1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Error.h"
12 #include "InputSection.h"
13 #include "LinkerScript.h"
14 #include "Memory.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Bitcode/BitcodeReader.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/LTO/LTO.h"
25 #include "llvm/MC/StringTableBuilder.h"
26 #include "llvm/Object/ELFObjectFile.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/TarWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 using namespace llvm::ELF;
33 using namespace llvm::object;
34 using namespace llvm::sys::fs;
35 
36 using namespace lld;
37 using namespace lld::elf;
38 
39 TarWriter *elf::Tar;
40 
41 namespace {
42 // In ELF object file all section addresses are zero. If we have multiple
43 // .text sections (when using -ffunction-section or comdat group) then
44 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless
45 // we assign each section some unique address. This callback method assigns
46 // each section an address equal to its offset in ELF object file.
47 class ObjectInfo : public LoadedObjectInfo {
48 public:
49   uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override {
50     return static_cast<const ELFSectionRef &>(Sec).getOffset();
51   }
52   std::unique_ptr<LoadedObjectInfo> clone() const override {
53     return std::unique_ptr<LoadedObjectInfo>();
54   }
55 };
56 }
57 
58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
59   log(Path);
60   auto MBOrErr = MemoryBuffer::getFile(Path);
61   if (auto EC = MBOrErr.getError()) {
62     error("cannot open " + Path + ": " + EC.message());
63     return None;
64   }
65 
66   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
67   MemoryBufferRef MBRef = MB->getMemBufferRef();
68   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
69 
70   if (Tar)
71     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
72   return MBRef;
73 }
74 
75 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() {
76   std::unique_ptr<object::ObjectFile> Obj =
77       check(object::ObjectFile::createObjectFile(this->MB),
78             "createObjectFile failed");
79 
80   ObjectInfo ObjInfo;
81   DWARFContextInMemory Dwarf(*Obj, &ObjInfo);
82   DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs));
83   DataExtractor LineData(Dwarf.getLineSection().Data, Config->IsLE,
84                          Config->Wordsize);
85 
86   // The second parameter is offset in .debug_line section
87   // for compilation unit (CU) of interest. We have only one
88   // CU (object file), so offset is always 0.
89   DwarfLine->getOrParseLineTable(LineData, 0);
90 }
91 
92 // Returns source line information for a given offset
93 // using DWARF debug info.
94 template <class ELFT>
95 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase *S,
96                                                uint64_t Offset) {
97   if (!DwarfLine)
98     initializeDwarfLine();
99 
100   // The offset to CU is 0.
101   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
102   if (!Tbl)
103     return "";
104 
105   // Use fake address calcuated by adding section file offset and offset in
106   // section. See comments for ObjectInfo class.
107   DILineInfo Info;
108   Tbl->getFileLineInfoForAddress(
109       S->getOffsetInFile() + Offset, nullptr,
110       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
111   if (Info.Line == 0)
112     return "";
113   return Info.FileName + ":" + std::to_string(Info.Line);
114 }
115 
116 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
117 std::string lld::toString(const InputFile *F) {
118   if (!F)
119     return "(internal)";
120   if (!F->ArchiveName.empty())
121     return (F->ArchiveName + "(" + F->getName() + ")").str();
122   return F->getName();
123 }
124 
125 template <class ELFT> static ELFKind getELFKind() {
126   if (ELFT::TargetEndianness == support::little)
127     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
128   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
129 }
130 
131 template <class ELFT>
132 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
133   EKind = getELFKind<ELFT>();
134   EMachine = getObj().getHeader()->e_machine;
135   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
136 }
137 
138 template <class ELFT>
139 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() {
140   return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end());
141 }
142 
143 template <class ELFT>
144 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
145   return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX));
146 }
147 
148 template <class ELFT>
149 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
150                                    const Elf_Shdr *Symtab) {
151   FirstNonLocal = Symtab->sh_info;
152   Symbols = check(getObj().symbols(Symtab));
153   if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size())
154     fatal(toString(this) + ": invalid sh_info in symbol table");
155 
156   StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections));
157 }
158 
159 template <class ELFT>
160 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
161     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
162 
163 template <class ELFT>
164 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
165   return makeArrayRef(this->SymbolBodies).slice(this->FirstNonLocal);
166 }
167 
168 template <class ELFT>
169 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
170   if (this->SymbolBodies.empty())
171     return this->SymbolBodies;
172   return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1);
173 }
174 
175 template <class ELFT>
176 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
177   if (this->SymbolBodies.empty())
178     return this->SymbolBodies;
179   return makeArrayRef(this->SymbolBodies).slice(1);
180 }
181 
182 template <class ELFT>
183 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
184   // Read section and symbol tables.
185   initializeSections(ComdatGroups);
186   initializeSymbols();
187 }
188 
189 // Sections with SHT_GROUP and comdat bits define comdat section groups.
190 // They are identified and deduplicated by group name. This function
191 // returns a group name.
192 template <class ELFT>
193 StringRef
194 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
195                                             const Elf_Shdr &Sec) {
196   if (this->Symbols.empty())
197     this->initSymtab(Sections,
198                      check(object::getSection<ELFT>(Sections, Sec.sh_link)));
199   const Elf_Sym *Sym =
200       check(object::getSymbol<ELFT>(this->Symbols, Sec.sh_info));
201   return check(Sym->getName(this->StringTable));
202 }
203 
204 template <class ELFT>
205 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
206 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
207   const ELFFile<ELFT> &Obj = this->getObj();
208   ArrayRef<Elf_Word> Entries =
209       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
210   if (Entries.empty() || Entries[0] != GRP_COMDAT)
211     fatal(toString(this) + ": unsupported SHT_GROUP format");
212   return Entries.slice(1);
213 }
214 
215 template <class ELFT>
216 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
217   // We don't merge sections if -O0 (default is -O1). This makes sometimes
218   // the linker significantly faster, although the output will be bigger.
219   if (Config->Optimize == 0)
220     return false;
221 
222   // Do not merge sections if generating a relocatable object. It makes
223   // the code simpler because we do not need to update relocation addends
224   // to reflect changes introduced by merging. Instead of that we write
225   // such "merge" sections into separate OutputSections and keep SHF_MERGE
226   // / SHF_STRINGS flags and sh_entsize value to be able to perform merging
227   // later during a final linking.
228   if (Config->Relocatable)
229     return false;
230 
231   // A mergeable section with size 0 is useless because they don't have
232   // any data to merge. A mergeable string section with size 0 can be
233   // argued as invalid because it doesn't end with a null character.
234   // We'll avoid a mess by handling them as if they were non-mergeable.
235   if (Sec.sh_size == 0)
236     return false;
237 
238   // Check for sh_entsize. The ELF spec is not clear about the zero
239   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
240   // the section does not hold a table of fixed-size entries". We know
241   // that Rust 1.13 produces a string mergeable section with a zero
242   // sh_entsize. Here we just accept it rather than being picky about it.
243   uint64_t EntSize = Sec.sh_entsize;
244   if (EntSize == 0)
245     return false;
246   if (Sec.sh_size % EntSize)
247     fatal(toString(this) +
248           ": SHF_MERGE section size must be a multiple of sh_entsize");
249 
250   uint64_t Flags = Sec.sh_flags;
251   if (!(Flags & SHF_MERGE))
252     return false;
253   if (Flags & SHF_WRITE)
254     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
255 
256   // Don't try to merge if the alignment is larger than the sh_entsize and this
257   // is not SHF_STRINGS.
258   //
259   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
260   // It would be equivalent for the producer of the .o to just set a larger
261   // sh_entsize.
262   if (Flags & SHF_STRINGS)
263     return true;
264 
265   return Sec.sh_addralign <= EntSize;
266 }
267 
268 template <class ELFT>
269 void elf::ObjectFile<ELFT>::initializeSections(
270     DenseSet<CachedHashStringRef> &ComdatGroups) {
271   ArrayRef<Elf_Shdr> ObjSections = check(this->getObj().sections());
272   const ELFFile<ELFT> &Obj = this->getObj();
273   uint64_t Size = ObjSections.size();
274   this->Sections.resize(Size);
275   unsigned I = -1;
276   StringRef SectionStringTable = check(Obj.getSectionStringTable(ObjSections));
277   for (const Elf_Shdr &Sec : ObjSections) {
278     ++I;
279     if (this->Sections[I] == &InputSection::Discarded)
280       continue;
281 
282     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
283     // if -r is given, we'll let the final link discard such sections.
284     // This is compatible with GNU.
285     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
286       this->Sections[I] = &InputSection::Discarded;
287       continue;
288     }
289 
290     switch (Sec.sh_type) {
291     case SHT_GROUP:
292       this->Sections[I] = &InputSection::Discarded;
293       if (ComdatGroups
294               .insert(
295                   CachedHashStringRef(getShtGroupSignature(ObjSections, Sec)))
296               .second)
297         continue;
298       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
299         if (SecIndex >= Size)
300           fatal(toString(this) +
301                 ": invalid section index in group: " + Twine(SecIndex));
302         this->Sections[SecIndex] = &InputSection::Discarded;
303       }
304       break;
305     case SHT_SYMTAB:
306       this->initSymtab(ObjSections, &Sec);
307       break;
308     case SHT_SYMTAB_SHNDX:
309       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, ObjSections));
310       break;
311     case SHT_STRTAB:
312     case SHT_NULL:
313       break;
314     default:
315       this->Sections[I] = createInputSection(Sec, SectionStringTable);
316     }
317 
318     // .ARM.exidx sections have a reverse dependency on the InputSection they
319     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
320     if (Sec.sh_flags & SHF_LINK_ORDER) {
321       if (Sec.sh_link >= this->Sections.size())
322         fatal(toString(this) + ": invalid sh_link index: " +
323               Twine(Sec.sh_link));
324       this->Sections[Sec.sh_link]->DependentSections.push_back(
325           this->Sections[I]);
326     }
327   }
328 }
329 
330 template <class ELFT>
331 InputSectionBase *elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
332   uint32_t Idx = Sec.sh_info;
333   if (Idx >= this->Sections.size())
334     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
335   InputSectionBase *Target = this->Sections[Idx];
336 
337   // Strictly speaking, a relocation section must be included in the
338   // group of the section it relocates. However, LLVM 3.3 and earlier
339   // would fail to do so, so we gracefully handle that case.
340   if (Target == &InputSection::Discarded)
341     return nullptr;
342 
343   if (!Target)
344     fatal(toString(this) + ": unsupported relocation reference");
345   return Target;
346 }
347 
348 template <class ELFT>
349 InputSectionBase *
350 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec,
351                                           StringRef SectionStringTable) {
352   StringRef Name =
353       check(this->getObj().getSectionName(&Sec, SectionStringTable));
354 
355   switch (Sec.sh_type) {
356   case SHT_ARM_ATTRIBUTES:
357     // FIXME: ARM meta-data section. Retain the first attribute section
358     // we see. The eglibc ARM dynamic loaders require the presence of an
359     // attribute section for dlopen to work.
360     // In a full implementation we would merge all attribute sections.
361     if (In<ELFT>::ARMAttributes == nullptr) {
362       In<ELFT>::ARMAttributes = make<InputSection>(this, &Sec, Name);
363       return In<ELFT>::ARMAttributes;
364     }
365     return &InputSection::Discarded;
366   case SHT_RELA:
367   case SHT_REL: {
368     // Find the relocation target section and associate this
369     // section with it. Target can be discarded, for example
370     // if it is a duplicated member of SHT_GROUP section, we
371     // do not create or proccess relocatable sections then.
372     InputSectionBase *Target = getRelocTarget(Sec);
373     if (!Target)
374       return nullptr;
375 
376     // This section contains relocation information.
377     // If -r is given, we do not interpret or apply relocation
378     // but just copy relocation sections to output.
379     if (Config->Relocatable)
380       return make<InputSection>(this, &Sec, Name);
381 
382     if (Target->FirstRelocation)
383       fatal(toString(this) +
384             ": multiple relocation sections to one section are not supported");
385     if (isa<MergeInputSection>(Target))
386       fatal(toString(this) +
387             ": relocations pointing to SHF_MERGE are not supported");
388 
389     size_t NumRelocations;
390     if (Sec.sh_type == SHT_RELA) {
391       ArrayRef<Elf_Rela> Rels = check(this->getObj().relas(&Sec));
392       Target->FirstRelocation = Rels.begin();
393       NumRelocations = Rels.size();
394       Target->AreRelocsRela = true;
395     } else {
396       ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec));
397       Target->FirstRelocation = Rels.begin();
398       NumRelocations = Rels.size();
399       Target->AreRelocsRela = false;
400     }
401     assert(isUInt<31>(NumRelocations));
402     Target->NumRelocations = NumRelocations;
403 
404     // Relocation sections processed by the linker are usually removed
405     // from the output, so returning `nullptr` for the normal case.
406     // However, if -emit-relocs is given, we need to leave them in the output.
407     // (Some post link analysis tools need this information.)
408     if (Config->EmitRelocs) {
409       InputSection *RelocSec = make<InputSection>(this, &Sec, Name);
410       // We will not emit relocation section if target was discarded.
411       Target->DependentSections.push_back(RelocSec);
412       return RelocSec;
413     }
414     return nullptr;
415   }
416   }
417 
418   // The GNU linker uses .note.GNU-stack section as a marker indicating
419   // that the code in the object file does not expect that the stack is
420   // executable (in terms of NX bit). If all input files have the marker,
421   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
422   // make the stack non-executable. Most object files have this section as
423   // of 2017.
424   //
425   // But making the stack non-executable is a norm today for security
426   // reasons. Failure to do so may result in a serious security issue.
427   // Therefore, we make LLD always add PT_GNU_STACK unless it is
428   // explicitly told to do otherwise (by -z execstack). Because the stack
429   // executable-ness is controlled solely by command line options,
430   // .note.GNU-stack sections are simply ignored.
431   if (Name == ".note.GNU-stack")
432     return &InputSection::Discarded;
433 
434   // Split stacks is a feature to support a discontiguous stack. At least
435   // as of 2017, it seems that the feature is not being used widely.
436   // Only GNU gold supports that. We don't. For the details about that,
437   // see https://gcc.gnu.org/wiki/SplitStacks
438   if (Name == ".note.GNU-split-stack") {
439     error(toString(this) +
440           ": object file compiled with -fsplit-stack is not supported");
441     return &InputSection::Discarded;
442   }
443 
444   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
445     return &InputSection::Discarded;
446 
447   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
448   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
449   // sections. Drop those sections to avoid duplicate symbol errors.
450   // FIXME: This is glibc PR20543, we should remove this hack once that has been
451   // fixed for a while.
452   if (Name.startswith(".gnu.linkonce."))
453     return &InputSection::Discarded;
454 
455   // The linker merges EH (exception handling) frames and creates a
456   // .eh_frame_hdr section for runtime. So we handle them with a special
457   // class. For relocatable outputs, they are just passed through.
458   if (Name == ".eh_frame" && !Config->Relocatable)
459     return make<EhInputSection>(this, &Sec, Name);
460 
461   if (shouldMerge(Sec))
462     return make<MergeInputSection>(this, &Sec, Name);
463   return make<InputSection>(this, &Sec, Name);
464 }
465 
466 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
467   SymbolBodies.reserve(this->Symbols.size());
468   for (const Elf_Sym &Sym : this->Symbols)
469     SymbolBodies.push_back(createSymbolBody(&Sym));
470 }
471 
472 template <class ELFT>
473 InputSectionBase *elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
474   uint32_t Index = this->getSectionIndex(Sym);
475   if (Index >= this->Sections.size())
476     fatal(toString(this) + ": invalid section index: " + Twine(Index));
477   InputSectionBase *S = this->Sections[Index];
478 
479   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could
480   // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be
481   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
482   // In this case it is fine for section to be null here as we do not
483   // allocate sections of these types.
484   if (!S) {
485     if (Index == 0 || Sym.getType() == STT_SECTION ||
486         Sym.getType() == STT_NOTYPE)
487       return nullptr;
488     fatal(toString(this) + ": invalid section index: " + Twine(Index));
489   }
490 
491   if (S == &InputSection::Discarded)
492     return S;
493   return S->Repl;
494 }
495 
496 template <class ELFT>
497 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
498   int Binding = Sym->getBinding();
499   InputSectionBase *Sec = getSection(*Sym);
500 
501   uint8_t StOther = Sym->st_other;
502   uint8_t Type = Sym->getType();
503   uint64_t Value = Sym->st_value;
504   uint64_t Size = Sym->st_size;
505 
506   if (Binding == STB_LOCAL) {
507     if (Sym->getType() == STT_FILE)
508       SourceFile = check(Sym->getName(this->StringTable));
509 
510     if (this->StringTable.size() <= Sym->st_name)
511       fatal(toString(this) + ": invalid symbol name offset");
512 
513     StringRefZ Name = this->StringTable.data() + Sym->st_name;
514     if (Sym->st_shndx == SHN_UNDEF)
515       return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type, this);
516 
517     return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value,
518                                 Size, Sec, this);
519   }
520 
521   StringRef Name = check(Sym->getName(this->StringTable));
522 
523   switch (Sym->st_shndx) {
524   case SHN_UNDEF:
525     return elf::Symtab<ELFT>::X
526         ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type,
527                        /*CanOmitFromDynSym=*/false, this)
528         ->body();
529   case SHN_COMMON:
530     if (Value == 0 || Value >= UINT32_MAX)
531       fatal(toString(this) + ": common symbol '" + Name +
532             "' has invalid alignment: " + Twine(Value));
533     return elf::Symtab<ELFT>::X
534         ->addCommon(Name, Size, Value, Binding, StOther, Type, this)
535         ->body();
536   }
537 
538   switch (Binding) {
539   default:
540     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
541   case STB_GLOBAL:
542   case STB_WEAK:
543   case STB_GNU_UNIQUE:
544     if (Sec == &InputSection::Discarded)
545       return elf::Symtab<ELFT>::X
546           ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type,
547                          /*CanOmitFromDynSym=*/false, this)
548           ->body();
549     return elf::Symtab<ELFT>::X
550         ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this)
551         ->body();
552   }
553 }
554 
555 template <class ELFT> void ArchiveFile::parse() {
556   File = check(Archive::create(MB),
557                MB.getBufferIdentifier() + ": failed to parse archive");
558 
559   // Read the symbol table to construct Lazy objects.
560   for (const Archive::Symbol &Sym : File->symbols()) {
561     Symtab<ELFT>::X->addLazyArchive(this, Sym);
562   }
563 
564   if (File->symbols().begin() == File->symbols().end())
565     Config->ArchiveWithoutSymbolsSeen = true;
566 }
567 
568 // Returns a buffer pointing to a member file containing a given symbol.
569 std::pair<MemoryBufferRef, uint64_t>
570 ArchiveFile::getMember(const Archive::Symbol *Sym) {
571   Archive::Child C =
572       check(Sym->getMember(),
573             "could not get the member for symbol " + Sym->getName());
574 
575   if (!Seen.insert(C.getChildOffset()).second)
576     return {MemoryBufferRef(), 0};
577 
578   MemoryBufferRef Ret =
579       check(C.getMemoryBufferRef(),
580             "could not get the buffer for the member defining symbol " +
581                 Sym->getName());
582 
583   if (C.getParent()->isThin() && Tar)
584     Tar->append(relativeToRoot(check(C.getFullName())), Ret.getBuffer());
585   if (C.getParent()->isThin())
586     return {Ret, 0};
587   return {Ret, C.getChildOffset()};
588 }
589 
590 template <class ELFT>
591 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
592     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
593 
594 template <class ELFT>
595 const typename ELFT::Shdr *
596 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
597   return check(
598       this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX));
599 }
600 
601 // Partially parse the shared object file so that we can call
602 // getSoName on this object.
603 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
604   const Elf_Shdr *DynamicSec = nullptr;
605 
606   const ELFFile<ELFT> Obj = this->getObj();
607   ArrayRef<Elf_Shdr> Sections = check(Obj.sections());
608   for (const Elf_Shdr &Sec : Sections) {
609     switch (Sec.sh_type) {
610     default:
611       continue;
612     case SHT_DYNSYM:
613       this->initSymtab(Sections, &Sec);
614       break;
615     case SHT_DYNAMIC:
616       DynamicSec = &Sec;
617       break;
618     case SHT_SYMTAB_SHNDX:
619       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, Sections));
620       break;
621     case SHT_GNU_versym:
622       this->VersymSec = &Sec;
623       break;
624     case SHT_GNU_verdef:
625       this->VerdefSec = &Sec;
626       break;
627     }
628   }
629 
630   if (this->VersymSec && this->Symbols.empty())
631     error("SHT_GNU_versym should be associated with symbol table");
632 
633   // DSOs are identified by soname, and they usually contain
634   // DT_SONAME tag in their header. But if they are missing,
635   // filenames are used as default sonames.
636   SoName = sys::path::filename(this->getName());
637 
638   if (!DynamicSec)
639     return;
640 
641   ArrayRef<Elf_Dyn> Arr =
642       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
643             toString(this) + ": getSectionContentsAsArray failed");
644   for (const Elf_Dyn &Dyn : Arr) {
645     if (Dyn.d_tag == DT_SONAME) {
646       uint64_t Val = Dyn.getVal();
647       if (Val >= this->StringTable.size())
648         fatal(toString(this) + ": invalid DT_SONAME entry");
649       SoName = StringRef(this->StringTable.data() + Val);
650       return;
651     }
652   }
653 }
654 
655 // Parse the version definitions in the object file if present. Returns a vector
656 // whose nth element contains a pointer to the Elf_Verdef for version identifier
657 // n. Version identifiers that are not definitions map to nullptr. The array
658 // always has at least length 1.
659 template <class ELFT>
660 std::vector<const typename ELFT::Verdef *>
661 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
662   std::vector<const Elf_Verdef *> Verdefs(1);
663   // We only need to process symbol versions for this DSO if it has both a
664   // versym and a verdef section, which indicates that the DSO contains symbol
665   // version definitions.
666   if (!VersymSec || !VerdefSec)
667     return Verdefs;
668 
669   // The location of the first global versym entry.
670   const char *Base = this->MB.getBuffer().data();
671   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
672            this->FirstNonLocal;
673 
674   // We cannot determine the largest verdef identifier without inspecting
675   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
676   // sequentially starting from 1, so we predict that the largest identifier
677   // will be VerdefCount.
678   unsigned VerdefCount = VerdefSec->sh_info;
679   Verdefs.resize(VerdefCount + 1);
680 
681   // Build the Verdefs array by following the chain of Elf_Verdef objects
682   // from the start of the .gnu.version_d section.
683   const char *Verdef = Base + VerdefSec->sh_offset;
684   for (unsigned I = 0; I != VerdefCount; ++I) {
685     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
686     Verdef += CurVerdef->vd_next;
687     unsigned VerdefIndex = CurVerdef->vd_ndx;
688     if (Verdefs.size() <= VerdefIndex)
689       Verdefs.resize(VerdefIndex + 1);
690     Verdefs[VerdefIndex] = CurVerdef;
691   }
692 
693   return Verdefs;
694 }
695 
696 // Fully parse the shared object file. This must be called after parseSoName().
697 template <class ELFT> void SharedFile<ELFT>::parseRest() {
698   // Create mapping from version identifiers to Elf_Verdef entries.
699   const Elf_Versym *Versym = nullptr;
700   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
701 
702   Elf_Sym_Range Syms = this->getGlobalSymbols();
703   for (const Elf_Sym &Sym : Syms) {
704     unsigned VersymIndex = 0;
705     if (Versym) {
706       VersymIndex = Versym->vs_index;
707       ++Versym;
708     }
709     bool Hidden = VersymIndex & VERSYM_HIDDEN;
710     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
711 
712     StringRef Name = check(Sym.getName(this->StringTable));
713     if (Sym.isUndefined()) {
714       Undefs.push_back(Name);
715       continue;
716     }
717 
718     // Ignore local symbols.
719     if (Versym && VersymIndex == VER_NDX_LOCAL)
720       continue;
721 
722     const Elf_Verdef *V =
723         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
724 
725     if (!Hidden)
726       elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
727 
728     // Also add the symbol with the versioned name to handle undefined symbols
729     // with explicit versions.
730     if (V) {
731       StringRef VerName = this->StringTable.data() + V->getAux()->vda_name;
732       Name = Saver.save(Twine(Name) + "@" + VerName);
733       elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
734     }
735   }
736 }
737 
738 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
739   Triple T(check(getBitcodeTargetTriple(MB)));
740   if (T.isLittleEndian())
741     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
742   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
743 }
744 
745 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
746   Triple T(check(getBitcodeTargetTriple(MB)));
747   switch (T.getArch()) {
748   case Triple::aarch64:
749     return EM_AARCH64;
750   case Triple::arm:
751   case Triple::thumb:
752     return EM_ARM;
753   case Triple::mips:
754   case Triple::mipsel:
755   case Triple::mips64:
756   case Triple::mips64el:
757     return EM_MIPS;
758   case Triple::ppc:
759     return EM_PPC;
760   case Triple::ppc64:
761     return EM_PPC64;
762   case Triple::x86:
763     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
764   case Triple::x86_64:
765     return EM_X86_64;
766   default:
767     fatal(MB.getBufferIdentifier() +
768           ": could not infer e_machine from bitcode target triple " + T.str());
769   }
770 }
771 
772 BitcodeFile::BitcodeFile(MemoryBufferRef MB, uint64_t OffsetInArchive)
773     : InputFile(BitcodeKind, MB), OffsetInArchive(OffsetInArchive) {
774   EKind = getBitcodeELFKind(MB);
775   EMachine = getBitcodeMachineKind(MB);
776 }
777 
778 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
779   switch (GvVisibility) {
780   case GlobalValue::DefaultVisibility:
781     return STV_DEFAULT;
782   case GlobalValue::HiddenVisibility:
783     return STV_HIDDEN;
784   case GlobalValue::ProtectedVisibility:
785     return STV_PROTECTED;
786   }
787   llvm_unreachable("unknown visibility");
788 }
789 
790 template <class ELFT>
791 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
792                                    const lto::InputFile::Symbol &ObjSym,
793                                    BitcodeFile *F) {
794   StringRef NameRef = Saver.save(ObjSym.getName());
795   uint32_t Flags = ObjSym.getFlags();
796   uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL;
797 
798   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
799   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
800   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
801 
802   int C = check(ObjSym.getComdatIndex());
803   if (C != -1 && !KeptComdats[C])
804     return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding,
805                                          Visibility, Type, CanOmitFromDynSym,
806                                          F);
807 
808   if (Flags & BasicSymbolRef::SF_Undefined)
809     return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding,
810                                          Visibility, Type, CanOmitFromDynSym,
811                                          F);
812 
813   if (Flags & BasicSymbolRef::SF_Common)
814     return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(),
815                                       ObjSym.getCommonAlignment(), Binding,
816                                       Visibility, STT_OBJECT, F);
817 
818   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
819                                      CanOmitFromDynSym, F);
820 }
821 
822 template <class ELFT>
823 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
824 
825   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
826   // (the fully resolved path of the archive) + member name + offset of the
827   // member in the archive.
828   // ThinLTO uses the MemoryBufferRef identifier to access its internal
829   // data structures and if two archives define two members with the same name,
830   // this causes a collision which result in only one of the objects being
831   // taken into consideration at LTO time (which very likely causes undefined
832   // symbols later in the link stage).
833   Obj = check(lto::InputFile::create(MemoryBufferRef(
834       MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() +
835                                  utostr(OffsetInArchive)))));
836 
837   std::vector<bool> KeptComdats;
838   for (StringRef S : Obj->getComdatTable()) {
839     StringRef N = Saver.save(S);
840     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second);
841   }
842 
843   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
844     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
845 }
846 
847 template <template <class> class T>
848 static InputFile *createELFFile(MemoryBufferRef MB) {
849   unsigned char Size;
850   unsigned char Endian;
851   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
852   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
853     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
854 
855   size_t BufSize = MB.getBuffer().size();
856   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
857       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
858     fatal(MB.getBufferIdentifier() + ": file is too short");
859 
860   InputFile *Obj;
861   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
862     Obj = make<T<ELF32LE>>(MB);
863   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
864     Obj = make<T<ELF32BE>>(MB);
865   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
866     Obj = make<T<ELF64LE>>(MB);
867   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
868     Obj = make<T<ELF64BE>>(MB);
869   else
870     fatal(MB.getBufferIdentifier() + ": invalid file class");
871 
872   if (!Config->FirstElf)
873     Config->FirstElf = Obj;
874   return Obj;
875 }
876 
877 template <class ELFT> void BinaryFile::parse() {
878   StringRef Buf = MB.getBuffer();
879   ArrayRef<uint8_t> Data =
880       makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size());
881 
882   std::string Filename = MB.getBufferIdentifier();
883   std::transform(Filename.begin(), Filename.end(), Filename.begin(),
884                  [](char C) { return isalnum(C) ? C : '_'; });
885   Filename = "_binary_" + Filename;
886   StringRef StartName = Saver.save(Twine(Filename) + "_start");
887   StringRef EndName = Saver.save(Twine(Filename) + "_end");
888   StringRef SizeName = Saver.save(Twine(Filename) + "_size");
889 
890   auto *Section =
891       make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data");
892   Sections.push_back(Section);
893 
894   elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0,
895                                    STB_GLOBAL, Section, nullptr);
896   elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT,
897                                    Data.size(), 0, STB_GLOBAL, Section,
898                                    nullptr);
899   elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT,
900                                    Data.size(), 0, STB_GLOBAL, nullptr,
901                                    nullptr);
902 }
903 
904 static bool isBitcode(MemoryBufferRef MB) {
905   using namespace sys::fs;
906   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
907 }
908 
909 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
910                                  uint64_t OffsetInArchive) {
911   InputFile *F = isBitcode(MB) ? make<BitcodeFile>(MB, OffsetInArchive)
912                                : createELFFile<ObjectFile>(MB);
913   F->ArchiveName = ArchiveName;
914   return F;
915 }
916 
917 InputFile *elf::createSharedFile(MemoryBufferRef MB) {
918   return createELFFile<SharedFile>(MB);
919 }
920 
921 MemoryBufferRef LazyObjectFile::getBuffer() {
922   if (Seen)
923     return MemoryBufferRef();
924   Seen = true;
925   return MB;
926 }
927 
928 template <class ELFT> void LazyObjectFile::parse() {
929   for (StringRef Sym : getSymbols())
930     Symtab<ELFT>::X->addLazyObject(Sym, *this);
931 }
932 
933 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
934   typedef typename ELFT::Shdr Elf_Shdr;
935   typedef typename ELFT::Sym Elf_Sym;
936   typedef typename ELFT::SymRange Elf_Sym_Range;
937 
938   const ELFFile<ELFT> Obj(this->MB.getBuffer());
939   ArrayRef<Elf_Shdr> Sections = check(Obj.sections());
940   for (const Elf_Shdr &Sec : Sections) {
941     if (Sec.sh_type != SHT_SYMTAB)
942       continue;
943     Elf_Sym_Range Syms = check(Obj.symbols(&Sec));
944     uint32_t FirstNonLocal = Sec.sh_info;
945     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec, Sections));
946     std::vector<StringRef> V;
947     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
948       if (Sym.st_shndx != SHN_UNDEF)
949         V.push_back(check(Sym.getName(StringTable)));
950     return V;
951   }
952   return {};
953 }
954 
955 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
956   std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB));
957   std::vector<StringRef> V;
958   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
959     if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined))
960       V.push_back(Saver.save(Sym.getName()));
961   return V;
962 }
963 
964 // Returns a vector of globally-visible defined symbol names.
965 std::vector<StringRef> LazyObjectFile::getSymbols() {
966   if (isBitcode(this->MB))
967     return getBitcodeSymbols();
968 
969   unsigned char Size;
970   unsigned char Endian;
971   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
972   if (Size == ELFCLASS32) {
973     if (Endian == ELFDATA2LSB)
974       return getElfSymbols<ELF32LE>();
975     return getElfSymbols<ELF32BE>();
976   }
977   if (Endian == ELFDATA2LSB)
978     return getElfSymbols<ELF64LE>();
979   return getElfSymbols<ELF64BE>();
980 }
981 
982 template void ArchiveFile::parse<ELF32LE>();
983 template void ArchiveFile::parse<ELF32BE>();
984 template void ArchiveFile::parse<ELF64LE>();
985 template void ArchiveFile::parse<ELF64BE>();
986 
987 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
988 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
989 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
990 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
991 
992 template void LazyObjectFile::parse<ELF32LE>();
993 template void LazyObjectFile::parse<ELF32BE>();
994 template void LazyObjectFile::parse<ELF64LE>();
995 template void LazyObjectFile::parse<ELF64BE>();
996 
997 template class elf::ELFFileBase<ELF32LE>;
998 template class elf::ELFFileBase<ELF32BE>;
999 template class elf::ELFFileBase<ELF64LE>;
1000 template class elf::ELFFileBase<ELF64BE>;
1001 
1002 template class elf::ObjectFile<ELF32LE>;
1003 template class elf::ObjectFile<ELF32BE>;
1004 template class elf::ObjectFile<ELF64LE>;
1005 template class elf::ObjectFile<ELF64BE>;
1006 
1007 template class elf::SharedFile<ELF32LE>;
1008 template class elf::SharedFile<ELF32BE>;
1009 template class elf::SharedFile<ELF64LE>;
1010 template class elf::SharedFile<ELF64BE>;
1011 
1012 template void BinaryFile::parse<ELF32LE>();
1013 template void BinaryFile::parse<ELF32BE>();
1014 template void BinaryFile::parse<ELF64LE>();
1015 template void BinaryFile::parse<ELF64BE>();
1016