
346     llvm_unreachable("getELFKind");
347   }
348 }
349 
350 template <typename Elf_Shdr>
351 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
352   for (const Elf_Shdr &sec : sections)
353     if (sec.sh_type == type)
354       return &sec;
355   return nullptr;
356 }
357 
358 template <class ELFT> void ELFFileBase::init() {
359   using Elf_Shdr = typename ELFT::Shdr;
360   using Elf_Sym = typename ELFT::Sym;
361 
362   // Initialize trivial attributes.
363   const ELFFile<ELFT> &obj = getObj<ELFT>();
364   emachine = obj.getHeader().e_machine;
365   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
366   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
367 
368   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
369 
370   // Find a symbol table.
371   bool isDSO =
372       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
373   const Elf_Shdr *symtabSec =
374       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
375 
376   if (!symtabSec)
377     return;
378 
379   // Initialize members corresponding to a symbol table.
380   firstGlobal = symtabSec->sh_info;
381 
382   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
383   if (firstGlobal == 0 || firstGlobal > eSyms.size())
384     fatal(toString(this) + ": invalid sh_info in symbol table");
385 
386   elfSyms = reinterpret_cast<const void *>(eSyms.data());
387   numELFSyms = eSyms.size();
388   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
389 }
390 
391 template <class ELFT>
392 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
393   return CHECK(
394       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
395       this);
396 }
397 
398 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
399   if (this->symbols.empty())
400     return {};
401   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
402 }
403 
404 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
405   return makeArrayRef(this->symbols).slice(this->firstGlobal);
406 }
407 
408 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
409   // Read a section table. justSymbols is usually false.
410   if (this->justSymbols)
411     initializeJustSymbols();
412   else
413     initializeSections(ignoreComdats);
414 
415   // Read a symbol table.
416   initializeSymbols();
417 }
418 
419 // Sections with SHT_GROUP and comdat bits define comdat section groups.
420 // They are identified and deduplicated by group name. This function
421 // returns a group name.
422 template <class ELFT>
423 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
424                                               const Elf_Shdr &sec) {
425   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
426   if (sec.sh_info >= symbols.size())
427     fatal(toString(this) + ": invalid symbol index");
428   const typename ELFT::Sym &sym = symbols[sec.sh_info];
429   StringRef signature = CHECK(sym.getName(this->stringTable), this);
430 
431   // As a special case, if a symbol is a section symbol and has no name,
432   // we use a section name as a signature.
433   //
434   // Such SHT_GROUP sections are invalid from the perspective of the ELF
435   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
436   // older produce such sections as outputs for the -r option, so we need
437   // a bug-compatibility.
438   if (signature.empty() && sym.getType() == STT_SECTION)
439     return getSectionName(sec);
440   return signature;
441 }
442 
443 template <class ELFT>
444 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
445   if (!(sec.sh_flags & SHF_MERGE))
446     return false;
447 
448   // On a regular link we don't merge sections if -O0 (default is -O1). This
449   // sometimes makes the linker significantly faster, although the output will
450   // be bigger.
451   //
452   // Doing the same for -r would create a problem as it would combine sections
453   // with different sh_entsize. One option would be to just copy every SHF_MERGE
454   // section as is to the output. While this would produce a valid ELF file with
455   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
456   // they see two .debug_str. We could have separate logic for combining
457   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
458   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
459   // logic for -r.
460   if (config->optimize == 0 && !config->relocatable)
461     return false;
462 
463   // A mergeable section with size 0 is useless because they don't have
464   // any data to merge. A mergeable string section with size 0 can be
465   // argued as invalid because it doesn't end with a null character.
466   // We'll avoid a mess by handling them as if they were non-mergeable.
467   if (sec.sh_size == 0)
468     return false;
469 
470   // Check for sh_entsize. The ELF spec is not clear about the zero
471   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
472   // the section does not hold a table of fixed-size entries". We know
473   // that Rust 1.13 produces a string mergeable section with a zero
474   // sh_entsize. Here we just accept it rather than being picky about it.
475   uint64_t entSize = sec.sh_entsize;
476   if (entSize == 0)
477     return false;
478   if (sec.sh_size % entSize)
479     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
480           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
481           Twine(entSize) + ")");
482 
483   if (sec.sh_flags & SHF_WRITE)
484     fatal(toString(this) + ":(" + name +
485           "): writable SHF_MERGE section is not supported");
486 
487   return true;
488 }
489 
490 // This is for --just-symbols.
491 //
492 // --just-symbols is a very minor feature that allows you to link your
493 // output against other existing program, so that if you load both your
494 // program and the other program into memory, your output can refer the
495 // other program's symbols.
496 //
497 // When the option is given, we link "just symbols". The section table is
498 // initialized with null pointers.
499 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
500   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
501   this->sections.resize(sections.size());
502 }
503 
504 // An ELF object file may contain a `.deplibs` section. If it exists, the
505 // section contains a list of library specifiers such as `m` for libm. This
506 // function resolves a given name by finding the first matching library checking
507 // the various ways that a library can be specified to LLD. This ELF extension
508 // is a form of autolinking and is called `dependent libraries`. It is currently
509 // unique to LLVM and lld.
510 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
511   if (!config->dependentLibraries)
512     return;
513   if (fs::exists(specifier))
514     driver->addFile(specifier, /*withLOption=*/false);
515   else if (Optional<std::string> s = findFromSearchPaths(specifier))
516     driver->addFile(*s, /*withLOption=*/true);
517   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
518     driver->addFile(*s, /*withLOption=*/true);
519   else
520     error(toString(f) +
521           ": unable to find library from dependent library specifier: " +
522           specifier);
523 }
524 
525 // Record the membership of a section group so that in the garbage collection
526 // pass, section group members are kept or discarded as a unit.
527 template <class ELFT>
528 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
529                                ArrayRef<typename ELFT::Word> entries) {
530   bool hasAlloc = false;
531   for (uint32_t index : entries.slice(1)) {
532     if (index >= sections.size())
533       return;
534     if (InputSectionBase *s = sections[index])
535       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
536         hasAlloc = true;
537   }
538 
539   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
540   // collection. See the comment in markLive(). This rule retains .debug_types
541   // and .rela.debug_types.
542   if (!hasAlloc)
543     return;
544 
545   // Connect the members in a circular doubly-linked list via
546   // nextInSectionGroup.
547   InputSectionBase *head;
548   InputSectionBase *prev = nullptr;
549   for (uint32_t index : entries.slice(1)) {
550     InputSectionBase *s = sections[index];
551     if (!s || s == &InputSection::discarded)
552       continue;
553     if (prev)
554       prev->nextInSectionGroup = s;
555     else
556       head = s;
557     prev = s;
558   }
559   if (prev)
560     prev->nextInSectionGroup = head;
561 }
562 
563 template <class ELFT>
564 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
565   const ELFFile<ELFT> &obj = this->getObj();
566 
567   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
568   uint64_t size = objSections.size();
569   this->sections.resize(size);
570   this->sectionStringTable =
571       CHECK(obj.getSectionStringTable(objSections), this);
572 
573   std::vector<ArrayRef<Elf_Word>> selectedGroups;
574 
575   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
576     if (this->sections[i] == &InputSection::discarded)
577       continue;
578     const Elf_Shdr &sec = objSections[i];
579 
580     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
581       cgProfile =
582           check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec));
583 
584     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
585     // if -r is given, we'll let the final link discard such sections.
586     // This is compatible with GNU.
587     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
588       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
589         // We ignore the address-significance table if we know that the object
590         // file was created by objcopy or ld -r. This is because these tools
591         // will reorder the symbols in the symbol table, invalidating the data
592         // in the address-significance table, which refers to symbols by index.
593         if (sec.sh_link != 0)
594           this->addrsigSec = &sec;
595         else if (config->icf == ICFLevel::Safe)
596           warn(toString(this) +
597                ": --icf=safe conservatively ignores "
598                "SHT_LLVM_ADDRSIG [index " +
599                Twine(i) +
600                "] with sh_link=0 "
601                "(likely created using objcopy or ld -r)");
602       }
603       this->sections[i] = &InputSection::discarded;
604       continue;
605     }
606 
607     switch (sec.sh_type) {
608     case SHT_GROUP: {
609       // De-duplicate section groups by their signatures.
610       StringRef signature = getShtGroupSignature(objSections, sec);
611       this->sections[i] = &InputSection::discarded;
612 
613       ArrayRef<Elf_Word> entries =
614           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
615       if (entries.empty())
616         fatal(toString(this) + ": empty SHT_GROUP");
617 
618       Elf_Word flag = entries[0];
619       if (flag && flag != GRP_COMDAT)
620         fatal(toString(this) + ": unsupported SHT_GROUP format");
621 
622       bool keepGroup =
623           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
624           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
625               .second;
626       if (keepGroup) {
627         if (config->relocatable)
628           this->sections[i] = createInputSection(sec);
629         selectedGroups.push_back(entries);
630         continue;
631       }
632 
633       // Otherwise, discard group members.
634       for (uint32_t secIndex : entries.slice(1)) {
635         if (secIndex >= size)
636           fatal(toString(this) +
637                 ": invalid section index in group: " + Twine(secIndex));
638         this->sections[secIndex] = &InputSection::discarded;
639       }
640       break;
641     }
642     case SHT_SYMTAB_SHNDX:
643       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
644       break;
645     case SHT_SYMTAB:
646     case SHT_STRTAB:
647     case SHT_REL:
648     case SHT_RELA:
649     case SHT_NULL:
650       break;
651     default:
652       this->sections[i] = createInputSection(sec);
653     }
654   }
655 
656   // We have a second loop. It is used to:
657   // 1) handle SHF_LINK_ORDER sections.
658   // 2) create SHT_REL[A] sections. In some cases the section header index of a
659   //    relocation section may be smaller than that of the relocated section. In
660   //    such cases, the relocation section would attempt to reference a target
661   //    section that has not yet been created. For simplicity, delay creation of
662   //    relocation sections until now.
663   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
664     if (this->sections[i] == &InputSection::discarded)
665       continue;
666     const Elf_Shdr &sec = objSections[i];
667 
668     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
669       this->sections[i] = createInputSection(sec);
670 
671     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
672     // the flag.
673     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
674       continue;
675 
676     InputSectionBase *linkSec = nullptr;
677     if (sec.sh_link < this->sections.size())
678       linkSec = this->sections[sec.sh_link];
679     if (!linkSec)
680       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
681 
682     // A SHF_LINK_ORDER section is discarded if its linked-to section is
683     // discarded.
684     InputSection *isec = cast<InputSection>(this->sections[i]);
685     linkSec->dependentSections.push_back(isec);
686     if (!isa<InputSection>(linkSec))
687       error("a section " + isec->name +
688             " with SHF_LINK_ORDER should not refer a non-regular section: " +
689             toString(linkSec));
690   }
691 
692   for (ArrayRef<Elf_Word> entries : selectedGroups)
693     handleSectionGroup<ELFT>(this->sections, entries);
694 }
695 
696 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
697 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
698 // the input objects have been compiled.
699 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
700                              const InputFile *f) {
701   Optional<unsigned> attr =
702       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
703   if (!attr.hasValue())
704     // If an ABI tag isn't present then it is implicitly given the value of 0
705     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
706     // including some in glibc that don't use FP args (and should have value 3)
707     // don't have the attribute so we do not consider an implicit value of 0
708     // as a clash.
709     return;
710 
711   unsigned vfpArgs = attr.getValue();
712   ARMVFPArgKind arg;
713   switch (vfpArgs) {
714   case ARMBuildAttrs::BaseAAPCS:
715     arg = ARMVFPArgKind::Base;
716     break;
717   case ARMBuildAttrs::HardFPAAPCS:
718     arg = ARMVFPArgKind::VFP;
719     break;
720   case ARMBuildAttrs::ToolChainFPPCS:
721     // Tool chain specific convention that conforms to neither AAPCS variant.
722     arg = ARMVFPArgKind::ToolChain;
723     break;
724   case ARMBuildAttrs::CompatibleFPAAPCS:
725     // Object compatible with all conventions.
726     return;
727   default:
728     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
729     return;
730   }
731   // Follow ld.bfd and error if there is a mix of calling conventions.
732   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
733     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
734   else
735     config->armVFPArgs = arg;
736 }
737 
738 // The ARM support in lld makes some use of instructions that are not available
739 // on all ARM architectures. Namely:
740 // - Use of BLX instruction for interworking between ARM and Thumb state.
741 // - Use of the extended Thumb branch encoding in relocation.
742 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
743 // The ARM Attributes section contains information about the architecture chosen
744 // at compile time. We follow the convention that if at least one input object
745 // is compiled with an architecture that supports these features then lld is
746 // permitted to use them.
747 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
748   Optional<unsigned> attr =
749       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
750   if (!attr.hasValue())
751     return;
752   auto arch = attr.getValue();
753   switch (arch) {
754   case ARMBuildAttrs::Pre_v4:
755   case ARMBuildAttrs::v4:
756   case ARMBuildAttrs::v4T:
757     // Architectures prior to v5 do not support BLX instruction
758     break;
759   case ARMBuildAttrs::v5T:
760   case ARMBuildAttrs::v5TE:
761   case ARMBuildAttrs::v5TEJ:
762   case ARMBuildAttrs::v6:
763   case ARMBuildAttrs::v6KZ:
764   case ARMBuildAttrs::v6K:
765     config->armHasBlx = true;
766     // Architectures used in pre-Cortex processors do not support
767     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
768     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
769     break;
770   default:
771     // All other Architectures have BLX and extended branch encoding
772     config->armHasBlx = true;
773     config->armJ1J2BranchEncoding = true;
774     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
775       // All Architectures used in Cortex processors with the exception
776       // of v6-M and v6S-M have the MOVT and MOVW instructions.
777       config->armHasMovtMovw = true;
778     break;
779   }
780 }
781 
782 // If a source file is compiled with x86 hardware-assisted call flow control
783 // enabled, the generated object file contains feature flags indicating that
784 // fact. This function reads the feature flags and returns it.
785 //
786 // Essentially we want to read a single 32-bit value in this function, but this
787 // function is rather complicated because the value is buried deep inside a
788 // .note.gnu.property section.
789 //
790 // The section consists of one or more NOTE records. Each NOTE record consists
791 // of zero or more type-length-value fields. We want to find a field of a
792 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
793 // the ABI is unnecessarily complicated.
794 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
795   using Elf_Nhdr = typename ELFT::Nhdr;
796   using Elf_Note = typename ELFT::Note;
797 
798   uint32_t featuresSet = 0;
799   ArrayRef<uint8_t> data = sec.data();
800   auto reportFatal = [&](const uint8_t *place, const char *msg) {
801     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
802           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
803   };
804   while (!data.empty()) {
805     // Read one NOTE record.
806     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
807     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
808       reportFatal(data.data(), "data is too short");
809 
810     Elf_Note note(*nhdr);
811     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
812       data = data.slice(nhdr->getSize());
813       continue;
814     }
815 
816     uint32_t featureAndType = config->emachine == EM_AARCH64
817                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
818                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
819 
820     // Read a body of a NOTE record, which consists of type-length-value fields.
821     ArrayRef<uint8_t> desc = note.getDesc();
822     while (!desc.empty()) {
823       const uint8_t *place = desc.data();
824       if (desc.size() < 8)
825         reportFatal(place, "program property is too short");
826       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
827       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
828       desc = desc.slice(8);
829       if (desc.size() < size)
830         reportFatal(place, "program property is too short");
831 
832       if (type == featureAndType) {
833         // We found a FEATURE_1_AND field. There may be more than one of these
834         // in a .note.gnu.property section, for a relocatable object we
835         // accumulate the bits set.
836         if (size < 4)
837           reportFatal(place, "FEATURE_1_AND entry is too short");
838         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
839       }
840 
841       // Padding is present in the note descriptor, if necessary.
842       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
843     }
844 
845     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
846     data = data.slice(nhdr->getSize());
847   }
848 
849   return featuresSet;
850 }
851 
852 template <class ELFT>
853 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
854   uint32_t idx = sec.sh_info;
855   if (idx >= this->sections.size())
856     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
857   InputSectionBase *target = this->sections[idx];
858 
859   // Strictly speaking, a relocation section must be included in the
860   // group of the section it relocates. However, LLVM 3.3 and earlier
861   // would fail to do so, so we gracefully handle that case.
862   if (target == &InputSection::discarded)
863     return nullptr;
864 
865   if (!target)
866     fatal(toString(this) + ": unsupported relocation reference");
867   return target;
868 }
869 
870 // Create a regular InputSection class that has the same contents
871 // as a given section.
872 static InputSection *toRegularSection(MergeInputSection *sec) {
873   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
874                             sec->data(), sec->name);
875 }
876 
877 template <class ELFT>
878 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
879   StringRef name = getSectionName(sec);
880 
881   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
882     ARMAttributeParser attributes;
883     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
884     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
885                                                  ? support::little
886                                                  : support::big)) {
887       auto *isec = make<InputSection>(*this, sec, name);
888       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
889     } else {
890       updateSupportedARMFeatures(attributes);
891       updateARMVFPArgs(attributes, this);
892 
893       // FIXME: Retain the first attribute section we see. The eglibc ARM
894       // dynamic loaders require the presence of an attribute section for dlopen
895       // to work. In a full implementation we would merge all attribute
896       // sections.
897       if (in.attributes == nullptr) {
898         in.attributes = make<InputSection>(*this, sec, name);
899         return in.attributes;
900       }
901       return &InputSection::discarded;
902     }
903   }
904 
905   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
906     RISCVAttributeParser attributes;
907     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
908     if (Error e = attributes.parse(contents, support::little)) {
909       auto *isec = make<InputSection>(*this, sec, name);
910       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
911     } else {
912       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
913       // present.
914 
915       // FIXME: Retain the first attribute section we see. Tools such as
916       // llvm-objdump make use of the attribute section to determine which
917       // standard extensions to enable. In a full implementation we would merge
918       // all attribute sections.
919       if (in.attributes == nullptr) {
920         in.attributes = make<InputSection>(*this, sec, name);
921         return in.attributes;
922       }
923       return &InputSection::discarded;
924     }
925   }
926 
927   switch (sec.sh_type) {
928   case SHT_LLVM_DEPENDENT_LIBRARIES: {
929     if (config->relocatable)
930       break;
931     ArrayRef<char> data =
932         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
933     if (!data.empty() && data.back() != '\0') {
934       error(toString(this) +
935             ": corrupted dependent libraries section (unterminated string): " +
936             name);
937       return &InputSection::discarded;
938     }
939     for (const char *d = data.begin(), *e = data.end(); d < e;) {
940       StringRef s(d);
941       addDependentLibrary(s, this);
942       d += s.size() + 1;
943     }
944     return &InputSection::discarded;
945   }
946   case SHT_RELA:
947   case SHT_REL: {
948     // Find a relocation target section and associate this section with that.
949     // Target may have been discarded if it is in a different section group
950     // and the group is discarded, even though it's a violation of the
951     // spec. We handle that situation gracefully by discarding dangling
952     // relocation sections.
953     InputSectionBase *target = getRelocTarget(sec);
954     if (!target)
955       return nullptr;
956 
957     // ELF spec allows mergeable sections with relocations, but they are
958     // rare, and it is in practice hard to merge such sections by contents,
959     // because applying relocations at end of linking changes section
960     // contents. So, we simply handle such sections as non-mergeable ones.
961     // Degrading like this is acceptable because section merging is optional.
962     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
963       target = toRegularSection(ms);
964       this->sections[sec.sh_info] = target;
965     }
966 
967     if (target->firstRelocation)
968       fatal(toString(this) +
969             ": multiple relocation sections to one section are not supported");
970 
971     if (sec.sh_type == SHT_RELA) {
972       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this);
973       target->firstRelocation = rels.begin();
974       target->numRelocations = rels.size();
975       target->areRelocsRela = true;
976     } else {
977       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this);
978       target->firstRelocation = rels.begin();
979       target->numRelocations = rels.size();
980       target->areRelocsRela = false;
981     }
982     assert(isUInt<31>(target->numRelocations));
983 
984     // Relocation sections are usually removed from the output, so return
985     // `nullptr` for the normal case. However, if -r or --emit-relocs is
986     // specified, we need to copy them to the output. (Some post link analysis
987     // tools specify --emit-relocs to obtain the information.)
988     if (!config->relocatable && !config->emitRelocs)
989       return nullptr;
990     InputSection *relocSec = make<InputSection>(*this, sec, name);
991     // If the relocated section is discarded (due to /DISCARD/ or
992     // --gc-sections), the relocation section should be discarded as well.
993     target->dependentSections.push_back(relocSec);
994     return relocSec;
995   }
996   }
997 
998   // The GNU linker uses .note.GNU-stack section as a marker indicating
999   // that the code in the object file does not expect that the stack is
1000   // executable (in terms of NX bit). If all input files have the marker,
1001   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
1002   // make the stack non-executable. Most object files have this section as
1003   // of 2017.
1004   //
1005   // But making the stack non-executable is a norm today for security
1006   // reasons. Failure to do so may result in a serious security issue.
1007   // Therefore, we make LLD always add PT_GNU_STACK unless it is
1008   // explicitly told to do otherwise (by -z execstack). Because the stack
1009   // executable-ness is controlled solely by command line options,
1010   // .note.GNU-stack sections are simply ignored.
1011   if (name == ".note.GNU-stack")
1012     return &InputSection::discarded;
1013 
1014   // Object files that use processor features such as Intel Control-Flow
1015   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1016   // .note.gnu.property section containing a bitfield of feature bits like the
1017   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1018   //
1019   // Since we merge bitmaps from multiple object files to create a new
1020   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1021   // file's .note.gnu.property section.
1022   if (name == ".note.gnu.property") {
1023     this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1024     return &InputSection::discarded;
1025   }
1026 
1027   // Split stacks is a feature to support a discontiguous stack,
1028   // commonly used in the programming language Go. For the details,
1029   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1030   // for split stack will include a .note.GNU-split-stack section.
1031   if (name == ".note.GNU-split-stack") {
1032     if (config->relocatable) {
1033       error("cannot mix split-stack and non-split-stack in a relocatable link");
1034       return &InputSection::discarded;
1035     }
1036     this->splitStack = true;
1037     return &InputSection::discarded;
1038   }
1039 
1040   // An object file cmpiled for split stack, but where some of the
1041   // functions were compiled with the no_split_stack_attribute will
1042   // include a .note.GNU-no-split-stack section.
1043   if (name == ".note.GNU-no-split-stack") {
1044     this->someNoSplitStack = true;
1045     return &InputSection::discarded;
1046   }
1047 
1048   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1049   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1050   // sections. Drop those sections to avoid duplicate symbol errors.
1051   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1052   // fixed for a while.
1053   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1054       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1055     return &InputSection::discarded;
1056 
1057   // If we are creating a new .build-id section, strip existing .build-id
1058   // sections so that the output won't have more than one .build-id.
1059   // This is not usually a problem because input object files normally don't
1060   // have .build-id sections, but you can create such files by
1061   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1062   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1063     return &InputSection::discarded;
1064 
1065   // The linker merges EH (exception handling) frames and creates a
1066   // .eh_frame_hdr section for runtime. So we handle them with a special
1067   // class. For relocatable outputs, they are just passed through.
1068   if (name == ".eh_frame" && !config->relocatable)
1069     return make<EhInputSection>(*this, sec, name);
1070 
1071   if (shouldMerge(sec, name))
1072     return make<MergeInputSection>(*this, sec, name);
1073   return make<InputSection>(*this, sec, name);
1074 }
1075 
1076 template <class ELFT>
1077 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1078   return CHECK(getObj().getSectionName(sec, sectionStringTable), this);
1079 }
1080 
1081 // Initialize this->Symbols. this->Symbols is a parallel array as
1082 // its corresponding ELF symbol table.
1083 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1084   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1085   this->symbols.resize(eSyms.size());
1086 
1087   // Fill in InputFile::symbols. Some entries have been initialized
1088   // because of LazyObjFile.
1089   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1090     if (this->symbols[i])
1091       continue;
1092     const Elf_Sym &eSym = eSyms[i];
1093     uint32_t secIdx = getSectionIndex(eSym);
1094     if (secIdx >= this->sections.size())
1095       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1096     if (eSym.getBinding() != STB_LOCAL) {
1097       if (i < firstGlobal)
1098         error(toString(this) + ": non-local symbol (" + Twine(i) +
1099               ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1100               ")");
1101       this->symbols[i] =
1102           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1103       continue;
1104     }
1105 
1106     // Handle local symbols. Local symbols are not added to the symbol
1107     // table because they are not visible from other object files. We
1108     // allocate symbol instances and add their pointers to symbols.
1109     if (i >= firstGlobal)
1110       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1111                   ") found at index >= .symtab's sh_info (" +
1112                   Twine(firstGlobal) + ")");
1113 
1114     InputSectionBase *sec = this->sections[secIdx];
1115     uint8_t type = eSym.getType();
1116     if (type == STT_FILE)
1117       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1118     if (this->stringTable.size() <= eSym.st_name)
1119       fatal(toString(this) + ": invalid symbol name offset");
1120     StringRefZ name = this->stringTable.data() + eSym.st_name;
1121 
1122     if (eSym.st_shndx == SHN_UNDEF)
1123       this->symbols[i] =
1124           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1125     else if (sec == &InputSection::discarded)
1126       this->symbols[i] =
1127           make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1128                           /*discardedSecIdx=*/secIdx);
1129     else
1130       this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1131                                        type, eSym.st_value, eSym.st_size, sec);
1132   }
1133 
1134   // Symbol resolution of non-local symbols.
1135   SmallVector<unsigned, 32> unds;
1136   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1137     const Elf_Sym &eSym = eSyms[i];
1138     uint8_t binding = eSym.getBinding();
1139     if (binding == STB_LOCAL)
1140       continue; // Errored above.
1141 
1142     uint32_t secIdx = getSectionIndex(eSym);
1143     InputSectionBase *sec = this->sections[secIdx];
1144     uint8_t stOther = eSym.st_other;
1145     uint8_t type = eSym.getType();
1146     uint64_t value = eSym.st_value;
1147     uint64_t size = eSym.st_size;
1148     StringRefZ name = this->stringTable.data() + eSym.st_name;
1149 
1150     // Handle global undefined symbols.
1151     if (eSym.st_shndx == SHN_UNDEF) {
1152       unds.push_back(i);
1153       continue;
1154     }
1155 
1156     // Handle global common symbols.
1157     if (eSym.st_shndx == SHN_COMMON) {
1158       if (value == 0 || value >= UINT32_MAX)
1159         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1160               "' has invalid alignment: " + Twine(value));
1161       this->symbols[i]->resolve(
1162           CommonSymbol{this, name, binding, stOther, type, value, size});
1163       continue;
1164     }
1165 
1166     // If a defined symbol is in a discarded section, handle it as if it
1167     // were an undefined symbol. Such symbol doesn't comply with the
1168     // standard, but in practice, a .eh_frame often directly refer
1169     // COMDAT member sections, and if a comdat group is discarded, some
1170     // defined symbol in a .eh_frame becomes dangling symbols.
1171     if (sec == &InputSection::discarded) {
1172       Undefined und{this, name, binding, stOther, type, secIdx};
1173       Symbol *sym = this->symbols[i];
1174       // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
1175       // containing this object has not finished processing, i.e. this symbol is
1176       // a result of a lazy symbol fetch. We should demote the lazy symbol to an
1177       // Undefined so that any relocations outside of the group to it will
1178       // trigger a discarded section error.
1179       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1180            !cast<ArchiveFile>(sym->file)->parsed) ||
1181           (sym->symbolKind == Symbol::LazyObjectKind &&
1182            cast<LazyObjFile>(sym->file)->fetched))
1183         sym->replace(und);
1184       else
1185         sym->resolve(und);
1186       continue;
1187     }
1188 
1189     // Handle global defined symbols.
1190     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1191         binding == STB_GNU_UNIQUE) {
1192       this->symbols[i]->resolve(
1193           Defined{this, name, binding, stOther, type, value, size, sec});
1194       continue;
1195     }
1196 
1197     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1198   }
1199 
1200   // Undefined symbols (excluding those defined relative to non-prevailing
1201   // sections) can trigger recursive fetch. Process defined symbols first so
1202   // that the relative order between a defined symbol and an undefined symbol
1203   // does not change the symbol resolution behavior. In addition, a set of
1204   // interconnected symbols will all be resolved to the same file, instead of
1205   // being resolved to different files.
1206   for (unsigned i : unds) {
1207     const Elf_Sym &eSym = eSyms[i];
1208     StringRefZ name = this->stringTable.data() + eSym.st_name;
1209     this->symbols[i]->resolve(Undefined{this, name, eSym.getBinding(),
1210                                         eSym.st_other, eSym.getType()});
1211     this->symbols[i]->referenced = true;
1212   }
1213 }
1214 
1215 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1216     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1217       file(std::move(file)) {}
1218 
1219 void ArchiveFile::parse() {
1220   for (const Archive::Symbol &sym : file->symbols())
1221     symtab->addSymbol(LazyArchive{*this, sym});
1222 
1223   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1224   // archive has been processed.
1225   parsed = true;
1226 }
1227 
1228 // Returns a buffer pointing to a member file containing a given symbol.
1229 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1230   Archive::Child c =
1231       CHECK(sym.getMember(), toString(this) +
1232                                  ": could not get the member for symbol " +
1233                                  toELFString(sym));
1234 
1235   if (!seen.insert(c.getChildOffset()).second)
1236     return;
1237 
1238   MemoryBufferRef mb =
1239       CHECK(c.getMemoryBufferRef(),
1240             toString(this) +
1241                 ": could not get the buffer for the member defining symbol " +
1242                 toELFString(sym));
1243 
1244   if (tar && c.getParent()->isThin())
1245     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1246 
1247   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1248   file->groupId = groupId;
1249   parseFile(file);
1250 }
1251 
1252 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1253 // A tentative definition will be promoted to a global definition if there are
1254 // no non-tentative definitions to dominate it. When we hold a tentative
1255 // definition to a symbol and are inspecting archive members for inclusion
1256 // there are 2 ways we can proceed:
1257 //
1258 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1259 //    tentative to real definition has already happened) and not inspect
1260 //    archive members for Global/Weak definitions to replace the tentative
1261 //    definition. An archive member would only be included if it satisfies some
1262 //    other undefined symbol. This is the behavior Gold uses.
1263 //
1264 // 2) Consider the tentative definition as still undefined (ie the promotion to
1265 //    a real definition happens only after all symbol resolution is done).
1266 //    The linker searches archive members for global or weak definitions to
1267 //    replace the tentative definition with. This is the behavior used by
1268 //    GNU ld.
1269 //
1270 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1271 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1272 //  (pre F90) FORTRAN code that is packaged into an archive.
1273 //
1274 //  The following functions search archive members for definitions to replace
1275 //  tentative definitions (implementing behavior 2).
1276 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1277                                   StringRef archiveName) {
1278   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1279   for (const irsymtab::Reader::SymbolRef &sym :
1280        symtabFile.TheReader.symbols()) {
1281     if (sym.isGlobal() && sym.getName() == symName)
1282       return !sym.isUndefined() && !sym.isCommon();
1283   }
1284   return false;
1285 }
1286 
1287 template <class ELFT>
1288 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1289                            StringRef archiveName) {
1290   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1291   StringRef stringtable = obj->getStringTable();
1292 
1293   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1294     Expected<StringRef> name = sym.getName(stringtable);
1295     if (name && name.get() == symName)
1296       return sym.isDefined() && !sym.isCommon();
1297   }
1298   return false;
1299 }
1300 
1301 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1302                            StringRef archiveName) {
1303   switch (getELFKind(mb, archiveName)) {
1304   case ELF32LEKind:
1305     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1306   case ELF32BEKind:
1307     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1308   case ELF64LEKind:
1309     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1310   case ELF64BEKind:
1311     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1312   default:
1313     llvm_unreachable("getELFKind");
1314   }
1315 }
1316 
1317 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) {
1318   Archive::Child c =
1319       CHECK(sym.getMember(), toString(this) +
1320                                  ": could not get the member for symbol " +
1321                                  toELFString(sym));
1322   MemoryBufferRef mb =
1323       CHECK(c.getMemoryBufferRef(),
1324             toString(this) +
1325                 ": could not get the buffer for the member defining symbol " +
1326                 toELFString(sym));
1327 
1328   if (isBitcode(mb))
1329     return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1330 
1331   return isNonCommonDef(mb, sym.getName(), getName());
1332 }
1333 
1334 size_t ArchiveFile::getMemberCount() const {
1335   size_t count = 0;
1336   Error err = Error::success();
1337   for (const Archive::Child &c : file->children(err)) {
1338     (void)c;
1339     ++count;
1340   }
1341   // This function is used by --print-archive-stats=, where an error does not
1342   // really matter.
1343   consumeError(std::move(err));
1344   return count;
1345 }
1346 
1347 unsigned SharedFile::vernauxNum;
1348 
1349 // Parse the version definitions in the object file if present, and return a
1350 // vector whose nth element contains a pointer to the Elf_Verdef for version
1351 // identifier n. Version identifiers that are not definitions map to nullptr.
1352 template <typename ELFT>
1353 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1354                                               const typename ELFT::Shdr *sec) {
1355   if (!sec)
1356     return {};
1357 
1358   // We cannot determine the largest verdef identifier without inspecting
1359   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1360   // sequentially starting from 1, so we predict that the largest identifier
1361   // will be verdefCount.
1362   unsigned verdefCount = sec->sh_info;
1363   std::vector<const void *> verdefs(verdefCount + 1);
1364 
1365   // Build the Verdefs array by following the chain of Elf_Verdef objects
1366   // from the start of the .gnu.version_d section.
1367   const uint8_t *verdef = base + sec->sh_offset;
1368   for (unsigned i = 0; i != verdefCount; ++i) {
1369     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1370     verdef += curVerdef->vd_next;
1371     unsigned verdefIndex = curVerdef->vd_ndx;
1372     verdefs.resize(verdefIndex + 1);
1373     verdefs[verdefIndex] = curVerdef;
1374   }
1375   return verdefs;
1376 }
1377 
1378 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1379 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1380 // implement sophisticated error checking like in llvm-readobj because the value
1381 // of such diagnostics is low.
1382 template <typename ELFT>
1383 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1384                                                const typename ELFT::Shdr *sec) {
1385   if (!sec)
1386     return {};
1387   std::vector<uint32_t> verneeds;
1388   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1389   const uint8_t *verneedBuf = data.begin();
1390   for (unsigned i = 0; i != sec->sh_info; ++i) {
1391     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1392       fatal(toString(this) + " has an invalid Verneed");
1393     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1394     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1395     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1396       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1397         fatal(toString(this) + " has an invalid Vernaux");
1398       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1399       if (aux->vna_name >= this->stringTable.size())
1400         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1401       uint16_t version = aux->vna_other & VERSYM_VERSION;
1402       if (version >= verneeds.size())
1403         verneeds.resize(version + 1);
1404       verneeds[version] = aux->vna_name;
1405       vernauxBuf += aux->vna_next;
1406     }
1407     verneedBuf += vn->vn_next;
1408   }
1409   return verneeds;
1410 }
1411 
1412 // We do not usually care about alignments of data in shared object
1413 // files because the loader takes care of it. However, if we promote a
1414 // DSO symbol to point to .bss due to copy relocation, we need to keep
1415 // the original alignment requirements. We infer it in this function.
1416 template <typename ELFT>
1417 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1418                              const typename ELFT::Sym &sym) {
1419   uint64_t ret = UINT64_MAX;
1420   if (sym.st_value)
1421     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1422   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1423     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1424   return (ret > UINT32_MAX) ? 0 : ret;
1425 }
1426 
1427 // Fully parse the shared object file.
1428 //
1429 // This function parses symbol versions. If a DSO has version information,
1430 // the file has a ".gnu.version_d" section which contains symbol version
1431 // definitions. Each symbol is associated to one version through a table in
1432 // ".gnu.version" section. That table is a parallel array for the symbol
1433 // table, and each table entry contains an index in ".gnu.version_d".
1434 //
1435 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1436 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1437 // ".gnu.version_d".
1438 //
1439 // The file format for symbol versioning is perhaps a bit more complicated
1440 // than necessary, but you can easily understand the code if you wrap your
1441 // head around the data structure described above.
1442 template <class ELFT> void SharedFile::parse() {
1443   using Elf_Dyn = typename ELFT::Dyn;
1444   using Elf_Shdr = typename ELFT::Shdr;
1445   using Elf_Sym = typename ELFT::Sym;
1446   using Elf_Verdef = typename ELFT::Verdef;
1447   using Elf_Versym = typename ELFT::Versym;
1448 
1449   ArrayRef<Elf_Dyn> dynamicTags;
1450   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1451   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1452 
1453   const Elf_Shdr *versymSec = nullptr;
1454   const Elf_Shdr *verdefSec = nullptr;
1455   const Elf_Shdr *verneedSec = nullptr;
1456 
1457   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1458   for (const Elf_Shdr &sec : sections) {
1459     switch (sec.sh_type) {
1460     default:
1461       continue;
1462     case SHT_DYNAMIC:
1463       dynamicTags =
1464           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1465       break;
1466     case SHT_GNU_versym:
1467       versymSec = &sec;
1468       break;
1469     case SHT_GNU_verdef:
1470       verdefSec = &sec;
1471       break;
1472     case SHT_GNU_verneed:
1473       verneedSec = &sec;
1474       break;
1475     }
1476   }
1477 
1478   if (versymSec && numELFSyms == 0) {
1479     error("SHT_GNU_versym should be associated with symbol table");
1480     return;
1481   }
1482 
1483   // Search for a DT_SONAME tag to initialize this->soName.
1484   for (const Elf_Dyn &dyn : dynamicTags) {
1485     if (dyn.d_tag == DT_NEEDED) {
1486       uint64_t val = dyn.getVal();
1487       if (val >= this->stringTable.size())
1488         fatal(toString(this) + ": invalid DT_NEEDED entry");
1489       dtNeeded.push_back(this->stringTable.data() + val);
1490     } else if (dyn.d_tag == DT_SONAME) {
1491       uint64_t val = dyn.getVal();
1492       if (val >= this->stringTable.size())
1493         fatal(toString(this) + ": invalid DT_SONAME entry");
1494       soName = this->stringTable.data() + val;
1495     }
1496   }
1497 
1498   // DSOs are uniquified not by filename but by soname.
1499   DenseMap<StringRef, SharedFile *>::iterator it;
1500   bool wasInserted;
1501   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1502 
1503   // If a DSO appears more than once on the command line with and without
1504   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1505   // user can add an extra DSO with --no-as-needed to force it to be added to
1506   // the dependency list.
1507   it->second->isNeeded |= isNeeded;
1508   if (!wasInserted)
1509     return;
1510 
1511   sharedFiles.push_back(this);
1512 
1513   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1514   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1515 
1516   // Parse ".gnu.version" section which is a parallel array for the symbol
1517   // table. If a given file doesn't have a ".gnu.version" section, we use
1518   // VER_NDX_GLOBAL.
1519   size_t size = numELFSyms - firstGlobal;
1520   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1521   if (versymSec) {
1522     ArrayRef<Elf_Versym> versym =
1523         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1524               this)
1525             .slice(firstGlobal);
1526     for (size_t i = 0; i < size; ++i)
1527       versyms[i] = versym[i].vs_index;
1528   }
1529 
1530   // System libraries can have a lot of symbols with versions. Using a
1531   // fixed buffer for computing the versions name (foo@ver) can save a
1532   // lot of allocations.
1533   SmallString<0> versionedNameBuffer;
1534 
1535   // Add symbols to the symbol table.
1536   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1537   for (size_t i = 0; i < syms.size(); ++i) {
1538     const Elf_Sym &sym = syms[i];
1539 
1540     // ELF spec requires that all local symbols precede weak or global
1541     // symbols in each symbol table, and the index of first non-local symbol
1542     // is stored to sh_info. If a local symbol appears after some non-local
1543     // symbol, that's a violation of the spec.
1544     StringRef name = CHECK(sym.getName(this->stringTable), this);
1545     if (sym.getBinding() == STB_LOCAL) {
1546       warn("found local symbol '" + name +
1547            "' in global part of symbol table in file " + toString(this));
1548       continue;
1549     }
1550 
1551     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1552     if (sym.isUndefined()) {
1553       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1554       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1555       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1556         if (idx >= verneeds.size()) {
1557           error("corrupt input file: version need index " + Twine(idx) +
1558                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1559                 toString(this));
1560           continue;
1561         }
1562         StringRef verName = this->stringTable.data() + verneeds[idx];
1563         versionedNameBuffer.clear();
1564         name =
1565             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1566       }
1567       Symbol *s = symtab->addSymbol(
1568           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1569       s->exportDynamic = true;
1570       continue;
1571     }
1572 
1573     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1574     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1575     // workaround for this bug.
1576     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1577         name == "_gp_disp")
1578       continue;
1579 
1580     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1581     if (!(versyms[i] & VERSYM_HIDDEN)) {
1582       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1583                                      sym.st_other, sym.getType(), sym.st_value,
1584                                      sym.st_size, alignment, idx});
1585     }
1586 
1587     // Also add the symbol with the versioned name to handle undefined symbols
1588     // with explicit versions.
1589     if (idx == VER_NDX_GLOBAL)
1590       continue;
1591 
1592     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1593       error("corrupt input file: version definition index " + Twine(idx) +
1594             " for symbol " + name + " is out of bounds\n>>> defined in " +
1595             toString(this));
1596       continue;
1597     }
1598 
1599     StringRef verName =
1600         this->stringTable.data() +
1601         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1602     versionedNameBuffer.clear();
1603     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1604     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1605                                    sym.st_other, sym.getType(), sym.st_value,
1606                                    sym.st_size, alignment, idx});
1607   }
1608 }
1609 
1610 static ELFKind getBitcodeELFKind(const Triple &t) {
1611   if (t.isLittleEndian())
1612     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1613   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1614 }
1615 
1616 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1617   switch (t.getArch()) {
1618   case Triple::aarch64:
1619   case Triple::aarch64_be:
1620     return EM_AARCH64;
1621   case Triple::amdgcn:
1622   case Triple::r600:
1623     return EM_AMDGPU;
1624   case Triple::arm:
1625   case Triple::thumb:
1626     return EM_ARM;
1627   case Triple::avr:
1628     return EM_AVR;
1629   case Triple::mips:
1630   case Triple::mipsel:
1631   case Triple::mips64:
1632   case Triple::mips64el:
1633     return EM_MIPS;
1634   case Triple::msp430:
1635     return EM_MSP430;
1636   case Triple::ppc:
1637   case Triple::ppcle:
1638     return EM_PPC;
1639   case Triple::ppc64:
1640   case Triple::ppc64le:
1641     return EM_PPC64;
1642   case Triple::riscv32:
1643   case Triple::riscv64:
1644     return EM_RISCV;
1645   case Triple::x86:
1646     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1647   case Triple::x86_64:
1648     return EM_X86_64;
1649   default:
1650     error(path + ": could not infer e_machine from bitcode target triple " +
1651           t.str());
1652     return EM_NONE;
1653   }
1654 }
1655 
1656 static uint8_t getOsAbi(const Triple &t) {
1657   switch (t.getOS()) {
1658   case Triple::AMDHSA:
1659     return ELF::ELFOSABI_AMDGPU_HSA;
1660   case Triple::AMDPAL:
1661     return ELF::ELFOSABI_AMDGPU_PAL;
1662   case Triple::Mesa3D:
1663     return ELF::ELFOSABI_AMDGPU_MESA3D;
1664   default:
1665     return ELF::ELFOSABI_NONE;
1666   }
1667 }
1668 
1669 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1670                          uint64_t offsetInArchive)
1671     : InputFile(BitcodeKind, mb) {
1672   this->archiveName = std::string(archiveName);
1673 
1674   std::string path = mb.getBufferIdentifier().str();
1675   if (config->thinLTOIndexOnly)
1676     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1677 
1678   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1679   // name. If two archives define two members with the same name, this
1680   // causes a collision which result in only one of the objects being taken
1681   // into consideration at LTO time (which very likely causes undefined
1682   // symbols later in the link stage). So we append file offset to make
1683   // filename unique.
1684   StringRef name =
1685       archiveName.empty()
1686           ? saver.save(path)
1687           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1688                        utostr(offsetInArchive) + ")");
1689   MemoryBufferRef mbref(mb.getBuffer(), name);
1690 
1691   obj = CHECK(lto::InputFile::create(mbref), this);
1692 
1693   Triple t(obj->getTargetTriple());
1694   ekind = getBitcodeELFKind(t);
1695   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1696   osabi = getOsAbi(t);
1697 }
1698 
1699 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1700   switch (gvVisibility) {
1701   case GlobalValue::DefaultVisibility:
1702     return STV_DEFAULT;
1703   case GlobalValue::HiddenVisibility:
1704     return STV_HIDDEN;
1705   case GlobalValue::ProtectedVisibility:
1706     return STV_PROTECTED;
1707   }
1708   llvm_unreachable("unknown visibility");
1709 }
1710 
1711 template <class ELFT>
1712 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1713                                    const lto::InputFile::Symbol &objSym,
1714                                    BitcodeFile &f) {
1715   StringRef name = saver.save(objSym.getName());
1716   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1717   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1718   uint8_t visibility = mapVisibility(objSym.getVisibility());
1719   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1720 
1721   int c = objSym.getComdatIndex();
1722   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1723     Undefined newSym(&f, name, binding, visibility, type);
1724     if (canOmitFromDynSym)
1725       newSym.exportDynamic = false;
1726     Symbol *ret = symtab->addSymbol(newSym);
1727     ret->referenced = true;
1728     return ret;
1729   }
1730 
1731   if (objSym.isCommon())
1732     return symtab->addSymbol(
1733         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1734                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1735 
1736   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1737   if (canOmitFromDynSym)
1738     newSym.exportDynamic = false;
1739   return symtab->addSymbol(newSym);
1740 }
1741 
1742 template <class ELFT> void BitcodeFile::parse() {
1743   std::vector<bool> keptComdats;
1744   for (StringRef s : obj->getComdatTable())
1745     keptComdats.push_back(
1746         symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1747 
1748   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1749     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1750 
1751   for (auto l : obj->getDependentLibraries())
1752     addDependentLibrary(l, this);
1753 }
1754 
1755 void BinaryFile::parse() {
1756   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1757   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1758                                      8, data, ".data");
1759   sections.push_back(section);
1760 
1761   // For each input file foo that is embedded to a result as a binary
1762   // blob, we define _binary_foo_{start,end,size} symbols, so that
1763   // user programs can access blobs by name. Non-alphanumeric
1764   // characters in a filename are replaced with underscore.
1765   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1766   for (size_t i = 0; i < s.size(); ++i)
1767     if (!isAlnum(s[i]))
1768       s[i] = '_';
1769 
1770   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1771                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1772   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1773                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1774   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1775                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1776 }
1777 
1778 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1779                                  uint64_t offsetInArchive) {
1780   if (isBitcode(mb))
1781     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1782 
1783   switch (getELFKind(mb, archiveName)) {
1784   case ELF32LEKind:
1785     return make<ObjFile<ELF32LE>>(mb, archiveName);
1786   case ELF32BEKind:
1787     return make<ObjFile<ELF32BE>>(mb, archiveName);
1788   case ELF64LEKind:
1789     return make<ObjFile<ELF64LE>>(mb, archiveName);
1790   case ELF64BEKind:
1791     return make<ObjFile<ELF64BE>>(mb, archiveName);
1792   default:
1793     llvm_unreachable("getELFKind");
1794   }
1795 }
1796 
1797 void LazyObjFile::fetch() {
1798   if (fetched)
1799     return;
1800   fetched = true;
1801 
1802   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1803   file->groupId = groupId;
1804 
1805   // Copy symbol vector so that the new InputFile doesn't have to
1806   // insert the same defined symbols to the symbol table again.
1807   file->symbols = std::move(symbols);
1808 
1809   parseFile(file);
1810 }
1811 
1812 template <class ELFT> void LazyObjFile::parse() {
1813   using Elf_Sym = typename ELFT::Sym;
1814 
1815   // A lazy object file wraps either a bitcode file or an ELF file.
1816   if (isBitcode(this->mb)) {
1817     std::unique_ptr<lto::InputFile> obj =
1818         CHECK(lto::InputFile::create(this->mb), this);
1819     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1820       if (sym.isUndefined())
1821         continue;
1822       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1823     }
1824     return;
1825   }
1826 
1827   if (getELFKind(this->mb, archiveName) != config->ekind) {
1828     error("incompatible file: " + this->mb.getBufferIdentifier());
1829     return;
1830   }
1831 
1832   // Find a symbol table.
1833   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1834   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1835 
1836   for (const typename ELFT::Shdr &sec : sections) {
1837     if (sec.sh_type != SHT_SYMTAB)
1838       continue;
1839 
1840     // A symbol table is found.
1841     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1842     uint32_t firstGlobal = sec.sh_info;
1843     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1844     this->symbols.resize(eSyms.size());
1845 
1846     // Get existing symbols or insert placeholder symbols.
1847     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1848       if (eSyms[i].st_shndx != SHN_UNDEF)
1849         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1850 
1851     // Replace existing symbols with LazyObject symbols.
1852     //
1853     // resolve() may trigger this->fetch() if an existing symbol is an
1854     // undefined symbol. If that happens, this LazyObjFile has served
1855     // its purpose, and we can exit from the loop early.
1856     for (Symbol *sym : this->symbols) {
1857       if (!sym)
1858         continue;
1859       sym->resolve(LazyObject{*this, sym->getName()});
1860 
1861       // If fetched, stop iterating because this->symbols has been transferred
1862       // to the instantiated ObjFile.
1863       if (fetched)
1864         return;
1865     }
1866     return;
1867   }
1868 }
1869 
1870 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) {
1871   if (isBitcode(mb))
1872     return isBitcodeNonCommonDef(mb, name, archiveName);
1873 
1874   return isNonCommonDef(mb, name, archiveName);
1875 }
1876 
1877 std::string elf::replaceThinLTOSuffix(StringRef path) {
1878   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1879   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1880 
1881   if (path.consume_back(suffix))
1882     return (path + repl).str();
1883   return std::string(path);
1884 }
1885 
1886 template void BitcodeFile::parse<ELF32LE>();
1887 template void BitcodeFile::parse<ELF32BE>();
1888 template void BitcodeFile::parse<ELF64LE>();
1889 template void BitcodeFile::parse<ELF64BE>();
1890 
1891 template void LazyObjFile::parse<ELF32LE>();
1892 template void LazyObjFile::parse<ELF32BE>();
1893 template void LazyObjFile::parse<ELF64LE>();
1894 template void LazyObjFile::parse<ELF64BE>();
1895 
1896 template class elf::ObjFile<ELF32LE>;
1897 template class elf::ObjFile<ELF32BE>;
1898 template class elf::ObjFile<ELF64LE>;
1899 template class elf::ObjFile<ELF64BE>;
1900 
1901 template void SharedFile::parse<ELF32LE>();
1902 template void SharedFile::parse<ELF32BE>();
1903 template void SharedFile::parse<ELF64LE>();
1904 template void SharedFile::parse<ELF64BE>();
1905