1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys; 36 using namespace llvm::sys::fs; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 std::vector<BinaryFile *> elf::BinaryFiles; 42 std::vector<BitcodeFile *> elf::BitcodeFiles; 43 std::vector<InputFile *> elf::ObjectFiles; 44 std::vector<InputFile *> elf::SharedFiles; 45 46 TarWriter *elf::Tar; 47 48 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} 49 50 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 51 // The --chroot option changes our virtual root directory. 52 // This is useful when you are dealing with files created by --reproduce. 53 if (!Config->Chroot.empty() && Path.startswith("/")) 54 Path = Saver.save(Config->Chroot + Path); 55 56 log(Path); 57 58 auto MBOrErr = MemoryBuffer::getFile(Path); 59 if (auto EC = MBOrErr.getError()) { 60 error("cannot open " + Path + ": " + EC.message()); 61 return None; 62 } 63 64 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 65 MemoryBufferRef MBRef = MB->getMemBufferRef(); 66 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 67 68 if (Tar) 69 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 70 return MBRef; 71 } 72 73 // Concatenates arguments to construct a string representing an error location. 74 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 75 std::string Filename = path::filename(Path); 76 std::string Lineno = ":" + std::to_string(Line); 77 if (Filename == Path) 78 return Filename + Lineno; 79 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 80 } 81 82 template <class ELFT> 83 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 84 InputSectionBase &Sec, uint64_t Offset) { 85 // In DWARF, functions and variables are stored to different places. 86 // First, lookup a function for a given offset. 87 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 88 return createFileLineMsg(Info->FileName, Info->Line); 89 90 // If it failed, lookup again as a variable. 91 if (Optional<std::pair<std::string, unsigned>> FileLine = 92 File.getVariableLoc(Sym.getName())) 93 return createFileLineMsg(FileLine->first, FileLine->second); 94 95 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 96 return File.SourceFile; 97 } 98 99 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 100 uint64_t Offset) { 101 if (kind() != ObjKind) 102 return ""; 103 switch (Config->EKind) { 104 default: 105 llvm_unreachable("Invalid kind"); 106 case ELF32LEKind: 107 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 108 case ELF32BEKind: 109 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 110 case ELF64LEKind: 111 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 112 case ELF64BEKind: 113 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 114 } 115 } 116 117 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 118 DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this)); 119 const DWARFObject &Obj = Dwarf.getDWARFObj(); 120 DwarfLine.reset(new DWARFDebugLine); 121 DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, 122 Config->Wordsize); 123 124 // The second parameter is offset in .debug_line section 125 // for compilation unit (CU) of interest. We have only one 126 // CU (object file), so offset is always 0. 127 const DWARFDebugLine::LineTable *LT = 128 DwarfLine->getOrParseLineTable(LineData, 0, Dwarf, nullptr); 129 130 // Return if there is no debug information about CU available. 131 if (!Dwarf.getNumCompileUnits()) 132 return; 133 134 // Loop over variable records and insert them to VariableLoc. 135 DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0); 136 for (const auto &Entry : CU->dies()) { 137 DWARFDie Die(CU, &Entry); 138 // Skip all tags that are not variables. 139 if (Die.getTag() != dwarf::DW_TAG_variable) 140 continue; 141 142 // Skip if a local variable because we don't need them for generating error 143 // messages. In general, only non-local symbols can fail to be linked. 144 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 145 continue; 146 147 // Get the source filename index for the variable. 148 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 149 if (!LT->hasFileAtIndex(File)) 150 continue; 151 152 // Get the line number on which the variable is declared. 153 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 154 155 // Get the name of the variable and add the collected information to 156 // VariableLoc. Usually Name is non-empty, but it can be empty if the input 157 // object file lacks some debug info. 158 StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), ""); 159 if (!Name.empty()) 160 VariableLoc.insert({Name, {File, Line}}); 161 } 162 } 163 164 // Returns the pair of file name and line number describing location of data 165 // object (variable, array, etc) definition. 166 template <class ELFT> 167 Optional<std::pair<std::string, unsigned>> 168 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 169 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 170 171 // There is always only one CU so it's offset is 0. 172 const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0); 173 if (!LT) 174 return None; 175 176 // Return if we have no debug information about data object. 177 auto It = VariableLoc.find(Name); 178 if (It == VariableLoc.end()) 179 return None; 180 181 // Take file name string from line table. 182 std::string FileName; 183 if (!LT->getFileNameByIndex( 184 It->second.first /* File */, nullptr, 185 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 186 return None; 187 188 return std::make_pair(FileName, It->second.second /*Line*/); 189 } 190 191 // Returns source line information for a given offset 192 // using DWARF debug info. 193 template <class ELFT> 194 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 195 uint64_t Offset) { 196 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 197 198 // The offset to CU is 0. 199 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 200 if (!Tbl) 201 return None; 202 203 // Use fake address calcuated by adding section file offset and offset in 204 // section. See comments for ObjectInfo class. 205 DILineInfo Info; 206 Tbl->getFileLineInfoForAddress( 207 S->getOffsetInFile() + Offset, nullptr, 208 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 209 if (Info.Line == 0) 210 return None; 211 return Info; 212 } 213 214 // Returns source line information for a given offset 215 // using DWARF debug info. 216 template <class ELFT> 217 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) { 218 if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) 219 return Info->FileName + ":" + std::to_string(Info->Line); 220 return ""; 221 } 222 223 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 224 std::string lld::toString(const InputFile *F) { 225 if (!F) 226 return "<internal>"; 227 228 if (F->ToStringCache.empty()) { 229 if (F->ArchiveName.empty()) 230 F->ToStringCache = F->getName(); 231 else 232 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 233 } 234 return F->ToStringCache; 235 } 236 237 template <class ELFT> 238 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 239 if (ELFT::TargetEndianness == support::little) 240 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 241 else 242 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 243 244 EMachine = getObj().getHeader()->e_machine; 245 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 246 } 247 248 template <class ELFT> 249 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 250 return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end()); 251 } 252 253 template <class ELFT> 254 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 255 return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this); 256 } 257 258 template <class ELFT> 259 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 260 const Elf_Shdr *Symtab) { 261 FirstNonLocal = Symtab->sh_info; 262 ELFSyms = CHECK(getObj().symbols(Symtab), this); 263 if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size()) 264 fatal(toString(this) + ": invalid sh_info in symbol table"); 265 266 StringTable = 267 CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this); 268 } 269 270 template <class ELFT> 271 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 272 : ELFFileBase<ELFT>(Base::ObjKind, M) { 273 this->ArchiveName = ArchiveName; 274 } 275 276 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 277 if (this->Symbols.empty()) 278 return {}; 279 return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1); 280 } 281 282 template <class ELFT> 283 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 284 // Read section and symbol tables. 285 initializeSections(ComdatGroups); 286 initializeSymbols(); 287 } 288 289 // Sections with SHT_GROUP and comdat bits define comdat section groups. 290 // They are identified and deduplicated by group name. This function 291 // returns a group name. 292 template <class ELFT> 293 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 294 const Elf_Shdr &Sec) { 295 // Group signatures are stored as symbol names in object files. 296 // sh_info contains a symbol index, so we fetch a symbol and read its name. 297 if (this->ELFSyms.empty()) 298 this->initSymtab( 299 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 300 301 const Elf_Sym *Sym = 302 CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this); 303 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 304 305 // As a special case, if a symbol is a section symbol and has no name, 306 // we use a section name as a signature. 307 // 308 // Such SHT_GROUP sections are invalid from the perspective of the ELF 309 // standard, but GNU gold 1.14 (the neweset version as of July 2017) or 310 // older produce such sections as outputs for the -r option, so we need 311 // a bug-compatibility. 312 if (Signature.empty() && Sym->getType() == STT_SECTION) 313 return getSectionName(Sec); 314 return Signature; 315 } 316 317 template <class ELFT> 318 ArrayRef<typename ObjFile<ELFT>::Elf_Word> 319 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 320 const ELFFile<ELFT> &Obj = this->getObj(); 321 ArrayRef<Elf_Word> Entries = 322 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 323 if (Entries.empty() || Entries[0] != GRP_COMDAT) 324 fatal(toString(this) + ": unsupported SHT_GROUP format"); 325 return Entries.slice(1); 326 } 327 328 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 329 // We don't merge sections if -O0 (default is -O1). This makes sometimes 330 // the linker significantly faster, although the output will be bigger. 331 if (Config->Optimize == 0) 332 return false; 333 334 // A mergeable section with size 0 is useless because they don't have 335 // any data to merge. A mergeable string section with size 0 can be 336 // argued as invalid because it doesn't end with a null character. 337 // We'll avoid a mess by handling them as if they were non-mergeable. 338 if (Sec.sh_size == 0) 339 return false; 340 341 // Check for sh_entsize. The ELF spec is not clear about the zero 342 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 343 // the section does not hold a table of fixed-size entries". We know 344 // that Rust 1.13 produces a string mergeable section with a zero 345 // sh_entsize. Here we just accept it rather than being picky about it. 346 uint64_t EntSize = Sec.sh_entsize; 347 if (EntSize == 0) 348 return false; 349 if (Sec.sh_size % EntSize) 350 fatal(toString(this) + 351 ": SHF_MERGE section size must be a multiple of sh_entsize"); 352 353 uint64_t Flags = Sec.sh_flags; 354 if (!(Flags & SHF_MERGE)) 355 return false; 356 if (Flags & SHF_WRITE) 357 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 358 359 return true; 360 } 361 362 template <class ELFT> 363 void ObjFile<ELFT>::initializeSections( 364 DenseSet<CachedHashStringRef> &ComdatGroups) { 365 const ELFFile<ELFT> &Obj = this->getObj(); 366 367 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 368 uint64_t Size = ObjSections.size(); 369 this->Sections.resize(Size); 370 this->SectionStringTable = 371 CHECK(Obj.getSectionStringTable(ObjSections), this); 372 373 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 374 if (this->Sections[I] == &InputSection::Discarded) 375 continue; 376 const Elf_Shdr &Sec = ObjSections[I]; 377 378 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 379 // if -r is given, we'll let the final link discard such sections. 380 // This is compatible with GNU. 381 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 382 this->Sections[I] = &InputSection::Discarded; 383 continue; 384 } 385 386 switch (Sec.sh_type) { 387 case SHT_GROUP: { 388 // De-duplicate section groups by their signatures. 389 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 390 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 391 this->Sections[I] = &InputSection::Discarded; 392 393 // If it is a new section group, we want to keep group members. 394 // Group leader sections, which contain indices of group members, are 395 // discarded because they are useless beyond this point. The only 396 // exception is the -r option because in order to produce re-linkable 397 // object files, we want to pass through basically everything. 398 if (IsNew) { 399 if (Config->Relocatable) 400 this->Sections[I] = createInputSection(Sec); 401 continue; 402 } 403 404 // Otherwise, discard group members. 405 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 406 if (SecIndex >= Size) 407 fatal(toString(this) + 408 ": invalid section index in group: " + Twine(SecIndex)); 409 this->Sections[SecIndex] = &InputSection::Discarded; 410 } 411 break; 412 } 413 case SHT_SYMTAB: 414 this->initSymtab(ObjSections, &Sec); 415 break; 416 case SHT_SYMTAB_SHNDX: 417 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 418 break; 419 case SHT_STRTAB: 420 case SHT_NULL: 421 break; 422 default: 423 this->Sections[I] = createInputSection(Sec); 424 } 425 426 // .ARM.exidx sections have a reverse dependency on the InputSection they 427 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 428 if (Sec.sh_flags & SHF_LINK_ORDER) { 429 if (Sec.sh_link >= this->Sections.size()) 430 fatal(toString(this) + 431 ": invalid sh_link index: " + Twine(Sec.sh_link)); 432 this->Sections[Sec.sh_link]->DependentSections.push_back( 433 cast<InputSection>(this->Sections[I])); 434 } 435 } 436 } 437 438 // The ARM support in lld makes some use of instructions that are not available 439 // on all ARM architectures. Namely: 440 // - Use of BLX instruction for interworking between ARM and Thumb state. 441 // - Use of the extended Thumb branch encoding in relocation. 442 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 443 // The ARM Attributes section contains information about the architecture chosen 444 // at compile time. We follow the convention that if at least one input object 445 // is compiled with an architecture that supports these features then lld is 446 // permitted to use them. 447 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 448 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 449 return; 450 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 451 switch (Arch) { 452 case ARMBuildAttrs::Pre_v4: 453 case ARMBuildAttrs::v4: 454 case ARMBuildAttrs::v4T: 455 // Architectures prior to v5 do not support BLX instruction 456 break; 457 case ARMBuildAttrs::v5T: 458 case ARMBuildAttrs::v5TE: 459 case ARMBuildAttrs::v5TEJ: 460 case ARMBuildAttrs::v6: 461 case ARMBuildAttrs::v6KZ: 462 case ARMBuildAttrs::v6K: 463 Config->ARMHasBlx = true; 464 // Architectures used in pre-Cortex processors do not support 465 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 466 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 467 break; 468 default: 469 // All other Architectures have BLX and extended branch encoding 470 Config->ARMHasBlx = true; 471 Config->ARMJ1J2BranchEncoding = true; 472 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 473 // All Architectures used in Cortex processors with the exception 474 // of v6-M and v6S-M have the MOVT and MOVW instructions. 475 Config->ARMHasMovtMovw = true; 476 break; 477 } 478 } 479 480 template <class ELFT> 481 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 482 uint32_t Idx = Sec.sh_info; 483 if (Idx >= this->Sections.size()) 484 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 485 InputSectionBase *Target = this->Sections[Idx]; 486 487 // Strictly speaking, a relocation section must be included in the 488 // group of the section it relocates. However, LLVM 3.3 and earlier 489 // would fail to do so, so we gracefully handle that case. 490 if (Target == &InputSection::Discarded) 491 return nullptr; 492 493 if (!Target) 494 fatal(toString(this) + ": unsupported relocation reference"); 495 return Target; 496 } 497 498 // Create a regular InputSection class that has the same contents 499 // as a given section. 500 static InputSection *toRegularSection(MergeInputSection *Sec) { 501 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 502 Sec->Data, Sec->Name); 503 } 504 505 template <class ELFT> 506 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 507 StringRef Name = getSectionName(Sec); 508 509 switch (Sec.sh_type) { 510 case SHT_ARM_ATTRIBUTES: { 511 if (Config->EMachine != EM_ARM) 512 break; 513 ARMAttributeParser Attributes; 514 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 515 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 516 updateSupportedARMFeatures(Attributes); 517 // FIXME: Retain the first attribute section we see. The eglibc ARM 518 // dynamic loaders require the presence of an attribute section for dlopen 519 // to work. In a full implementation we would merge all attribute sections. 520 if (InX::ARMAttributes == nullptr) { 521 InX::ARMAttributes = make<InputSection>(*this, Sec, Name); 522 return InX::ARMAttributes; 523 } 524 return &InputSection::Discarded; 525 } 526 case SHT_RELA: 527 case SHT_REL: { 528 // Find the relocation target section and associate this 529 // section with it. Target can be discarded, for example 530 // if it is a duplicated member of SHT_GROUP section, we 531 // do not create or proccess relocatable sections then. 532 InputSectionBase *Target = getRelocTarget(Sec); 533 if (!Target) 534 return nullptr; 535 536 // This section contains relocation information. 537 // If -r is given, we do not interpret or apply relocation 538 // but just copy relocation sections to output. 539 if (Config->Relocatable) 540 return make<InputSection>(*this, Sec, Name); 541 542 if (Target->FirstRelocation) 543 fatal(toString(this) + 544 ": multiple relocation sections to one section are not supported"); 545 546 // Mergeable sections with relocations are tricky because relocations 547 // need to be taken into account when comparing section contents for 548 // merging. It's not worth supporting such mergeable sections because 549 // they are rare and it'd complicates the internal design (we usually 550 // have to determine if two sections are mergeable early in the link 551 // process much before applying relocations). We simply handle mergeable 552 // sections with relocations as non-mergeable. 553 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 554 Target = toRegularSection(MS); 555 this->Sections[Sec.sh_info] = Target; 556 } 557 558 size_t NumRelocations; 559 if (Sec.sh_type == SHT_RELA) { 560 ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this); 561 Target->FirstRelocation = Rels.begin(); 562 NumRelocations = Rels.size(); 563 Target->AreRelocsRela = true; 564 } else { 565 ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this); 566 Target->FirstRelocation = Rels.begin(); 567 NumRelocations = Rels.size(); 568 Target->AreRelocsRela = false; 569 } 570 assert(isUInt<31>(NumRelocations)); 571 Target->NumRelocations = NumRelocations; 572 573 // Relocation sections processed by the linker are usually removed 574 // from the output, so returning `nullptr` for the normal case. 575 // However, if -emit-relocs is given, we need to leave them in the output. 576 // (Some post link analysis tools need this information.) 577 if (Config->EmitRelocs) { 578 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 579 // We will not emit relocation section if target was discarded. 580 Target->DependentSections.push_back(RelocSec); 581 return RelocSec; 582 } 583 return nullptr; 584 } 585 } 586 587 // The GNU linker uses .note.GNU-stack section as a marker indicating 588 // that the code in the object file does not expect that the stack is 589 // executable (in terms of NX bit). If all input files have the marker, 590 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 591 // make the stack non-executable. Most object files have this section as 592 // of 2017. 593 // 594 // But making the stack non-executable is a norm today for security 595 // reasons. Failure to do so may result in a serious security issue. 596 // Therefore, we make LLD always add PT_GNU_STACK unless it is 597 // explicitly told to do otherwise (by -z execstack). Because the stack 598 // executable-ness is controlled solely by command line options, 599 // .note.GNU-stack sections are simply ignored. 600 if (Name == ".note.GNU-stack") 601 return &InputSection::Discarded; 602 603 // Split stacks is a feature to support a discontiguous stack. At least 604 // as of 2017, it seems that the feature is not being used widely. 605 // Only GNU gold supports that. We don't. For the details about that, 606 // see https://gcc.gnu.org/wiki/SplitStacks 607 if (Name == ".note.GNU-split-stack") { 608 error(toString(this) + 609 ": object file compiled with -fsplit-stack is not supported"); 610 return &InputSection::Discarded; 611 } 612 613 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 614 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 615 // sections. Drop those sections to avoid duplicate symbol errors. 616 // FIXME: This is glibc PR20543, we should remove this hack once that has been 617 // fixed for a while. 618 if (Name.startswith(".gnu.linkonce.")) 619 return &InputSection::Discarded; 620 621 // If we are creating a new .build-id section, strip existing .build-id 622 // sections so that the output won't have more than one .build-id. 623 // This is not usually a problem because input object files normally don't 624 // have .build-id sections, but you can create such files by 625 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 626 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 627 return &InputSection::Discarded; 628 629 // The linker merges EH (exception handling) frames and creates a 630 // .eh_frame_hdr section for runtime. So we handle them with a special 631 // class. For relocatable outputs, they are just passed through. 632 if (Name == ".eh_frame" && !Config->Relocatable) 633 return make<EhInputSection>(*this, Sec, Name); 634 635 if (shouldMerge(Sec)) 636 return make<MergeInputSection>(*this, Sec, Name); 637 return make<InputSection>(*this, Sec, Name); 638 } 639 640 template <class ELFT> 641 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 642 return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this); 643 } 644 645 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 646 this->Symbols.reserve(this->ELFSyms.size()); 647 for (const Elf_Sym &Sym : this->ELFSyms) 648 this->Symbols.push_back(createSymbol(&Sym)); 649 } 650 651 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 652 int Binding = Sym->getBinding(); 653 654 uint32_t SecIdx = this->getSectionIndex(*Sym); 655 if (SecIdx >= this->Sections.size()) 656 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 657 658 InputSectionBase *Sec = this->Sections[SecIdx]; 659 uint8_t StOther = Sym->st_other; 660 uint8_t Type = Sym->getType(); 661 uint64_t Value = Sym->st_value; 662 uint64_t Size = Sym->st_size; 663 664 if (Binding == STB_LOCAL) { 665 if (Sym->getType() == STT_FILE) 666 SourceFile = CHECK(Sym->getName(this->StringTable), this); 667 668 if (this->StringTable.size() <= Sym->st_name) 669 fatal(toString(this) + ": invalid symbol name offset"); 670 671 StringRefZ Name = this->StringTable.data() + Sym->st_name; 672 if (Sym->st_shndx == SHN_UNDEF) 673 return make<Undefined>(this, Name, Binding, StOther, Type); 674 675 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 676 } 677 678 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 679 680 switch (Sym->st_shndx) { 681 case SHN_UNDEF: 682 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 683 /*CanOmitFromDynSym=*/false, this); 684 case SHN_COMMON: 685 if (Value == 0 || Value >= UINT32_MAX) 686 fatal(toString(this) + ": common symbol '" + Name + 687 "' has invalid alignment: " + Twine(Value)); 688 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this); 689 } 690 691 switch (Binding) { 692 default: 693 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 694 case STB_GLOBAL: 695 case STB_WEAK: 696 case STB_GNU_UNIQUE: 697 if (Sec == &InputSection::Discarded) 698 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 699 /*CanOmitFromDynSym=*/false, this); 700 return Symtab->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, 701 this); 702 } 703 } 704 705 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 706 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 707 File(std::move(File)) {} 708 709 template <class ELFT> void ArchiveFile::parse() { 710 Symbols.reserve(File->getNumberOfSymbols()); 711 for (const Archive::Symbol &Sym : File->symbols()) 712 Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym)); 713 } 714 715 // Returns a buffer pointing to a member file containing a given symbol. 716 std::pair<MemoryBufferRef, uint64_t> 717 ArchiveFile::getMember(const Archive::Symbol *Sym) { 718 Archive::Child C = 719 CHECK(Sym->getMember(), toString(this) + 720 ": could not get the member for symbol " + 721 Sym->getName()); 722 723 if (!Seen.insert(C.getChildOffset()).second) 724 return {MemoryBufferRef(), 0}; 725 726 MemoryBufferRef Ret = 727 CHECK(C.getMemoryBufferRef(), 728 toString(this) + 729 ": could not get the buffer for the member defining symbol " + 730 Sym->getName()); 731 732 if (C.getParent()->isThin() && Tar) 733 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), Ret.getBuffer()); 734 if (C.getParent()->isThin()) 735 return {Ret, 0}; 736 return {Ret, C.getChildOffset()}; 737 } 738 739 template <class ELFT> 740 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 741 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 742 IsNeeded(!Config->AsNeeded) {} 743 744 // Partially parse the shared object file so that we can call 745 // getSoName on this object. 746 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 747 const Elf_Shdr *DynamicSec = nullptr; 748 const ELFFile<ELFT> Obj = this->getObj(); 749 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 750 751 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 752 for (const Elf_Shdr &Sec : Sections) { 753 switch (Sec.sh_type) { 754 default: 755 continue; 756 case SHT_DYNSYM: 757 this->initSymtab(Sections, &Sec); 758 break; 759 case SHT_DYNAMIC: 760 DynamicSec = &Sec; 761 break; 762 case SHT_SYMTAB_SHNDX: 763 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this); 764 break; 765 case SHT_GNU_versym: 766 this->VersymSec = &Sec; 767 break; 768 case SHT_GNU_verdef: 769 this->VerdefSec = &Sec; 770 break; 771 } 772 } 773 774 if (this->VersymSec && this->ELFSyms.empty()) 775 error("SHT_GNU_versym should be associated with symbol table"); 776 777 // Search for a DT_SONAME tag to initialize this->SoName. 778 if (!DynamicSec) 779 return; 780 ArrayRef<Elf_Dyn> Arr = 781 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this); 782 for (const Elf_Dyn &Dyn : Arr) { 783 if (Dyn.d_tag == DT_SONAME) { 784 uint64_t Val = Dyn.getVal(); 785 if (Val >= this->StringTable.size()) 786 fatal(toString(this) + ": invalid DT_SONAME entry"); 787 SoName = this->StringTable.data() + Val; 788 return; 789 } 790 } 791 } 792 793 // Parse the version definitions in the object file if present. Returns a vector 794 // whose nth element contains a pointer to the Elf_Verdef for version identifier 795 // n. Version identifiers that are not definitions map to nullptr. The array 796 // always has at least length 1. 797 template <class ELFT> 798 std::vector<const typename ELFT::Verdef *> 799 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 800 std::vector<const Elf_Verdef *> Verdefs(1); 801 // We only need to process symbol versions for this DSO if it has both a 802 // versym and a verdef section, which indicates that the DSO contains symbol 803 // version definitions. 804 if (!VersymSec || !VerdefSec) 805 return Verdefs; 806 807 // The location of the first global versym entry. 808 const char *Base = this->MB.getBuffer().data(); 809 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 810 this->FirstNonLocal; 811 812 // We cannot determine the largest verdef identifier without inspecting 813 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 814 // sequentially starting from 1, so we predict that the largest identifier 815 // will be VerdefCount. 816 unsigned VerdefCount = VerdefSec->sh_info; 817 Verdefs.resize(VerdefCount + 1); 818 819 // Build the Verdefs array by following the chain of Elf_Verdef objects 820 // from the start of the .gnu.version_d section. 821 const char *Verdef = Base + VerdefSec->sh_offset; 822 for (unsigned I = 0; I != VerdefCount; ++I) { 823 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 824 Verdef += CurVerdef->vd_next; 825 unsigned VerdefIndex = CurVerdef->vd_ndx; 826 if (Verdefs.size() <= VerdefIndex) 827 Verdefs.resize(VerdefIndex + 1); 828 Verdefs[VerdefIndex] = CurVerdef; 829 } 830 831 return Verdefs; 832 } 833 834 // Fully parse the shared object file. This must be called after parseSoName(). 835 template <class ELFT> void SharedFile<ELFT>::parseRest() { 836 // Create mapping from version identifiers to Elf_Verdef entries. 837 const Elf_Versym *Versym = nullptr; 838 Verdefs = parseVerdefs(Versym); 839 840 ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); 841 842 // Add symbols to the symbol table. 843 Elf_Sym_Range Syms = this->getGlobalELFSyms(); 844 for (const Elf_Sym &Sym : Syms) { 845 unsigned VersymIndex = VER_NDX_GLOBAL; 846 if (Versym) { 847 VersymIndex = Versym->vs_index; 848 ++Versym; 849 } 850 bool Hidden = VersymIndex & VERSYM_HIDDEN; 851 VersymIndex = VersymIndex & ~VERSYM_HIDDEN; 852 853 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 854 if (Sym.isUndefined()) { 855 Undefs.push_back(Name); 856 continue; 857 } 858 859 if (Sym.getBinding() == STB_LOCAL) { 860 warn("found local symbol '" + Name + 861 "' in global part of symbol table in file " + toString(this)); 862 continue; 863 } 864 865 if (Config->EMachine == EM_MIPS) { 866 // FIXME: MIPS BFD linker puts _gp_disp symbol into DSO files 867 // and incorrectly assigns VER_NDX_LOCAL to this section global 868 // symbol. Here is a workaround for this bug. 869 if (Versym && VersymIndex == VER_NDX_LOCAL && Name == "_gp_disp") 870 continue; 871 } 872 873 const Elf_Verdef *Ver = nullptr; 874 if (VersymIndex != VER_NDX_GLOBAL) { 875 if (VersymIndex >= Verdefs.size() || VersymIndex == VER_NDX_LOCAL) { 876 error("corrupt input file: version definition index " + 877 Twine(VersymIndex) + " for symbol " + Name + 878 " is out of bounds\n>>> defined in " + toString(this)); 879 continue; 880 } 881 Ver = Verdefs[VersymIndex]; 882 } else { 883 VersymIndex = 0; 884 } 885 886 // We do not usually care about alignments of data in shared object 887 // files because the loader takes care of it. However, if we promote a 888 // DSO symbol to point to .bss due to copy relocation, we need to keep 889 // the original alignment requirements. We infer it here. 890 uint64_t Alignment = 1; 891 if (Sym.st_value) 892 Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 893 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) { 894 uint64_t SecAlign = Sections[Sym.st_shndx].sh_addralign; 895 Alignment = std::min(Alignment, SecAlign); 896 } 897 if (Alignment > UINT32_MAX) 898 error(toString(this) + ": alignment too large: " + Name); 899 900 if (!Hidden) 901 Symtab->addShared(Name, *this, Sym, Alignment, VersymIndex); 902 903 // Also add the symbol with the versioned name to handle undefined symbols 904 // with explicit versions. 905 if (Ver) { 906 StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name; 907 Name = Saver.save(Name + "@" + VerName); 908 Symtab->addShared(Name, *this, Sym, Alignment, VersymIndex); 909 } 910 } 911 } 912 913 static ELFKind getBitcodeELFKind(const Triple &T) { 914 if (T.isLittleEndian()) 915 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 916 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 917 } 918 919 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 920 switch (T.getArch()) { 921 case Triple::aarch64: 922 return EM_AARCH64; 923 case Triple::arm: 924 case Triple::thumb: 925 return EM_ARM; 926 case Triple::avr: 927 return EM_AVR; 928 case Triple::mips: 929 case Triple::mipsel: 930 case Triple::mips64: 931 case Triple::mips64el: 932 return EM_MIPS; 933 case Triple::ppc: 934 return EM_PPC; 935 case Triple::ppc64: 936 return EM_PPC64; 937 case Triple::x86: 938 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 939 case Triple::x86_64: 940 return EM_X86_64; 941 default: 942 fatal(Path + ": could not infer e_machine from bitcode target triple " + 943 T.str()); 944 } 945 } 946 947 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 948 uint64_t OffsetInArchive) 949 : InputFile(BitcodeKind, MB) { 950 this->ArchiveName = ArchiveName; 951 952 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 953 // (the fully resolved path of the archive) + member name + offset of the 954 // member in the archive. 955 // ThinLTO uses the MemoryBufferRef identifier to access its internal 956 // data structures and if two archives define two members with the same name, 957 // this causes a collision which result in only one of the objects being 958 // taken into consideration at LTO time (which very likely causes undefined 959 // symbols later in the link stage). 960 MemoryBufferRef MBRef(MB.getBuffer(), 961 Saver.save(ArchiveName + MB.getBufferIdentifier() + 962 utostr(OffsetInArchive))); 963 Obj = CHECK(lto::InputFile::create(MBRef), this); 964 965 Triple T(Obj->getTargetTriple()); 966 EKind = getBitcodeELFKind(T); 967 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 968 } 969 970 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 971 switch (GvVisibility) { 972 case GlobalValue::DefaultVisibility: 973 return STV_DEFAULT; 974 case GlobalValue::HiddenVisibility: 975 return STV_HIDDEN; 976 case GlobalValue::ProtectedVisibility: 977 return STV_PROTECTED; 978 } 979 llvm_unreachable("unknown visibility"); 980 } 981 982 template <class ELFT> 983 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 984 const lto::InputFile::Symbol &ObjSym, 985 BitcodeFile &F) { 986 StringRef NameRef = Saver.save(ObjSym.getName()); 987 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 988 989 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 990 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 991 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 992 993 int C = ObjSym.getComdatIndex(); 994 if (C != -1 && !KeptComdats[C]) 995 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 996 CanOmitFromDynSym, &F); 997 998 if (ObjSym.isUndefined()) 999 return Symtab->addUndefined<ELFT>(NameRef, Binding, Visibility, Type, 1000 CanOmitFromDynSym, &F); 1001 1002 if (ObjSym.isCommon()) 1003 return Symtab->addCommon(NameRef, ObjSym.getCommonSize(), 1004 ObjSym.getCommonAlignment(), Binding, Visibility, 1005 STT_OBJECT, F); 1006 1007 return Symtab->addBitcode(NameRef, Binding, Visibility, Type, 1008 CanOmitFromDynSym, F); 1009 } 1010 1011 template <class ELFT> 1012 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 1013 std::vector<bool> KeptComdats; 1014 for (StringRef S : Obj->getComdatTable()) 1015 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 1016 1017 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1018 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1019 } 1020 1021 static ELFKind getELFKind(MemoryBufferRef MB) { 1022 unsigned char Size; 1023 unsigned char Endian; 1024 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 1025 1026 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 1027 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 1028 if (Size != ELFCLASS32 && Size != ELFCLASS64) 1029 fatal(MB.getBufferIdentifier() + ": invalid file class"); 1030 1031 size_t BufSize = MB.getBuffer().size(); 1032 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 1033 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 1034 fatal(MB.getBufferIdentifier() + ": file is too short"); 1035 1036 if (Size == ELFCLASS32) 1037 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 1038 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 1039 } 1040 1041 void BinaryFile::parse() { 1042 ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); 1043 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1044 8, Data, ".data"); 1045 Sections.push_back(Section); 1046 1047 // For each input file foo that is embedded to a result as a binary 1048 // blob, we define _binary_foo_{start,end,size} symbols, so that 1049 // user programs can access blobs by name. Non-alphanumeric 1050 // characters in a filename are replaced with underscore. 1051 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1052 for (size_t I = 0; I < S.size(); ++I) 1053 if (!isAlnum(S[I])) 1054 S[I] = '_'; 1055 1056 Symtab->addRegular(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0, 1057 STB_GLOBAL, Section, nullptr); 1058 Symtab->addRegular(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1059 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1060 Symtab->addRegular(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1061 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1062 } 1063 1064 static bool isBitcode(MemoryBufferRef MB) { 1065 using namespace sys::fs; 1066 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 1067 } 1068 1069 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1070 uint64_t OffsetInArchive) { 1071 if (isBitcode(MB)) 1072 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1073 1074 switch (getELFKind(MB)) { 1075 case ELF32LEKind: 1076 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1077 case ELF32BEKind: 1078 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1079 case ELF64LEKind: 1080 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1081 case ELF64BEKind: 1082 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1083 default: 1084 llvm_unreachable("getELFKind"); 1085 } 1086 } 1087 1088 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1089 switch (getELFKind(MB)) { 1090 case ELF32LEKind: 1091 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 1092 case ELF32BEKind: 1093 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1094 case ELF64LEKind: 1095 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1096 case ELF64BEKind: 1097 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1098 default: 1099 llvm_unreachable("getELFKind"); 1100 } 1101 } 1102 1103 MemoryBufferRef LazyObjFile::getBuffer() { 1104 if (Seen) 1105 return MemoryBufferRef(); 1106 Seen = true; 1107 return MB; 1108 } 1109 1110 InputFile *LazyObjFile::fetch() { 1111 MemoryBufferRef MBRef = getBuffer(); 1112 if (MBRef.getBuffer().empty()) 1113 return nullptr; 1114 return createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1115 } 1116 1117 template <class ELFT> void LazyObjFile::parse() { 1118 for (StringRef Sym : getSymbolNames()) 1119 Symtab->addLazyObject<ELFT>(Sym, *this); 1120 } 1121 1122 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() { 1123 typedef typename ELFT::Shdr Elf_Shdr; 1124 typedef typename ELFT::Sym Elf_Sym; 1125 typedef typename ELFT::SymRange Elf_Sym_Range; 1126 1127 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer())); 1128 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 1129 for (const Elf_Shdr &Sec : Sections) { 1130 if (Sec.sh_type != SHT_SYMTAB) 1131 continue; 1132 1133 Elf_Sym_Range Syms = CHECK(Obj.symbols(&Sec), this); 1134 uint32_t FirstNonLocal = Sec.sh_info; 1135 StringRef StringTable = 1136 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1137 std::vector<StringRef> V; 1138 1139 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 1140 if (Sym.st_shndx != SHN_UNDEF) 1141 V.push_back(CHECK(Sym.getName(StringTable), this)); 1142 return V; 1143 } 1144 return {}; 1145 } 1146 1147 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() { 1148 std::unique_ptr<lto::InputFile> Obj = 1149 CHECK(lto::InputFile::create(this->MB), this); 1150 std::vector<StringRef> V; 1151 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1152 if (!Sym.isUndefined()) 1153 V.push_back(Saver.save(Sym.getName())); 1154 return V; 1155 } 1156 1157 // Returns a vector of globally-visible defined symbol names. 1158 std::vector<StringRef> LazyObjFile::getSymbolNames() { 1159 if (isBitcode(this->MB)) 1160 return getBitcodeSymbols(); 1161 1162 switch (getELFKind(this->MB)) { 1163 case ELF32LEKind: 1164 return getElfSymbols<ELF32LE>(); 1165 case ELF32BEKind: 1166 return getElfSymbols<ELF32BE>(); 1167 case ELF64LEKind: 1168 return getElfSymbols<ELF64LE>(); 1169 case ELF64BEKind: 1170 return getElfSymbols<ELF64BE>(); 1171 default: 1172 llvm_unreachable("getELFKind"); 1173 } 1174 } 1175 1176 template void ArchiveFile::parse<ELF32LE>(); 1177 template void ArchiveFile::parse<ELF32BE>(); 1178 template void ArchiveFile::parse<ELF64LE>(); 1179 template void ArchiveFile::parse<ELF64BE>(); 1180 1181 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1182 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1183 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1184 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1185 1186 template void LazyObjFile::parse<ELF32LE>(); 1187 template void LazyObjFile::parse<ELF32BE>(); 1188 template void LazyObjFile::parse<ELF64LE>(); 1189 template void LazyObjFile::parse<ELF64BE>(); 1190 1191 template class elf::ELFFileBase<ELF32LE>; 1192 template class elf::ELFFileBase<ELF32BE>; 1193 template class elf::ELFFileBase<ELF64LE>; 1194 template class elf::ELFFileBase<ELF64BE>; 1195 1196 template class elf::ObjFile<ELF32LE>; 1197 template class elf::ObjFile<ELF32BE>; 1198 template class elf::ObjFile<ELF64LE>; 1199 template class elf::ObjFile<ELF64BE>; 1200 1201 template class elf::SharedFile<ELF32LE>; 1202 template class elf::SharedFile<ELF32BE>; 1203 template class elf::SharedFile<ELF64LE>; 1204 template class elf::SharedFile<ELF64BE>; 1205