1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "InputSection.h"
11 #include "LinkerScript.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "lld/Common/ErrorHandler.h"
16 #include "lld/Common/Memory.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/LTO/LTO.h"
23 #include "llvm/MC/StringTableBuilder.h"
24 #include "llvm/Object/ELFObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Path.h"
28 #include "llvm/Support/TarWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 using namespace llvm::ELF;
33 using namespace llvm::object;
34 using namespace llvm::sys;
35 using namespace llvm::sys::fs;
36 
37 using namespace lld;
38 using namespace lld::elf;
39 
40 bool InputFile::IsInGroup;
41 uint32_t InputFile::NextGroupId;
42 std::vector<BinaryFile *> elf::BinaryFiles;
43 std::vector<BitcodeFile *> elf::BitcodeFiles;
44 std::vector<LazyObjFile *> elf::LazyObjFiles;
45 std::vector<InputFile *> elf::ObjectFiles;
46 std::vector<InputFile *> elf::SharedFiles;
47 
48 std::unique_ptr<TarWriter> elf::Tar;
49 
50 InputFile::InputFile(Kind K, MemoryBufferRef M)
51     : MB(M), GroupId(NextGroupId), FileKind(K) {
52   // All files within the same --{start,end}-group get the same group ID.
53   // Otherwise, a new file will get a new group ID.
54   if (!IsInGroup)
55     ++NextGroupId;
56 }
57 
58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
59   // The --chroot option changes our virtual root directory.
60   // This is useful when you are dealing with files created by --reproduce.
61   if (!Config->Chroot.empty() && Path.startswith("/"))
62     Path = Saver.save(Config->Chroot + Path);
63 
64   log(Path);
65 
66   auto MBOrErr = MemoryBuffer::getFile(Path, -1, false);
67   if (auto EC = MBOrErr.getError()) {
68     error("cannot open " + Path + ": " + EC.message());
69     return None;
70   }
71 
72   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
73   MemoryBufferRef MBRef = MB->getMemBufferRef();
74   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
75 
76   if (Tar)
77     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
78   return MBRef;
79 }
80 
81 // Concatenates arguments to construct a string representing an error location.
82 static std::string createFileLineMsg(StringRef Path, unsigned Line) {
83   std::string Filename = path::filename(Path);
84   std::string Lineno = ":" + std::to_string(Line);
85   if (Filename == Path)
86     return Filename + Lineno;
87   return Filename + Lineno + " (" + Path.str() + Lineno + ")";
88 }
89 
90 template <class ELFT>
91 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym,
92                                 InputSectionBase &Sec, uint64_t Offset) {
93   // In DWARF, functions and variables are stored to different places.
94   // First, lookup a function for a given offset.
95   if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset))
96     return createFileLineMsg(Info->FileName, Info->Line);
97 
98   // If it failed, lookup again as a variable.
99   if (Optional<std::pair<std::string, unsigned>> FileLine =
100           File.getVariableLoc(Sym.getName()))
101     return createFileLineMsg(FileLine->first, FileLine->second);
102 
103   // File.SourceFile contains STT_FILE symbol, and that is a last resort.
104   return File.SourceFile;
105 }
106 
107 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec,
108                                  uint64_t Offset) {
109   if (kind() != ObjKind)
110     return "";
111   switch (Config->EKind) {
112   default:
113     llvm_unreachable("Invalid kind");
114   case ELF32LEKind:
115     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset);
116   case ELF32BEKind:
117     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset);
118   case ELF64LEKind:
119     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset);
120   case ELF64BEKind:
121     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset);
122   }
123 }
124 
125 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
126   Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this));
127   for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) {
128     auto Report = [](Error Err) {
129       handleAllErrors(std::move(Err),
130                       [](ErrorInfoBase &Info) { warn(Info.message()); });
131     };
132     Expected<const DWARFDebugLine::LineTable *> ExpectedLT =
133         Dwarf->getLineTableForUnit(CU.get(), Report);
134     const DWARFDebugLine::LineTable *LT = nullptr;
135     if (ExpectedLT)
136       LT = *ExpectedLT;
137     else
138       Report(ExpectedLT.takeError());
139     if (!LT)
140       continue;
141     LineTables.push_back(LT);
142 
143     // Loop over variable records and insert them to VariableLoc.
144     for (const auto &Entry : CU->dies()) {
145       DWARFDie Die(CU.get(), &Entry);
146       // Skip all tags that are not variables.
147       if (Die.getTag() != dwarf::DW_TAG_variable)
148         continue;
149 
150       // Skip if a local variable because we don't need them for generating
151       // error messages. In general, only non-local symbols can fail to be
152       // linked.
153       if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
154         continue;
155 
156       // Get the source filename index for the variable.
157       unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
158       if (!LT->hasFileAtIndex(File))
159         continue;
160 
161       // Get the line number on which the variable is declared.
162       unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
163 
164       // Here we want to take the variable name to add it into VariableLoc.
165       // Variable can have regular and linkage name associated. At first, we try
166       // to get linkage name as it can be different, for example when we have
167       // two variables in different namespaces of the same object. Use common
168       // name otherwise, but handle the case when it also absent in case if the
169       // input object file lacks some debug info.
170       StringRef Name =
171           dwarf::toString(Die.find(dwarf::DW_AT_linkage_name),
172                           dwarf::toString(Die.find(dwarf::DW_AT_name), ""));
173       if (!Name.empty())
174         VariableLoc.insert({Name, {LT, File, Line}});
175     }
176   }
177 }
178 
179 // Returns the pair of file name and line number describing location of data
180 // object (variable, array, etc) definition.
181 template <class ELFT>
182 Optional<std::pair<std::string, unsigned>>
183 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
184   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
185 
186   // Return if we have no debug information about data object.
187   auto It = VariableLoc.find(Name);
188   if (It == VariableLoc.end())
189     return None;
190 
191   // Take file name string from line table.
192   std::string FileName;
193   if (!It->second.LT->getFileNameByIndex(
194           It->second.File, nullptr,
195           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
196     return None;
197 
198   return std::make_pair(FileName, It->second.Line);
199 }
200 
201 // Returns source line information for a given offset
202 // using DWARF debug info.
203 template <class ELFT>
204 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
205                                                   uint64_t Offset) {
206   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
207 
208   // Detect SectionIndex for specified section.
209   uint64_t SectionIndex = object::SectionedAddress::UndefSection;
210   ArrayRef<InputSectionBase *> Sections = S->File->getSections();
211   for (uint64_t CurIndex = 0; CurIndex < Sections.size(); ++CurIndex) {
212     if (S == Sections[CurIndex]) {
213       SectionIndex = CurIndex;
214       break;
215     }
216   }
217 
218   // Use fake address calcuated by adding section file offset and offset in
219   // section. See comments for ObjectInfo class.
220   DILineInfo Info;
221   for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) {
222     if (LT->getFileLineInfoForAddress(
223             {S->getOffsetInFile() + Offset, SectionIndex}, nullptr,
224             DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info))
225       return Info;
226   }
227   return None;
228 }
229 
230 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
231 std::string lld::toString(const InputFile *F) {
232   if (!F)
233     return "<internal>";
234 
235   if (F->ToStringCache.empty()) {
236     if (F->ArchiveName.empty())
237       F->ToStringCache = F->getName();
238     else
239       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
240   }
241   return F->ToStringCache;
242 }
243 
244 template <class ELFT>
245 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
246   if (ELFT::TargetEndianness == support::little)
247     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
248   else
249     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
250 
251   EMachine = getObj().getHeader()->e_machine;
252   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
253   ABIVersion = getObj().getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
254 }
255 
256 template <class ELFT>
257 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
258   return makeArrayRef(ELFSyms.begin() + FirstGlobal, ELFSyms.end());
259 }
260 
261 template <class ELFT>
262 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
263   return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this);
264 }
265 
266 template <class ELFT>
267 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
268                                    const Elf_Shdr *Symtab) {
269   FirstGlobal = Symtab->sh_info;
270   ELFSyms = CHECK(getObj().symbols(Symtab), this);
271   if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size())
272     fatal(toString(this) + ": invalid sh_info in symbol table");
273 
274   StringTable =
275       CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this);
276 }
277 
278 template <class ELFT>
279 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
280     : ELFFileBase<ELFT>(Base::ObjKind, M) {
281   this->ArchiveName = ArchiveName;
282 }
283 
284 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
285   if (this->Symbols.empty())
286     return {};
287   return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1);
288 }
289 
290 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
291   return makeArrayRef(this->Symbols).slice(this->FirstGlobal);
292 }
293 
294 template <class ELFT>
295 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
296   // Read a section table. JustSymbols is usually false.
297   if (this->JustSymbols)
298     initializeJustSymbols();
299   else
300     initializeSections(ComdatGroups);
301 
302   // Read a symbol table.
303   initializeSymbols();
304 }
305 
306 // Sections with SHT_GROUP and comdat bits define comdat section groups.
307 // They are identified and deduplicated by group name. This function
308 // returns a group name.
309 template <class ELFT>
310 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
311                                               const Elf_Shdr &Sec) {
312   // Group signatures are stored as symbol names in object files.
313   // sh_info contains a symbol index, so we fetch a symbol and read its name.
314   if (this->ELFSyms.empty())
315     this->initSymtab(
316         Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this));
317 
318   const Elf_Sym *Sym =
319       CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this);
320   StringRef Signature = CHECK(Sym->getName(this->StringTable), this);
321 
322   // As a special case, if a symbol is a section symbol and has no name,
323   // we use a section name as a signature.
324   //
325   // Such SHT_GROUP sections are invalid from the perspective of the ELF
326   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
327   // older produce such sections as outputs for the -r option, so we need
328   // a bug-compatibility.
329   if (Signature.empty() && Sym->getType() == STT_SECTION)
330     return getSectionName(Sec);
331   return Signature;
332 }
333 
334 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
335   // On a regular link we don't merge sections if -O0 (default is -O1). This
336   // sometimes makes the linker significantly faster, although the output will
337   // be bigger.
338   //
339   // Doing the same for -r would create a problem as it would combine sections
340   // with different sh_entsize. One option would be to just copy every SHF_MERGE
341   // section as is to the output. While this would produce a valid ELF file with
342   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
343   // they see two .debug_str. We could have separate logic for combining
344   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
345   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
346   // logic for -r.
347   if (Config->Optimize == 0 && !Config->Relocatable)
348     return false;
349 
350   // A mergeable section with size 0 is useless because they don't have
351   // any data to merge. A mergeable string section with size 0 can be
352   // argued as invalid because it doesn't end with a null character.
353   // We'll avoid a mess by handling them as if they were non-mergeable.
354   if (Sec.sh_size == 0)
355     return false;
356 
357   // Check for sh_entsize. The ELF spec is not clear about the zero
358   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
359   // the section does not hold a table of fixed-size entries". We know
360   // that Rust 1.13 produces a string mergeable section with a zero
361   // sh_entsize. Here we just accept it rather than being picky about it.
362   uint64_t EntSize = Sec.sh_entsize;
363   if (EntSize == 0)
364     return false;
365   if (Sec.sh_size % EntSize)
366     fatal(toString(this) +
367           ": SHF_MERGE section size must be a multiple of sh_entsize");
368 
369   uint64_t Flags = Sec.sh_flags;
370   if (!(Flags & SHF_MERGE))
371     return false;
372   if (Flags & SHF_WRITE)
373     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
374 
375   return true;
376 }
377 
378 // This is for --just-symbols.
379 //
380 // --just-symbols is a very minor feature that allows you to link your
381 // output against other existing program, so that if you load both your
382 // program and the other program into memory, your output can refer the
383 // other program's symbols.
384 //
385 // When the option is given, we link "just symbols". The section table is
386 // initialized with null pointers.
387 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
388   ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this);
389   this->Sections.resize(ObjSections.size());
390 
391   for (const Elf_Shdr &Sec : ObjSections) {
392     if (Sec.sh_type != SHT_SYMTAB)
393       continue;
394     this->initSymtab(ObjSections, &Sec);
395     return;
396   }
397 }
398 
399 template <class ELFT>
400 void ObjFile<ELFT>::initializeSections(
401     DenseSet<CachedHashStringRef> &ComdatGroups) {
402   const ELFFile<ELFT> &Obj = this->getObj();
403 
404   ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this);
405   uint64_t Size = ObjSections.size();
406   this->Sections.resize(Size);
407   this->SectionStringTable =
408       CHECK(Obj.getSectionStringTable(ObjSections), this);
409 
410   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
411     if (this->Sections[I] == &InputSection::Discarded)
412       continue;
413     const Elf_Shdr &Sec = ObjSections[I];
414 
415     if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
416       CGProfile =
417           check(Obj.template getSectionContentsAsArray<Elf_CGProfile>(&Sec));
418 
419     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
420     // if -r is given, we'll let the final link discard such sections.
421     // This is compatible with GNU.
422     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
423       if (Sec.sh_type == SHT_LLVM_ADDRSIG) {
424         // We ignore the address-significance table if we know that the object
425         // file was created by objcopy or ld -r. This is because these tools
426         // will reorder the symbols in the symbol table, invalidating the data
427         // in the address-significance table, which refers to symbols by index.
428         if (Sec.sh_link != 0)
429           this->AddrsigSec = &Sec;
430         else if (Config->ICF == ICFLevel::Safe)
431           warn(toString(this) + ": --icf=safe is incompatible with object "
432                                 "files created using objcopy or ld -r");
433       }
434       this->Sections[I] = &InputSection::Discarded;
435       continue;
436     }
437 
438     switch (Sec.sh_type) {
439     case SHT_GROUP: {
440       // De-duplicate section groups by their signatures.
441       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
442       this->Sections[I] = &InputSection::Discarded;
443 
444 
445       ArrayRef<Elf_Word> Entries =
446           CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this);
447       if (Entries.empty())
448         fatal(toString(this) + ": empty SHT_GROUP");
449 
450       // The first word of a SHT_GROUP section contains flags. Currently,
451       // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
452       // An group with the empty flag doesn't define anything; such sections
453       // are just skipped.
454       if (Entries[0] == 0)
455         continue;
456 
457       if (Entries[0] != GRP_COMDAT)
458         fatal(toString(this) + ": unsupported SHT_GROUP format");
459 
460       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
461       if (IsNew) {
462         if (Config->Relocatable)
463           this->Sections[I] = createInputSection(Sec);
464         continue;
465       }
466 
467       // Otherwise, discard group members.
468       for (uint32_t SecIndex : Entries.slice(1)) {
469         if (SecIndex >= Size)
470           fatal(toString(this) +
471                 ": invalid section index in group: " + Twine(SecIndex));
472         this->Sections[SecIndex] = &InputSection::Discarded;
473       }
474       break;
475     }
476     case SHT_SYMTAB:
477       this->initSymtab(ObjSections, &Sec);
478       break;
479     case SHT_SYMTAB_SHNDX:
480       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this);
481       break;
482     case SHT_STRTAB:
483     case SHT_NULL:
484       break;
485     default:
486       this->Sections[I] = createInputSection(Sec);
487     }
488 
489     // .ARM.exidx sections have a reverse dependency on the InputSection they
490     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
491     if (Sec.sh_flags & SHF_LINK_ORDER) {
492       InputSectionBase *LinkSec = nullptr;
493       if (Sec.sh_link < this->Sections.size())
494         LinkSec = this->Sections[Sec.sh_link];
495       if (!LinkSec)
496         fatal(toString(this) +
497               ": invalid sh_link index: " + Twine(Sec.sh_link));
498 
499       InputSection *IS = cast<InputSection>(this->Sections[I]);
500       LinkSec->DependentSections.push_back(IS);
501       if (!isa<InputSection>(LinkSec))
502         error("a section " + IS->Name +
503               " with SHF_LINK_ORDER should not refer a non-regular "
504               "section: " +
505               toString(LinkSec));
506     }
507   }
508 }
509 
510 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
511 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
512 // the input objects have been compiled.
513 static void updateARMVFPArgs(const ARMAttributeParser &Attributes,
514                              const InputFile *F) {
515   if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
516     // If an ABI tag isn't present then it is implicitly given the value of 0
517     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
518     // including some in glibc that don't use FP args (and should have value 3)
519     // don't have the attribute so we do not consider an implicit value of 0
520     // as a clash.
521     return;
522 
523   unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
524   ARMVFPArgKind Arg;
525   switch (VFPArgs) {
526   case ARMBuildAttrs::BaseAAPCS:
527     Arg = ARMVFPArgKind::Base;
528     break;
529   case ARMBuildAttrs::HardFPAAPCS:
530     Arg = ARMVFPArgKind::VFP;
531     break;
532   case ARMBuildAttrs::ToolChainFPPCS:
533     // Tool chain specific convention that conforms to neither AAPCS variant.
534     Arg = ARMVFPArgKind::ToolChain;
535     break;
536   case ARMBuildAttrs::CompatibleFPAAPCS:
537     // Object compatible with all conventions.
538     return;
539   default:
540     error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs));
541     return;
542   }
543   // Follow ld.bfd and error if there is a mix of calling conventions.
544   if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default)
545     error(toString(F) + ": incompatible Tag_ABI_VFP_args");
546   else
547     Config->ARMVFPArgs = Arg;
548 }
549 
550 // The ARM support in lld makes some use of instructions that are not available
551 // on all ARM architectures. Namely:
552 // - Use of BLX instruction for interworking between ARM and Thumb state.
553 // - Use of the extended Thumb branch encoding in relocation.
554 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
555 // The ARM Attributes section contains information about the architecture chosen
556 // at compile time. We follow the convention that if at least one input object
557 // is compiled with an architecture that supports these features then lld is
558 // permitted to use them.
559 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) {
560   if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
561     return;
562   auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
563   switch (Arch) {
564   case ARMBuildAttrs::Pre_v4:
565   case ARMBuildAttrs::v4:
566   case ARMBuildAttrs::v4T:
567     // Architectures prior to v5 do not support BLX instruction
568     break;
569   case ARMBuildAttrs::v5T:
570   case ARMBuildAttrs::v5TE:
571   case ARMBuildAttrs::v5TEJ:
572   case ARMBuildAttrs::v6:
573   case ARMBuildAttrs::v6KZ:
574   case ARMBuildAttrs::v6K:
575     Config->ARMHasBlx = true;
576     // Architectures used in pre-Cortex processors do not support
577     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
578     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
579     break;
580   default:
581     // All other Architectures have BLX and extended branch encoding
582     Config->ARMHasBlx = true;
583     Config->ARMJ1J2BranchEncoding = true;
584     if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M)
585       // All Architectures used in Cortex processors with the exception
586       // of v6-M and v6S-M have the MOVT and MOVW instructions.
587       Config->ARMHasMovtMovw = true;
588     break;
589   }
590 }
591 
592 template <class ELFT>
593 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
594   uint32_t Idx = Sec.sh_info;
595   if (Idx >= this->Sections.size())
596     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
597   InputSectionBase *Target = this->Sections[Idx];
598 
599   // Strictly speaking, a relocation section must be included in the
600   // group of the section it relocates. However, LLVM 3.3 and earlier
601   // would fail to do so, so we gracefully handle that case.
602   if (Target == &InputSection::Discarded)
603     return nullptr;
604 
605   if (!Target)
606     fatal(toString(this) + ": unsupported relocation reference");
607   return Target;
608 }
609 
610 // Create a regular InputSection class that has the same contents
611 // as a given section.
612 static InputSection *toRegularSection(MergeInputSection *Sec) {
613   return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment,
614                             Sec->data(), Sec->Name);
615 }
616 
617 template <class ELFT>
618 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
619   StringRef Name = getSectionName(Sec);
620 
621   switch (Sec.sh_type) {
622   case SHT_ARM_ATTRIBUTES: {
623     if (Config->EMachine != EM_ARM)
624       break;
625     ARMAttributeParser Attributes;
626     ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec));
627     Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind);
628     updateSupportedARMFeatures(Attributes);
629     updateARMVFPArgs(Attributes, this);
630 
631     // FIXME: Retain the first attribute section we see. The eglibc ARM
632     // dynamic loaders require the presence of an attribute section for dlopen
633     // to work. In a full implementation we would merge all attribute sections.
634     if (In.ARMAttributes == nullptr) {
635       In.ARMAttributes = make<InputSection>(*this, Sec, Name);
636       return In.ARMAttributes;
637     }
638     return &InputSection::Discarded;
639   }
640   case SHT_RELA:
641   case SHT_REL: {
642     // Find a relocation target section and associate this section with that.
643     // Target may have been discarded if it is in a different section group
644     // and the group is discarded, even though it's a violation of the
645     // spec. We handle that situation gracefully by discarding dangling
646     // relocation sections.
647     InputSectionBase *Target = getRelocTarget(Sec);
648     if (!Target)
649       return nullptr;
650 
651     // This section contains relocation information.
652     // If -r is given, we do not interpret or apply relocation
653     // but just copy relocation sections to output.
654     if (Config->Relocatable) {
655       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
656       // We want to add a dependency to target, similar like we do for
657       // -emit-relocs below. This is useful for the case when linker script
658       // contains the "/DISCARD/". It is perhaps uncommon to use a script with
659       // -r, but we faced it in the Linux kernel and have to handle such case
660       // and not to crash.
661       Target->DependentSections.push_back(RelocSec);
662       return RelocSec;
663     }
664 
665     if (Target->FirstRelocation)
666       fatal(toString(this) +
667             ": multiple relocation sections to one section are not supported");
668 
669     // ELF spec allows mergeable sections with relocations, but they are
670     // rare, and it is in practice hard to merge such sections by contents,
671     // because applying relocations at end of linking changes section
672     // contents. So, we simply handle such sections as non-mergeable ones.
673     // Degrading like this is acceptable because section merging is optional.
674     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
675       Target = toRegularSection(MS);
676       this->Sections[Sec.sh_info] = Target;
677     }
678 
679     if (Sec.sh_type == SHT_RELA) {
680       ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this);
681       Target->FirstRelocation = Rels.begin();
682       Target->NumRelocations = Rels.size();
683       Target->AreRelocsRela = true;
684     } else {
685       ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this);
686       Target->FirstRelocation = Rels.begin();
687       Target->NumRelocations = Rels.size();
688       Target->AreRelocsRela = false;
689     }
690     assert(isUInt<31>(Target->NumRelocations));
691 
692     // Relocation sections processed by the linker are usually removed
693     // from the output, so returning `nullptr` for the normal case.
694     // However, if -emit-relocs is given, we need to leave them in the output.
695     // (Some post link analysis tools need this information.)
696     if (Config->EmitRelocs) {
697       InputSection *RelocSec = make<InputSection>(*this, Sec, Name);
698       // We will not emit relocation section if target was discarded.
699       Target->DependentSections.push_back(RelocSec);
700       return RelocSec;
701     }
702     return nullptr;
703   }
704   }
705 
706   // The GNU linker uses .note.GNU-stack section as a marker indicating
707   // that the code in the object file does not expect that the stack is
708   // executable (in terms of NX bit). If all input files have the marker,
709   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
710   // make the stack non-executable. Most object files have this section as
711   // of 2017.
712   //
713   // But making the stack non-executable is a norm today for security
714   // reasons. Failure to do so may result in a serious security issue.
715   // Therefore, we make LLD always add PT_GNU_STACK unless it is
716   // explicitly told to do otherwise (by -z execstack). Because the stack
717   // executable-ness is controlled solely by command line options,
718   // .note.GNU-stack sections are simply ignored.
719   if (Name == ".note.GNU-stack")
720     return &InputSection::Discarded;
721 
722   // Split stacks is a feature to support a discontiguous stack,
723   // commonly used in the programming language Go. For the details,
724   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
725   // for split stack will include a .note.GNU-split-stack section.
726   if (Name == ".note.GNU-split-stack") {
727     if (Config->Relocatable) {
728       error("cannot mix split-stack and non-split-stack in a relocatable link");
729       return &InputSection::Discarded;
730     }
731     this->SplitStack = true;
732     return &InputSection::Discarded;
733   }
734 
735   // An object file cmpiled for split stack, but where some of the
736   // functions were compiled with the no_split_stack_attribute will
737   // include a .note.GNU-no-split-stack section.
738   if (Name == ".note.GNU-no-split-stack") {
739     this->SomeNoSplitStack = true;
740     return &InputSection::Discarded;
741   }
742 
743   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
744   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
745   // sections. Drop those sections to avoid duplicate symbol errors.
746   // FIXME: This is glibc PR20543, we should remove this hack once that has been
747   // fixed for a while.
748   if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
749       Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
750     return &InputSection::Discarded;
751 
752   // If we are creating a new .build-id section, strip existing .build-id
753   // sections so that the output won't have more than one .build-id.
754   // This is not usually a problem because input object files normally don't
755   // have .build-id sections, but you can create such files by
756   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
757   if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None)
758     return &InputSection::Discarded;
759 
760   // The linker merges EH (exception handling) frames and creates a
761   // .eh_frame_hdr section for runtime. So we handle them with a special
762   // class. For relocatable outputs, they are just passed through.
763   if (Name == ".eh_frame" && !Config->Relocatable)
764     return make<EhInputSection>(*this, Sec, Name);
765 
766   if (shouldMerge(Sec))
767     return make<MergeInputSection>(*this, Sec, Name);
768   return make<InputSection>(*this, Sec, Name);
769 }
770 
771 template <class ELFT>
772 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
773   return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this);
774 }
775 
776 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
777   this->Symbols.reserve(this->ELFSyms.size());
778   for (const Elf_Sym &Sym : this->ELFSyms)
779     this->Symbols.push_back(createSymbol(&Sym));
780 }
781 
782 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) {
783   int Binding = Sym->getBinding();
784 
785   uint32_t SecIdx = this->getSectionIndex(*Sym);
786   if (SecIdx >= this->Sections.size())
787     fatal(toString(this) + ": invalid section index: " + Twine(SecIdx));
788 
789   InputSectionBase *Sec = this->Sections[SecIdx];
790   uint8_t StOther = Sym->st_other;
791   uint8_t Type = Sym->getType();
792   uint64_t Value = Sym->st_value;
793   uint64_t Size = Sym->st_size;
794 
795   if (Binding == STB_LOCAL) {
796     if (Sym->getType() == STT_FILE)
797       SourceFile = CHECK(Sym->getName(this->StringTable), this);
798 
799     if (this->StringTable.size() <= Sym->st_name)
800       fatal(toString(this) + ": invalid symbol name offset");
801 
802     StringRefZ Name = this->StringTable.data() + Sym->st_name;
803     if (Sym->st_shndx == SHN_UNDEF)
804       return make<Undefined>(this, Name, Binding, StOther, Type);
805 
806     return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec);
807   }
808 
809   StringRef Name = CHECK(Sym->getName(this->StringTable), this);
810 
811   switch (Sym->st_shndx) {
812   case SHN_UNDEF:
813     return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
814                                       /*CanOmitFromDynSym=*/false, this);
815   case SHN_COMMON:
816     if (Value == 0 || Value >= UINT32_MAX)
817       fatal(toString(this) + ": common symbol '" + Name +
818             "' has invalid alignment: " + Twine(Value));
819     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this);
820   }
821 
822   switch (Binding) {
823   default:
824     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
825   case STB_GLOBAL:
826   case STB_WEAK:
827   case STB_GNU_UNIQUE:
828     if (Sec == &InputSection::Discarded)
829       return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type,
830                                         /*CanOmitFromDynSym=*/false, this);
831     return Symtab->addDefined(Name, StOther, Type, Value, Size, Binding, Sec,
832                               this);
833   }
834 }
835 
836 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
837     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
838       File(std::move(File)) {}
839 
840 template <class ELFT> void ArchiveFile::parse() {
841   for (const Archive::Symbol &Sym : File->symbols())
842     Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym);
843 }
844 
845 // Returns a buffer pointing to a member file containing a given symbol.
846 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) {
847   Archive::Child C =
848       CHECK(Sym.getMember(), toString(this) +
849                                  ": could not get the member for symbol " +
850                                  Sym.getName());
851 
852   if (!Seen.insert(C.getChildOffset()).second)
853     return nullptr;
854 
855   MemoryBufferRef MB =
856       CHECK(C.getMemoryBufferRef(),
857             toString(this) +
858                 ": could not get the buffer for the member defining symbol " +
859                 Sym.getName());
860 
861   if (Tar && C.getParent()->isThin())
862     Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer());
863 
864   InputFile *File = createObjectFile(
865       MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset());
866   File->GroupId = GroupId;
867   return File;
868 }
869 
870 template <class ELFT>
871 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
872     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
873       IsNeeded(!Config->AsNeeded) {}
874 
875 // Partially parse the shared object file so that we can call
876 // getSoName on this object.
877 template <class ELFT> void SharedFile<ELFT>::parseDynamic() {
878   const Elf_Shdr *DynamicSec = nullptr;
879   const ELFFile<ELFT> Obj = this->getObj();
880   ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this);
881 
882   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
883   for (const Elf_Shdr &Sec : Sections) {
884     switch (Sec.sh_type) {
885     default:
886       continue;
887     case SHT_DYNSYM:
888       this->initSymtab(Sections, &Sec);
889       break;
890     case SHT_DYNAMIC:
891       DynamicSec = &Sec;
892       break;
893     case SHT_SYMTAB_SHNDX:
894       this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this);
895       break;
896     case SHT_GNU_versym:
897       this->VersymSec = &Sec;
898       break;
899     case SHT_GNU_verdef:
900       this->VerdefSec = &Sec;
901       break;
902     }
903   }
904 
905   if (this->VersymSec && this->ELFSyms.empty())
906     error("SHT_GNU_versym should be associated with symbol table");
907 
908   // Search for a DT_SONAME tag to initialize this->SoName.
909   if (!DynamicSec)
910     return;
911   ArrayRef<Elf_Dyn> Arr =
912       CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this);
913   for (const Elf_Dyn &Dyn : Arr) {
914     if (Dyn.d_tag == DT_NEEDED) {
915       uint64_t Val = Dyn.getVal();
916       if (Val >= this->StringTable.size())
917         fatal(toString(this) + ": invalid DT_NEEDED entry");
918       DtNeeded.push_back(this->StringTable.data() + Val);
919     } else if (Dyn.d_tag == DT_SONAME) {
920       uint64_t Val = Dyn.getVal();
921       if (Val >= this->StringTable.size())
922         fatal(toString(this) + ": invalid DT_SONAME entry");
923       SoName = this->StringTable.data() + Val;
924     }
925   }
926 }
927 
928 // Parses ".gnu.version" section which is a parallel array for the symbol table.
929 // If a given file doesn't have ".gnu.version" section, returns VER_NDX_GLOBAL.
930 template <class ELFT> std::vector<uint32_t> SharedFile<ELFT>::parseVersyms() {
931   size_t Size = this->ELFSyms.size() - this->FirstGlobal;
932   if (!VersymSec)
933     return std::vector<uint32_t>(Size, VER_NDX_GLOBAL);
934 
935   const char *Base = this->MB.getBuffer().data();
936   const Elf_Versym *Versym =
937       reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
938       this->FirstGlobal;
939 
940   std::vector<uint32_t> Ret(Size);
941   for (size_t I = 0; I < Size; ++I)
942     Ret[I] = Versym[I].vs_index;
943   return Ret;
944 }
945 
946 // Parse the version definitions in the object file if present. Returns a vector
947 // whose nth element contains a pointer to the Elf_Verdef for version identifier
948 // n. Version identifiers that are not definitions map to nullptr.
949 template <class ELFT>
950 std::vector<const typename ELFT::Verdef *> SharedFile<ELFT>::parseVerdefs() {
951   if (!VerdefSec)
952     return {};
953 
954   // We cannot determine the largest verdef identifier without inspecting
955   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
956   // sequentially starting from 1, so we predict that the largest identifier
957   // will be VerdefCount.
958   unsigned VerdefCount = VerdefSec->sh_info;
959   std::vector<const Elf_Verdef *> Verdefs(VerdefCount + 1);
960 
961   // Build the Verdefs array by following the chain of Elf_Verdef objects
962   // from the start of the .gnu.version_d section.
963   const char *Base = this->MB.getBuffer().data();
964   const char *Verdef = Base + VerdefSec->sh_offset;
965   for (unsigned I = 0; I != VerdefCount; ++I) {
966     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
967     Verdef += CurVerdef->vd_next;
968     unsigned VerdefIndex = CurVerdef->vd_ndx;
969     Verdefs.resize(VerdefIndex + 1);
970     Verdefs[VerdefIndex] = CurVerdef;
971   }
972 
973   return Verdefs;
974 }
975 
976 // We do not usually care about alignments of data in shared object
977 // files because the loader takes care of it. However, if we promote a
978 // DSO symbol to point to .bss due to copy relocation, we need to keep
979 // the original alignment requirements. We infer it in this function.
980 template <class ELFT>
981 uint32_t SharedFile<ELFT>::getAlignment(ArrayRef<Elf_Shdr> Sections,
982                                         const Elf_Sym &Sym) {
983   uint64_t Ret = UINT64_MAX;
984   if (Sym.st_value)
985     Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
986   if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size())
987     Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign);
988   return (Ret > UINT32_MAX) ? 0 : Ret;
989 }
990 
991 // Fully parse the shared object file. This must be called after parseDynamic().
992 //
993 // This function parses symbol versions. If a DSO has version information,
994 // the file has a ".gnu.version_d" section which contains symbol version
995 // definitions. Each symbol is associated to one version through a table in
996 // ".gnu.version" section. That table is a parallel array for the symbol
997 // table, and each table entry contains an index in ".gnu.version_d".
998 //
999 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1000 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1001 // ".gnu.version_d".
1002 //
1003 // The file format for symbol versioning is perhaps a bit more complicated
1004 // than necessary, but you can easily understand the code if you wrap your
1005 // head around the data structure described above.
1006 template <class ELFT> void SharedFile<ELFT>::parseRest() {
1007   Verdefs = parseVerdefs();                       // parse .gnu.version_d
1008   std::vector<uint32_t> Versyms = parseVersyms(); // parse .gnu.version
1009   ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this);
1010 
1011   // System libraries can have a lot of symbols with versions. Using a
1012   // fixed buffer for computing the versions name (foo@ver) can save a
1013   // lot of allocations.
1014   SmallString<0> VersionedNameBuffer;
1015 
1016   // Add symbols to the symbol table.
1017   ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms();
1018   for (size_t I = 0; I < Syms.size(); ++I) {
1019     const Elf_Sym &Sym = Syms[I];
1020 
1021     // ELF spec requires that all local symbols precede weak or global
1022     // symbols in each symbol table, and the index of first non-local symbol
1023     // is stored to sh_info. If a local symbol appears after some non-local
1024     // symbol, that's a violation of the spec.
1025     StringRef Name = CHECK(Sym.getName(this->StringTable), this);
1026     if (Sym.getBinding() == STB_LOCAL) {
1027       warn("found local symbol '" + Name +
1028            "' in global part of symbol table in file " + toString(this));
1029       continue;
1030     }
1031 
1032     if (Sym.isUndefined()) {
1033       Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(),
1034                                              Sym.st_other, Sym.getType(),
1035                                              /*CanOmitFromDynSym=*/false, this);
1036       S->ExportDynamic = true;
1037       continue;
1038     }
1039 
1040     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1041     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1042     // workaround for this bug.
1043     uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN;
1044     if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL &&
1045         Name == "_gp_disp")
1046       continue;
1047 
1048     uint64_t Alignment = getAlignment(Sections, Sym);
1049     if (!(Versyms[I] & VERSYM_HIDDEN))
1050       Symtab->addShared(Name, *this, Sym, Alignment, Idx);
1051 
1052     // Also add the symbol with the versioned name to handle undefined symbols
1053     // with explicit versions.
1054     if (Idx == VER_NDX_GLOBAL)
1055       continue;
1056 
1057     if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) {
1058       error("corrupt input file: version definition index " + Twine(Idx) +
1059             " for symbol " + Name + " is out of bounds\n>>> defined in " +
1060             toString(this));
1061       continue;
1062     }
1063 
1064     StringRef VerName =
1065         this->StringTable.data() + Verdefs[Idx]->getAux()->vda_name;
1066     VersionedNameBuffer.clear();
1067     Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer);
1068     Symtab->addShared(Saver.save(Name), *this, Sym, Alignment, Idx);
1069   }
1070 }
1071 
1072 static ELFKind getBitcodeELFKind(const Triple &T) {
1073   if (T.isLittleEndian())
1074     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1075   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1076 }
1077 
1078 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
1079   switch (T.getArch()) {
1080   case Triple::aarch64:
1081     return EM_AARCH64;
1082   case Triple::amdgcn:
1083   case Triple::r600:
1084     return EM_AMDGPU;
1085   case Triple::arm:
1086   case Triple::thumb:
1087     return EM_ARM;
1088   case Triple::avr:
1089     return EM_AVR;
1090   case Triple::mips:
1091   case Triple::mipsel:
1092   case Triple::mips64:
1093   case Triple::mips64el:
1094     return EM_MIPS;
1095   case Triple::msp430:
1096     return EM_MSP430;
1097   case Triple::ppc:
1098     return EM_PPC;
1099   case Triple::ppc64:
1100   case Triple::ppc64le:
1101     return EM_PPC64;
1102   case Triple::x86:
1103     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
1104   case Triple::x86_64:
1105     return EM_X86_64;
1106   default:
1107     error(Path + ": could not infer e_machine from bitcode target triple " +
1108           T.str());
1109     return EM_NONE;
1110   }
1111 }
1112 
1113 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
1114                          uint64_t OffsetInArchive)
1115     : InputFile(BitcodeKind, MB) {
1116   this->ArchiveName = ArchiveName;
1117 
1118   std::string Path = MB.getBufferIdentifier().str();
1119   if (Config->ThinLTOIndexOnly)
1120     Path = replaceThinLTOSuffix(MB.getBufferIdentifier());
1121 
1122   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1123   // name. If two archives define two members with the same name, this
1124   // causes a collision which result in only one of the objects being taken
1125   // into consideration at LTO time (which very likely causes undefined
1126   // symbols later in the link stage). So we append file offset to make
1127   // filename unique.
1128   MemoryBufferRef MBRef(
1129       MB.getBuffer(),
1130       Saver.save(ArchiveName + Path +
1131                  (ArchiveName.empty() ? "" : utostr(OffsetInArchive))));
1132 
1133   Obj = CHECK(lto::InputFile::create(MBRef), this);
1134 
1135   Triple T(Obj->getTargetTriple());
1136   EKind = getBitcodeELFKind(T);
1137   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
1138 }
1139 
1140 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
1141   switch (GvVisibility) {
1142   case GlobalValue::DefaultVisibility:
1143     return STV_DEFAULT;
1144   case GlobalValue::HiddenVisibility:
1145     return STV_HIDDEN;
1146   case GlobalValue::ProtectedVisibility:
1147     return STV_PROTECTED;
1148   }
1149   llvm_unreachable("unknown visibility");
1150 }
1151 
1152 template <class ELFT>
1153 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
1154                                    const lto::InputFile::Symbol &ObjSym,
1155                                    BitcodeFile &F) {
1156   StringRef Name = Saver.save(ObjSym.getName());
1157   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1158 
1159   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
1160   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
1161   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
1162 
1163   int C = ObjSym.getComdatIndex();
1164   if (C != -1 && !KeptComdats[C])
1165     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1166                                       CanOmitFromDynSym, &F);
1167 
1168   if (ObjSym.isUndefined())
1169     return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type,
1170                                       CanOmitFromDynSym, &F);
1171 
1172   if (ObjSym.isCommon())
1173     return Symtab->addCommon(Name, ObjSym.getCommonSize(),
1174                              ObjSym.getCommonAlignment(), Binding, Visibility,
1175                              STT_OBJECT, F);
1176 
1177   return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym,
1178                             F);
1179 }
1180 
1181 template <class ELFT>
1182 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
1183   std::vector<bool> KeptComdats;
1184   for (StringRef S : Obj->getComdatTable())
1185     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
1186 
1187   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
1188     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this));
1189 }
1190 
1191 static ELFKind getELFKind(MemoryBufferRef MB) {
1192   unsigned char Size;
1193   unsigned char Endian;
1194   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
1195 
1196   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
1197     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
1198   if (Size != ELFCLASS32 && Size != ELFCLASS64)
1199     fatal(MB.getBufferIdentifier() + ": invalid file class");
1200 
1201   size_t BufSize = MB.getBuffer().size();
1202   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
1203       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
1204     fatal(MB.getBufferIdentifier() + ": file is too short");
1205 
1206   if (Size == ELFCLASS32)
1207     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
1208   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
1209 }
1210 
1211 void BinaryFile::parse() {
1212   ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer());
1213   auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1214                                      8, Data, ".data");
1215   Sections.push_back(Section);
1216 
1217   // For each input file foo that is embedded to a result as a binary
1218   // blob, we define _binary_foo_{start,end,size} symbols, so that
1219   // user programs can access blobs by name. Non-alphanumeric
1220   // characters in a filename are replaced with underscore.
1221   std::string S = "_binary_" + MB.getBufferIdentifier().str();
1222   for (size_t I = 0; I < S.size(); ++I)
1223     if (!isAlnum(S[I]))
1224       S[I] = '_';
1225 
1226   Symtab->addDefined(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0,
1227                      STB_GLOBAL, Section, nullptr);
1228   Symtab->addDefined(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
1229                      Data.size(), 0, STB_GLOBAL, Section, nullptr);
1230   Symtab->addDefined(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
1231                      Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
1232 }
1233 
1234 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
1235                                  uint64_t OffsetInArchive) {
1236   if (isBitcode(MB))
1237     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
1238 
1239   switch (getELFKind(MB)) {
1240   case ELF32LEKind:
1241     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1242   case ELF32BEKind:
1243     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1244   case ELF64LEKind:
1245     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1246   case ELF64BEKind:
1247     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1248   default:
1249     llvm_unreachable("getELFKind");
1250   }
1251 }
1252 
1253 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1254   switch (getELFKind(MB)) {
1255   case ELF32LEKind:
1256     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1257   case ELF32BEKind:
1258     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1259   case ELF64LEKind:
1260     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1261   case ELF64BEKind:
1262     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1263   default:
1264     llvm_unreachable("getELFKind");
1265   }
1266 }
1267 
1268 MemoryBufferRef LazyObjFile::getBuffer() {
1269   if (AddedToLink)
1270     return MemoryBufferRef();
1271   AddedToLink = true;
1272   return MB;
1273 }
1274 
1275 InputFile *LazyObjFile::fetch() {
1276   MemoryBufferRef MBRef = getBuffer();
1277   if (MBRef.getBuffer().empty())
1278     return nullptr;
1279 
1280   InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1281   File->GroupId = GroupId;
1282   return File;
1283 }
1284 
1285 template <class ELFT> void LazyObjFile::parse() {
1286   // A lazy object file wraps either a bitcode file or an ELF file.
1287   if (isBitcode(this->MB)) {
1288     std::unique_ptr<lto::InputFile> Obj =
1289         CHECK(lto::InputFile::create(this->MB), this);
1290     for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1291       if (!Sym.isUndefined())
1292         Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this);
1293     return;
1294   }
1295 
1296   if (getELFKind(this->MB) != Config->EKind) {
1297     error("incompatible file: " + this->MB.getBufferIdentifier());
1298     return;
1299   }
1300 
1301   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer()));
1302   ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this);
1303 
1304   for (const typename ELFT::Shdr &Sec : Sections) {
1305     if (Sec.sh_type != SHT_SYMTAB)
1306       continue;
1307 
1308     typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this);
1309     uint32_t FirstGlobal = Sec.sh_info;
1310     StringRef StringTable =
1311         CHECK(Obj.getStringTableForSymtab(Sec, Sections), this);
1312 
1313     for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal))
1314       if (Sym.st_shndx != SHN_UNDEF)
1315         Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this),
1316                                     *this);
1317     return;
1318   }
1319 }
1320 
1321 std::string elf::replaceThinLTOSuffix(StringRef Path) {
1322   StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first;
1323   StringRef Repl = Config->ThinLTOObjectSuffixReplace.second;
1324 
1325   if (Path.consume_back(Suffix))
1326     return (Path + Repl).str();
1327   return Path;
1328 }
1329 
1330 template void ArchiveFile::parse<ELF32LE>();
1331 template void ArchiveFile::parse<ELF32BE>();
1332 template void ArchiveFile::parse<ELF64LE>();
1333 template void ArchiveFile::parse<ELF64BE>();
1334 
1335 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1336 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1337 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1338 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1339 
1340 template void LazyObjFile::parse<ELF32LE>();
1341 template void LazyObjFile::parse<ELF32BE>();
1342 template void LazyObjFile::parse<ELF64LE>();
1343 template void LazyObjFile::parse<ELF64BE>();
1344 
1345 template class elf::ELFFileBase<ELF32LE>;
1346 template class elf::ELFFileBase<ELF32BE>;
1347 template class elf::ELFFileBase<ELF64LE>;
1348 template class elf::ELFFileBase<ELF64BE>;
1349 
1350 template class elf::ObjFile<ELF32LE>;
1351 template class elf::ObjFile<ELF32BE>;
1352 template class elf::ObjFile<ELF64LE>;
1353 template class elf::ObjFile<ELF64BE>;
1354 
1355 template class elf::SharedFile<ELF32LE>;
1356 template class elf::SharedFile<ELF32BE>;
1357 template class elf::SharedFile<ELF64LE>;
1358 template class elf::SharedFile<ELF64BE>;
1359