1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "InputFiles.h" 10 #include "InputSection.h" 11 #include "LinkerScript.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "lld/Common/ErrorHandler.h" 16 #include "lld/Common/Memory.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/LTO/LTO.h" 23 #include "llvm/MC/StringTableBuilder.h" 24 #include "llvm/Object/ELFObjectFile.h" 25 #include "llvm/Support/ARMAttributeParser.h" 26 #include "llvm/Support/ARMBuildAttributes.h" 27 #include "llvm/Support/Path.h" 28 #include "llvm/Support/TarWriter.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::sys; 35 using namespace llvm::sys::fs; 36 37 using namespace lld; 38 using namespace lld::elf; 39 40 bool InputFile::IsInGroup; 41 uint32_t InputFile::NextGroupId; 42 std::vector<BinaryFile *> elf::BinaryFiles; 43 std::vector<BitcodeFile *> elf::BitcodeFiles; 44 std::vector<LazyObjFile *> elf::LazyObjFiles; 45 std::vector<InputFile *> elf::ObjectFiles; 46 std::vector<InputFile *> elf::SharedFiles; 47 48 std::unique_ptr<TarWriter> elf::Tar; 49 50 InputFile::InputFile(Kind K, MemoryBufferRef M) 51 : MB(M), GroupId(NextGroupId), FileKind(K) { 52 // All files within the same --{start,end}-group get the same group ID. 53 // Otherwise, a new file will get a new group ID. 54 if (!IsInGroup) 55 ++NextGroupId; 56 } 57 58 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 59 // The --chroot option changes our virtual root directory. 60 // This is useful when you are dealing with files created by --reproduce. 61 if (!Config->Chroot.empty() && Path.startswith("/")) 62 Path = Saver.save(Config->Chroot + Path); 63 64 log(Path); 65 66 auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); 67 if (auto EC = MBOrErr.getError()) { 68 error("cannot open " + Path + ": " + EC.message()); 69 return None; 70 } 71 72 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 73 MemoryBufferRef MBRef = MB->getMemBufferRef(); 74 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 75 76 if (Tar) 77 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 78 return MBRef; 79 } 80 81 // Concatenates arguments to construct a string representing an error location. 82 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 83 std::string Filename = path::filename(Path); 84 std::string Lineno = ":" + std::to_string(Line); 85 if (Filename == Path) 86 return Filename + Lineno; 87 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 88 } 89 90 template <class ELFT> 91 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 92 InputSectionBase &Sec, uint64_t Offset) { 93 // In DWARF, functions and variables are stored to different places. 94 // First, lookup a function for a given offset. 95 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 96 return createFileLineMsg(Info->FileName, Info->Line); 97 98 // If it failed, lookup again as a variable. 99 if (Optional<std::pair<std::string, unsigned>> FileLine = 100 File.getVariableLoc(Sym.getName())) 101 return createFileLineMsg(FileLine->first, FileLine->second); 102 103 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 104 return File.SourceFile; 105 } 106 107 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 108 uint64_t Offset) { 109 if (kind() != ObjKind) 110 return ""; 111 switch (Config->EKind) { 112 default: 113 llvm_unreachable("Invalid kind"); 114 case ELF32LEKind: 115 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 116 case ELF32BEKind: 117 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 118 case ELF64LEKind: 119 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 120 case ELF64BEKind: 121 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 122 } 123 } 124 125 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 126 Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 127 for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) { 128 auto Report = [](Error Err) { 129 handleAllErrors(std::move(Err), 130 [](ErrorInfoBase &Info) { warn(Info.message()); }); 131 }; 132 Expected<const DWARFDebugLine::LineTable *> ExpectedLT = 133 Dwarf->getLineTableForUnit(CU.get(), Report); 134 const DWARFDebugLine::LineTable *LT = nullptr; 135 if (ExpectedLT) 136 LT = *ExpectedLT; 137 else 138 Report(ExpectedLT.takeError()); 139 if (!LT) 140 continue; 141 LineTables.push_back(LT); 142 143 // Loop over variable records and insert them to VariableLoc. 144 for (const auto &Entry : CU->dies()) { 145 DWARFDie Die(CU.get(), &Entry); 146 // Skip all tags that are not variables. 147 if (Die.getTag() != dwarf::DW_TAG_variable) 148 continue; 149 150 // Skip if a local variable because we don't need them for generating 151 // error messages. In general, only non-local symbols can fail to be 152 // linked. 153 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 154 continue; 155 156 // Get the source filename index for the variable. 157 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 158 if (!LT->hasFileAtIndex(File)) 159 continue; 160 161 // Get the line number on which the variable is declared. 162 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 163 164 // Here we want to take the variable name to add it into VariableLoc. 165 // Variable can have regular and linkage name associated. At first, we try 166 // to get linkage name as it can be different, for example when we have 167 // two variables in different namespaces of the same object. Use common 168 // name otherwise, but handle the case when it also absent in case if the 169 // input object file lacks some debug info. 170 StringRef Name = 171 dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), 172 dwarf::toString(Die.find(dwarf::DW_AT_name), "")); 173 if (!Name.empty()) 174 VariableLoc.insert({Name, {LT, File, Line}}); 175 } 176 } 177 } 178 179 // Returns the pair of file name and line number describing location of data 180 // object (variable, array, etc) definition. 181 template <class ELFT> 182 Optional<std::pair<std::string, unsigned>> 183 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 184 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 185 186 // Return if we have no debug information about data object. 187 auto It = VariableLoc.find(Name); 188 if (It == VariableLoc.end()) 189 return None; 190 191 // Take file name string from line table. 192 std::string FileName; 193 if (!It->second.LT->getFileNameByIndex( 194 It->second.File, nullptr, 195 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 196 return None; 197 198 return std::make_pair(FileName, It->second.Line); 199 } 200 201 // Returns source line information for a given offset 202 // using DWARF debug info. 203 template <class ELFT> 204 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 205 uint64_t Offset) { 206 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 207 208 // Use fake address calcuated by adding section file offset and offset in 209 // section. See comments for ObjectInfo class. 210 DILineInfo Info; 211 for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) 212 if (LT->getFileLineInfoForAddress( 213 S->getOffsetInFile() + Offset, nullptr, 214 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) 215 return Info; 216 return None; 217 } 218 219 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 220 std::string lld::toString(const InputFile *F) { 221 if (!F) 222 return "<internal>"; 223 224 if (F->ToStringCache.empty()) { 225 if (F->ArchiveName.empty()) 226 F->ToStringCache = F->getName(); 227 else 228 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 229 } 230 return F->ToStringCache; 231 } 232 233 template <class ELFT> 234 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 235 if (ELFT::TargetEndianness == support::little) 236 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 237 else 238 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 239 240 EMachine = getObj().getHeader()->e_machine; 241 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 242 } 243 244 template <class ELFT> 245 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 246 return makeArrayRef(ELFSyms.begin() + FirstGlobal, ELFSyms.end()); 247 } 248 249 template <class ELFT> 250 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 251 return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this); 252 } 253 254 template <class ELFT> 255 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 256 const Elf_Shdr *Symtab) { 257 FirstGlobal = Symtab->sh_info; 258 ELFSyms = CHECK(getObj().symbols(Symtab), this); 259 if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size()) 260 fatal(toString(this) + ": invalid sh_info in symbol table"); 261 262 StringTable = 263 CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this); 264 } 265 266 template <class ELFT> 267 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 268 : ELFFileBase<ELFT>(Base::ObjKind, M) { 269 this->ArchiveName = ArchiveName; 270 } 271 272 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 273 if (this->Symbols.empty()) 274 return {}; 275 return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); 276 } 277 278 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 279 return makeArrayRef(this->Symbols).slice(this->FirstGlobal); 280 } 281 282 template <class ELFT> 283 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 284 // Read a section table. JustSymbols is usually false. 285 if (this->JustSymbols) 286 initializeJustSymbols(); 287 else 288 initializeSections(ComdatGroups); 289 290 // Read a symbol table. 291 initializeSymbols(); 292 } 293 294 // Sections with SHT_GROUP and comdat bits define comdat section groups. 295 // They are identified and deduplicated by group name. This function 296 // returns a group name. 297 template <class ELFT> 298 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 299 const Elf_Shdr &Sec) { 300 // Group signatures are stored as symbol names in object files. 301 // sh_info contains a symbol index, so we fetch a symbol and read its name. 302 if (this->ELFSyms.empty()) 303 this->initSymtab( 304 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 305 306 const Elf_Sym *Sym = 307 CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this); 308 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 309 310 // As a special case, if a symbol is a section symbol and has no name, 311 // we use a section name as a signature. 312 // 313 // Such SHT_GROUP sections are invalid from the perspective of the ELF 314 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 315 // older produce such sections as outputs for the -r option, so we need 316 // a bug-compatibility. 317 if (Signature.empty() && Sym->getType() == STT_SECTION) 318 return getSectionName(Sec); 319 return Signature; 320 } 321 322 template <class ELFT> 323 ArrayRef<typename ObjFile<ELFT>::Elf_Word> 324 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 325 const ELFFile<ELFT> &Obj = this->getObj(); 326 ArrayRef<Elf_Word> Entries = 327 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 328 if (Entries.empty() || Entries[0] != GRP_COMDAT) 329 fatal(toString(this) + ": unsupported SHT_GROUP format"); 330 return Entries.slice(1); 331 } 332 333 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 334 // On a regular link we don't merge sections if -O0 (default is -O1). This 335 // sometimes makes the linker significantly faster, although the output will 336 // be bigger. 337 // 338 // Doing the same for -r would create a problem as it would combine sections 339 // with different sh_entsize. One option would be to just copy every SHF_MERGE 340 // section as is to the output. While this would produce a valid ELF file with 341 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 342 // they see two .debug_str. We could have separate logic for combining 343 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 344 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 345 // logic for -r. 346 if (Config->Optimize == 0 && !Config->Relocatable) 347 return false; 348 349 // A mergeable section with size 0 is useless because they don't have 350 // any data to merge. A mergeable string section with size 0 can be 351 // argued as invalid because it doesn't end with a null character. 352 // We'll avoid a mess by handling them as if they were non-mergeable. 353 if (Sec.sh_size == 0) 354 return false; 355 356 // Check for sh_entsize. The ELF spec is not clear about the zero 357 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 358 // the section does not hold a table of fixed-size entries". We know 359 // that Rust 1.13 produces a string mergeable section with a zero 360 // sh_entsize. Here we just accept it rather than being picky about it. 361 uint64_t EntSize = Sec.sh_entsize; 362 if (EntSize == 0) 363 return false; 364 if (Sec.sh_size % EntSize) 365 fatal(toString(this) + 366 ": SHF_MERGE section size must be a multiple of sh_entsize"); 367 368 uint64_t Flags = Sec.sh_flags; 369 if (!(Flags & SHF_MERGE)) 370 return false; 371 if (Flags & SHF_WRITE) 372 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 373 374 return true; 375 } 376 377 // This is for --just-symbols. 378 // 379 // --just-symbols is a very minor feature that allows you to link your 380 // output against other existing program, so that if you load both your 381 // program and the other program into memory, your output can refer the 382 // other program's symbols. 383 // 384 // When the option is given, we link "just symbols". The section table is 385 // initialized with null pointers. 386 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 387 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 388 this->Sections.resize(ObjSections.size()); 389 390 for (const Elf_Shdr &Sec : ObjSections) { 391 if (Sec.sh_type != SHT_SYMTAB) 392 continue; 393 this->initSymtab(ObjSections, &Sec); 394 return; 395 } 396 } 397 398 template <class ELFT> 399 void ObjFile<ELFT>::initializeSections( 400 DenseSet<CachedHashStringRef> &ComdatGroups) { 401 const ELFFile<ELFT> &Obj = this->getObj(); 402 403 ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); 404 uint64_t Size = ObjSections.size(); 405 this->Sections.resize(Size); 406 this->SectionStringTable = 407 CHECK(Obj.getSectionStringTable(ObjSections), this); 408 409 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 410 if (this->Sections[I] == &InputSection::Discarded) 411 continue; 412 const Elf_Shdr &Sec = ObjSections[I]; 413 414 if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 415 CGProfile = check( 416 this->getObj().template getSectionContentsAsArray<Elf_CGProfile>( 417 &Sec)); 418 419 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 420 // if -r is given, we'll let the final link discard such sections. 421 // This is compatible with GNU. 422 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 423 if (Sec.sh_type == SHT_LLVM_ADDRSIG) { 424 // We ignore the address-significance table if we know that the object 425 // file was created by objcopy or ld -r. This is because these tools 426 // will reorder the symbols in the symbol table, invalidating the data 427 // in the address-significance table, which refers to symbols by index. 428 if (Sec.sh_link != 0) 429 this->AddrsigSec = &Sec; 430 else if (Config->ICF == ICFLevel::Safe) 431 warn(toString(this) + ": --icf=safe is incompatible with object " 432 "files created using objcopy or ld -r"); 433 } 434 this->Sections[I] = &InputSection::Discarded; 435 continue; 436 } 437 438 switch (Sec.sh_type) { 439 case SHT_GROUP: { 440 // De-duplicate section groups by their signatures. 441 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 442 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 443 this->Sections[I] = &InputSection::Discarded; 444 445 // We only support GRP_COMDAT type of group. Get the all entries of the 446 // section here to let getShtGroupEntries to check the type early for us. 447 ArrayRef<Elf_Word> Entries = getShtGroupEntries(Sec); 448 449 // If it is a new section group, we want to keep group members. 450 // Group leader sections, which contain indices of group members, are 451 // discarded because they are useless beyond this point. The only 452 // exception is the -r option because in order to produce re-linkable 453 // object files, we want to pass through basically everything. 454 if (IsNew) { 455 if (Config->Relocatable) 456 this->Sections[I] = createInputSection(Sec); 457 continue; 458 } 459 460 // Otherwise, discard group members. 461 for (uint32_t SecIndex : Entries) { 462 if (SecIndex >= Size) 463 fatal(toString(this) + 464 ": invalid section index in group: " + Twine(SecIndex)); 465 this->Sections[SecIndex] = &InputSection::Discarded; 466 } 467 break; 468 } 469 case SHT_SYMTAB: 470 this->initSymtab(ObjSections, &Sec); 471 break; 472 case SHT_SYMTAB_SHNDX: 473 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 474 break; 475 case SHT_STRTAB: 476 case SHT_NULL: 477 break; 478 default: 479 this->Sections[I] = createInputSection(Sec); 480 } 481 482 // .ARM.exidx sections have a reverse dependency on the InputSection they 483 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 484 if (Sec.sh_flags & SHF_LINK_ORDER) { 485 InputSectionBase *LinkSec = nullptr; 486 if (Sec.sh_link < this->Sections.size()) 487 LinkSec = this->Sections[Sec.sh_link]; 488 if (!LinkSec) 489 fatal(toString(this) + 490 ": invalid sh_link index: " + Twine(Sec.sh_link)); 491 492 InputSection *IS = cast<InputSection>(this->Sections[I]); 493 LinkSec->DependentSections.push_back(IS); 494 if (!isa<InputSection>(LinkSec)) 495 error("a section " + IS->Name + 496 " with SHF_LINK_ORDER should not refer a non-regular " 497 "section: " + 498 toString(LinkSec)); 499 } 500 } 501 } 502 503 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 504 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 505 // the input objects have been compiled. 506 static void updateARMVFPArgs(const ARMAttributeParser &Attributes, 507 const InputFile *F) { 508 if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 509 // If an ABI tag isn't present then it is implicitly given the value of 0 510 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 511 // including some in glibc that don't use FP args (and should have value 3) 512 // don't have the attribute so we do not consider an implicit value of 0 513 // as a clash. 514 return; 515 516 unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 517 ARMVFPArgKind Arg; 518 switch (VFPArgs) { 519 case ARMBuildAttrs::BaseAAPCS: 520 Arg = ARMVFPArgKind::Base; 521 break; 522 case ARMBuildAttrs::HardFPAAPCS: 523 Arg = ARMVFPArgKind::VFP; 524 break; 525 case ARMBuildAttrs::ToolChainFPPCS: 526 // Tool chain specific convention that conforms to neither AAPCS variant. 527 Arg = ARMVFPArgKind::ToolChain; 528 break; 529 case ARMBuildAttrs::CompatibleFPAAPCS: 530 // Object compatible with all conventions. 531 return; 532 default: 533 error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); 534 return; 535 } 536 // Follow ld.bfd and error if there is a mix of calling conventions. 537 if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) 538 error(toString(F) + ": incompatible Tag_ABI_VFP_args"); 539 else 540 Config->ARMVFPArgs = Arg; 541 } 542 543 // The ARM support in lld makes some use of instructions that are not available 544 // on all ARM architectures. Namely: 545 // - Use of BLX instruction for interworking between ARM and Thumb state. 546 // - Use of the extended Thumb branch encoding in relocation. 547 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 548 // The ARM Attributes section contains information about the architecture chosen 549 // at compile time. We follow the convention that if at least one input object 550 // is compiled with an architecture that supports these features then lld is 551 // permitted to use them. 552 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 553 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 554 return; 555 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 556 switch (Arch) { 557 case ARMBuildAttrs::Pre_v4: 558 case ARMBuildAttrs::v4: 559 case ARMBuildAttrs::v4T: 560 // Architectures prior to v5 do not support BLX instruction 561 break; 562 case ARMBuildAttrs::v5T: 563 case ARMBuildAttrs::v5TE: 564 case ARMBuildAttrs::v5TEJ: 565 case ARMBuildAttrs::v6: 566 case ARMBuildAttrs::v6KZ: 567 case ARMBuildAttrs::v6K: 568 Config->ARMHasBlx = true; 569 // Architectures used in pre-Cortex processors do not support 570 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 571 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 572 break; 573 default: 574 // All other Architectures have BLX and extended branch encoding 575 Config->ARMHasBlx = true; 576 Config->ARMJ1J2BranchEncoding = true; 577 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 578 // All Architectures used in Cortex processors with the exception 579 // of v6-M and v6S-M have the MOVT and MOVW instructions. 580 Config->ARMHasMovtMovw = true; 581 break; 582 } 583 } 584 585 template <class ELFT> 586 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 587 uint32_t Idx = Sec.sh_info; 588 if (Idx >= this->Sections.size()) 589 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 590 InputSectionBase *Target = this->Sections[Idx]; 591 592 // Strictly speaking, a relocation section must be included in the 593 // group of the section it relocates. However, LLVM 3.3 and earlier 594 // would fail to do so, so we gracefully handle that case. 595 if (Target == &InputSection::Discarded) 596 return nullptr; 597 598 if (!Target) 599 fatal(toString(this) + ": unsupported relocation reference"); 600 return Target; 601 } 602 603 // Create a regular InputSection class that has the same contents 604 // as a given section. 605 static InputSection *toRegularSection(MergeInputSection *Sec) { 606 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 607 Sec->data(), Sec->Name); 608 } 609 610 template <class ELFT> 611 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 612 StringRef Name = getSectionName(Sec); 613 614 switch (Sec.sh_type) { 615 case SHT_ARM_ATTRIBUTES: { 616 if (Config->EMachine != EM_ARM) 617 break; 618 ARMAttributeParser Attributes; 619 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 620 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 621 updateSupportedARMFeatures(Attributes); 622 updateARMVFPArgs(Attributes, this); 623 624 // FIXME: Retain the first attribute section we see. The eglibc ARM 625 // dynamic loaders require the presence of an attribute section for dlopen 626 // to work. In a full implementation we would merge all attribute sections. 627 if (In.ARMAttributes == nullptr) { 628 In.ARMAttributes = make<InputSection>(*this, Sec, Name); 629 return In.ARMAttributes; 630 } 631 return &InputSection::Discarded; 632 } 633 case SHT_RELA: 634 case SHT_REL: { 635 // Find a relocation target section and associate this section with that. 636 // Target may have been discarded if it is in a different section group 637 // and the group is discarded, even though it's a violation of the 638 // spec. We handle that situation gracefully by discarding dangling 639 // relocation sections. 640 InputSectionBase *Target = getRelocTarget(Sec); 641 if (!Target) 642 return nullptr; 643 644 // This section contains relocation information. 645 // If -r is given, we do not interpret or apply relocation 646 // but just copy relocation sections to output. 647 if (Config->Relocatable) { 648 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 649 // We want to add a dependency to target, similar like we do for 650 // -emit-relocs below. This is useful for the case when linker script 651 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 652 // -r, but we faced it in the Linux kernel and have to handle such case 653 // and not to crash. 654 Target->DependentSections.push_back(RelocSec); 655 return RelocSec; 656 } 657 658 if (Target->FirstRelocation) 659 fatal(toString(this) + 660 ": multiple relocation sections to one section are not supported"); 661 662 // ELF spec allows mergeable sections with relocations, but they are 663 // rare, and it is in practice hard to merge such sections by contents, 664 // because applying relocations at end of linking changes section 665 // contents. So, we simply handle such sections as non-mergeable ones. 666 // Degrading like this is acceptable because section merging is optional. 667 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 668 Target = toRegularSection(MS); 669 this->Sections[Sec.sh_info] = Target; 670 } 671 672 if (Sec.sh_type == SHT_RELA) { 673 ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this); 674 Target->FirstRelocation = Rels.begin(); 675 Target->NumRelocations = Rels.size(); 676 Target->AreRelocsRela = true; 677 } else { 678 ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this); 679 Target->FirstRelocation = Rels.begin(); 680 Target->NumRelocations = Rels.size(); 681 Target->AreRelocsRela = false; 682 } 683 assert(isUInt<31>(Target->NumRelocations)); 684 685 // Relocation sections processed by the linker are usually removed 686 // from the output, so returning `nullptr` for the normal case. 687 // However, if -emit-relocs is given, we need to leave them in the output. 688 // (Some post link analysis tools need this information.) 689 if (Config->EmitRelocs) { 690 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 691 // We will not emit relocation section if target was discarded. 692 Target->DependentSections.push_back(RelocSec); 693 return RelocSec; 694 } 695 return nullptr; 696 } 697 } 698 699 // The GNU linker uses .note.GNU-stack section as a marker indicating 700 // that the code in the object file does not expect that the stack is 701 // executable (in terms of NX bit). If all input files have the marker, 702 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 703 // make the stack non-executable. Most object files have this section as 704 // of 2017. 705 // 706 // But making the stack non-executable is a norm today for security 707 // reasons. Failure to do so may result in a serious security issue. 708 // Therefore, we make LLD always add PT_GNU_STACK unless it is 709 // explicitly told to do otherwise (by -z execstack). Because the stack 710 // executable-ness is controlled solely by command line options, 711 // .note.GNU-stack sections are simply ignored. 712 if (Name == ".note.GNU-stack") 713 return &InputSection::Discarded; 714 715 // Split stacks is a feature to support a discontiguous stack, 716 // commonly used in the programming language Go. For the details, 717 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 718 // for split stack will include a .note.GNU-split-stack section. 719 if (Name == ".note.GNU-split-stack") { 720 if (Config->Relocatable) { 721 error("cannot mix split-stack and non-split-stack in a relocatable link"); 722 return &InputSection::Discarded; 723 } 724 this->SplitStack = true; 725 return &InputSection::Discarded; 726 } 727 728 // An object file cmpiled for split stack, but where some of the 729 // functions were compiled with the no_split_stack_attribute will 730 // include a .note.GNU-no-split-stack section. 731 if (Name == ".note.GNU-no-split-stack") { 732 this->SomeNoSplitStack = true; 733 return &InputSection::Discarded; 734 } 735 736 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 737 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 738 // sections. Drop those sections to avoid duplicate symbol errors. 739 // FIXME: This is glibc PR20543, we should remove this hack once that has been 740 // fixed for a while. 741 if (Name.startswith(".gnu.linkonce.")) 742 return &InputSection::Discarded; 743 744 // If we are creating a new .build-id section, strip existing .build-id 745 // sections so that the output won't have more than one .build-id. 746 // This is not usually a problem because input object files normally don't 747 // have .build-id sections, but you can create such files by 748 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 749 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 750 return &InputSection::Discarded; 751 752 // The linker merges EH (exception handling) frames and creates a 753 // .eh_frame_hdr section for runtime. So we handle them with a special 754 // class. For relocatable outputs, they are just passed through. 755 if (Name == ".eh_frame" && !Config->Relocatable) 756 return make<EhInputSection>(*this, Sec, Name); 757 758 if (shouldMerge(Sec)) 759 return make<MergeInputSection>(*this, Sec, Name); 760 return make<InputSection>(*this, Sec, Name); 761 } 762 763 template <class ELFT> 764 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 765 return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this); 766 } 767 768 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 769 this->Symbols.reserve(this->ELFSyms.size()); 770 for (const Elf_Sym &Sym : this->ELFSyms) 771 this->Symbols.push_back(createSymbol(&Sym)); 772 } 773 774 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 775 int Binding = Sym->getBinding(); 776 777 uint32_t SecIdx = this->getSectionIndex(*Sym); 778 if (SecIdx >= this->Sections.size()) 779 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 780 781 InputSectionBase *Sec = this->Sections[SecIdx]; 782 uint8_t StOther = Sym->st_other; 783 uint8_t Type = Sym->getType(); 784 uint64_t Value = Sym->st_value; 785 uint64_t Size = Sym->st_size; 786 787 if (Binding == STB_LOCAL) { 788 if (Sym->getType() == STT_FILE) 789 SourceFile = CHECK(Sym->getName(this->StringTable), this); 790 791 if (this->StringTable.size() <= Sym->st_name) 792 fatal(toString(this) + ": invalid symbol name offset"); 793 794 StringRefZ Name = this->StringTable.data() + Sym->st_name; 795 if (Sym->st_shndx == SHN_UNDEF) 796 return make<Undefined>(this, Name, Binding, StOther, Type); 797 798 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 799 } 800 801 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 802 803 switch (Sym->st_shndx) { 804 case SHN_UNDEF: 805 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 806 /*CanOmitFromDynSym=*/false, this); 807 case SHN_COMMON: 808 if (Value == 0 || Value >= UINT32_MAX) 809 fatal(toString(this) + ": common symbol '" + Name + 810 "' has invalid alignment: " + Twine(Value)); 811 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this); 812 } 813 814 switch (Binding) { 815 default: 816 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 817 case STB_GLOBAL: 818 case STB_WEAK: 819 case STB_GNU_UNIQUE: 820 if (Sec == &InputSection::Discarded) 821 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 822 /*CanOmitFromDynSym=*/false, this); 823 return Symtab->addDefined(Name, StOther, Type, Value, Size, Binding, Sec, 824 this); 825 } 826 } 827 828 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 829 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 830 File(std::move(File)) {} 831 832 template <class ELFT> void ArchiveFile::parse() { 833 for (const Archive::Symbol &Sym : File->symbols()) 834 Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym); 835 } 836 837 // Returns a buffer pointing to a member file containing a given symbol. 838 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) { 839 Archive::Child C = 840 CHECK(Sym.getMember(), toString(this) + 841 ": could not get the member for symbol " + 842 Sym.getName()); 843 844 if (!Seen.insert(C.getChildOffset()).second) 845 return nullptr; 846 847 MemoryBufferRef MB = 848 CHECK(C.getMemoryBufferRef(), 849 toString(this) + 850 ": could not get the buffer for the member defining symbol " + 851 Sym.getName()); 852 853 if (Tar && C.getParent()->isThin()) 854 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); 855 856 InputFile *File = createObjectFile( 857 MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); 858 File->GroupId = GroupId; 859 return File; 860 } 861 862 template <class ELFT> 863 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 864 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 865 IsNeeded(!Config->AsNeeded) {} 866 867 // Partially parse the shared object file so that we can call 868 // getSoName on this object. 869 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 870 const Elf_Shdr *DynamicSec = nullptr; 871 const ELFFile<ELFT> Obj = this->getObj(); 872 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 873 874 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 875 for (const Elf_Shdr &Sec : Sections) { 876 switch (Sec.sh_type) { 877 default: 878 continue; 879 case SHT_DYNSYM: 880 this->initSymtab(Sections, &Sec); 881 break; 882 case SHT_DYNAMIC: 883 DynamicSec = &Sec; 884 break; 885 case SHT_SYMTAB_SHNDX: 886 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this); 887 break; 888 case SHT_GNU_versym: 889 this->VersymSec = &Sec; 890 break; 891 case SHT_GNU_verdef: 892 this->VerdefSec = &Sec; 893 break; 894 } 895 } 896 897 if (this->VersymSec && this->ELFSyms.empty()) 898 error("SHT_GNU_versym should be associated with symbol table"); 899 900 // Search for a DT_SONAME tag to initialize this->SoName. 901 if (!DynamicSec) 902 return; 903 ArrayRef<Elf_Dyn> Arr = 904 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this); 905 for (const Elf_Dyn &Dyn : Arr) { 906 if (Dyn.d_tag == DT_SONAME) { 907 uint64_t Val = Dyn.getVal(); 908 if (Val >= this->StringTable.size()) 909 fatal(toString(this) + ": invalid DT_SONAME entry"); 910 SoName = this->StringTable.data() + Val; 911 return; 912 } 913 } 914 } 915 916 // Parses ".gnu.version" section which is a parallel array for the symbol table. 917 // If a given file doesn't have ".gnu.version" section, returns VER_NDX_GLOBAL. 918 template <class ELFT> std::vector<uint32_t> SharedFile<ELFT>::parseVersyms() { 919 size_t Size = this->ELFSyms.size() - this->FirstGlobal; 920 if (!VersymSec) 921 return std::vector<uint32_t>(Size, VER_NDX_GLOBAL); 922 923 const char *Base = this->MB.getBuffer().data(); 924 const Elf_Versym *Versym = 925 reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 926 this->FirstGlobal; 927 928 std::vector<uint32_t> Ret(Size); 929 for (size_t I = 0; I < Size; ++I) 930 Ret[I] = Versym[I].vs_index; 931 return Ret; 932 } 933 934 // Parse the version definitions in the object file if present. Returns a vector 935 // whose nth element contains a pointer to the Elf_Verdef for version identifier 936 // n. Version identifiers that are not definitions map to nullptr. 937 template <class ELFT> 938 std::vector<const typename ELFT::Verdef *> SharedFile<ELFT>::parseVerdefs() { 939 if (!VerdefSec) 940 return {}; 941 942 // We cannot determine the largest verdef identifier without inspecting 943 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 944 // sequentially starting from 1, so we predict that the largest identifier 945 // will be VerdefCount. 946 unsigned VerdefCount = VerdefSec->sh_info; 947 std::vector<const Elf_Verdef *> Verdefs(VerdefCount + 1); 948 949 // Build the Verdefs array by following the chain of Elf_Verdef objects 950 // from the start of the .gnu.version_d section. 951 const char *Base = this->MB.getBuffer().data(); 952 const char *Verdef = Base + VerdefSec->sh_offset; 953 for (unsigned I = 0; I != VerdefCount; ++I) { 954 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 955 Verdef += CurVerdef->vd_next; 956 unsigned VerdefIndex = CurVerdef->vd_ndx; 957 Verdefs.resize(VerdefIndex + 1); 958 Verdefs[VerdefIndex] = CurVerdef; 959 } 960 961 return Verdefs; 962 } 963 964 // We do not usually care about alignments of data in shared object 965 // files because the loader takes care of it. However, if we promote a 966 // DSO symbol to point to .bss due to copy relocation, we need to keep 967 // the original alignment requirements. We infer it in this function. 968 template <class ELFT> 969 uint32_t SharedFile<ELFT>::getAlignment(ArrayRef<Elf_Shdr> Sections, 970 const Elf_Sym &Sym) { 971 uint64_t Ret = UINT64_MAX; 972 if (Sym.st_value) 973 Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 974 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) 975 Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); 976 return (Ret > UINT32_MAX) ? 0 : Ret; 977 } 978 979 // Fully parse the shared object file. This must be called after parseSoName(). 980 // 981 // This function parses symbol versions. If a DSO has version information, 982 // the file has a ".gnu.version_d" section which contains symbol version 983 // definitions. Each symbol is associated to one version through a table in 984 // ".gnu.version" section. That table is a parallel array for the symbol 985 // table, and each table entry contains an index in ".gnu.version_d". 986 // 987 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 988 // VER_NDX_GLOBAL. There's no table entry for these special versions in 989 // ".gnu.version_d". 990 // 991 // The file format for symbol versioning is perhaps a bit more complicated 992 // than necessary, but you can easily understand the code if you wrap your 993 // head around the data structure described above. 994 template <class ELFT> void SharedFile<ELFT>::parseRest() { 995 Verdefs = parseVerdefs(); // parse .gnu.version_d 996 std::vector<uint32_t> Versyms = parseVersyms(); // parse .gnu.version 997 ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); 998 999 // System libraries can have a lot of symbols with versions. Using a 1000 // fixed buffer for computing the versions name (foo@ver) can save a 1001 // lot of allocations. 1002 SmallString<0> VersionedNameBuffer; 1003 1004 // Add symbols to the symbol table. 1005 ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms(); 1006 for (size_t I = 0; I < Syms.size(); ++I) { 1007 const Elf_Sym &Sym = Syms[I]; 1008 1009 // ELF spec requires that all local symbols precede weak or global 1010 // symbols in each symbol table, and the index of first non-local symbol 1011 // is stored to sh_info. If a local symbol appears after some non-local 1012 // symbol, that's a violation of the spec. 1013 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 1014 if (Sym.getBinding() == STB_LOCAL) { 1015 warn("found local symbol '" + Name + 1016 "' in global part of symbol table in file " + toString(this)); 1017 continue; 1018 } 1019 1020 if (Sym.isUndefined()) { 1021 Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(), 1022 Sym.st_other, Sym.getType(), 1023 /*CanOmitFromDynSym=*/false, this); 1024 S->ExportDynamic = true; 1025 continue; 1026 } 1027 1028 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1029 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1030 // workaround for this bug. 1031 uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; 1032 if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && 1033 Name == "_gp_disp") 1034 continue; 1035 1036 uint64_t Alignment = getAlignment(Sections, Sym); 1037 if (!(Versyms[I] & VERSYM_HIDDEN)) 1038 Symtab->addShared(Name, *this, Sym, Alignment, Idx); 1039 1040 // Also add the symbol with the versioned name to handle undefined symbols 1041 // with explicit versions. 1042 if (Idx == VER_NDX_GLOBAL) 1043 continue; 1044 1045 if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { 1046 error("corrupt input file: version definition index " + Twine(Idx) + 1047 " for symbol " + Name + " is out of bounds\n>>> defined in " + 1048 toString(this)); 1049 continue; 1050 } 1051 1052 StringRef VerName = 1053 this->StringTable.data() + Verdefs[Idx]->getAux()->vda_name; 1054 VersionedNameBuffer.clear(); 1055 Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); 1056 Symtab->addShared(Saver.save(Name), *this, Sym, Alignment, Idx); 1057 } 1058 } 1059 1060 static ELFKind getBitcodeELFKind(const Triple &T) { 1061 if (T.isLittleEndian()) 1062 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1063 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1064 } 1065 1066 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 1067 switch (T.getArch()) { 1068 case Triple::aarch64: 1069 return EM_AARCH64; 1070 case Triple::amdgcn: 1071 case Triple::r600: 1072 return EM_AMDGPU; 1073 case Triple::arm: 1074 case Triple::thumb: 1075 return EM_ARM; 1076 case Triple::avr: 1077 return EM_AVR; 1078 case Triple::mips: 1079 case Triple::mipsel: 1080 case Triple::mips64: 1081 case Triple::mips64el: 1082 return EM_MIPS; 1083 case Triple::msp430: 1084 return EM_MSP430; 1085 case Triple::ppc: 1086 return EM_PPC; 1087 case Triple::ppc64: 1088 case Triple::ppc64le: 1089 return EM_PPC64; 1090 case Triple::x86: 1091 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 1092 case Triple::x86_64: 1093 return EM_X86_64; 1094 default: 1095 error(Path + ": could not infer e_machine from bitcode target triple " + 1096 T.str()); 1097 return EM_NONE; 1098 } 1099 } 1100 1101 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 1102 uint64_t OffsetInArchive) 1103 : InputFile(BitcodeKind, MB) { 1104 this->ArchiveName = ArchiveName; 1105 1106 std::string Path = MB.getBufferIdentifier().str(); 1107 if (Config->ThinLTOIndexOnly) 1108 Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); 1109 1110 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1111 // name. If two archives define two members with the same name, this 1112 // causes a collision which result in only one of the objects being taken 1113 // into consideration at LTO time (which very likely causes undefined 1114 // symbols later in the link stage). So we append file offset to make 1115 // filename unique. 1116 MemoryBufferRef MBRef( 1117 MB.getBuffer(), 1118 Saver.save(ArchiveName + Path + 1119 (ArchiveName.empty() ? "" : utostr(OffsetInArchive)))); 1120 1121 Obj = CHECK(lto::InputFile::create(MBRef), this); 1122 1123 Triple T(Obj->getTargetTriple()); 1124 EKind = getBitcodeELFKind(T); 1125 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 1126 } 1127 1128 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 1129 switch (GvVisibility) { 1130 case GlobalValue::DefaultVisibility: 1131 return STV_DEFAULT; 1132 case GlobalValue::HiddenVisibility: 1133 return STV_HIDDEN; 1134 case GlobalValue::ProtectedVisibility: 1135 return STV_PROTECTED; 1136 } 1137 llvm_unreachable("unknown visibility"); 1138 } 1139 1140 template <class ELFT> 1141 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 1142 const lto::InputFile::Symbol &ObjSym, 1143 BitcodeFile &F) { 1144 StringRef Name = Saver.save(ObjSym.getName()); 1145 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1146 1147 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 1148 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 1149 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 1150 1151 int C = ObjSym.getComdatIndex(); 1152 if (C != -1 && !KeptComdats[C]) 1153 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1154 CanOmitFromDynSym, &F); 1155 1156 if (ObjSym.isUndefined()) 1157 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1158 CanOmitFromDynSym, &F); 1159 1160 if (ObjSym.isCommon()) 1161 return Symtab->addCommon(Name, ObjSym.getCommonSize(), 1162 ObjSym.getCommonAlignment(), Binding, Visibility, 1163 STT_OBJECT, F); 1164 1165 return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym, 1166 F); 1167 } 1168 1169 template <class ELFT> 1170 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 1171 std::vector<bool> KeptComdats; 1172 for (StringRef S : Obj->getComdatTable()) 1173 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 1174 1175 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1176 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1177 } 1178 1179 static ELFKind getELFKind(MemoryBufferRef MB) { 1180 unsigned char Size; 1181 unsigned char Endian; 1182 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 1183 1184 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 1185 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 1186 if (Size != ELFCLASS32 && Size != ELFCLASS64) 1187 fatal(MB.getBufferIdentifier() + ": invalid file class"); 1188 1189 size_t BufSize = MB.getBuffer().size(); 1190 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 1191 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 1192 fatal(MB.getBufferIdentifier() + ": file is too short"); 1193 1194 if (Size == ELFCLASS32) 1195 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 1196 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 1197 } 1198 1199 void BinaryFile::parse() { 1200 ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer()); 1201 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1202 8, Data, ".data"); 1203 Sections.push_back(Section); 1204 1205 // For each input file foo that is embedded to a result as a binary 1206 // blob, we define _binary_foo_{start,end,size} symbols, so that 1207 // user programs can access blobs by name. Non-alphanumeric 1208 // characters in a filename are replaced with underscore. 1209 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1210 for (size_t I = 0; I < S.size(); ++I) 1211 if (!isAlnum(S[I])) 1212 S[I] = '_'; 1213 1214 Symtab->addDefined(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0, 1215 STB_GLOBAL, Section, nullptr); 1216 Symtab->addDefined(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1217 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1218 Symtab->addDefined(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1219 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1220 } 1221 1222 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1223 uint64_t OffsetInArchive) { 1224 if (isBitcode(MB)) 1225 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1226 1227 switch (getELFKind(MB)) { 1228 case ELF32LEKind: 1229 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1230 case ELF32BEKind: 1231 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1232 case ELF64LEKind: 1233 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1234 case ELF64BEKind: 1235 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1236 default: 1237 llvm_unreachable("getELFKind"); 1238 } 1239 } 1240 1241 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1242 switch (getELFKind(MB)) { 1243 case ELF32LEKind: 1244 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 1245 case ELF32BEKind: 1246 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1247 case ELF64LEKind: 1248 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1249 case ELF64BEKind: 1250 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1251 default: 1252 llvm_unreachable("getELFKind"); 1253 } 1254 } 1255 1256 MemoryBufferRef LazyObjFile::getBuffer() { 1257 if (AddedToLink) 1258 return MemoryBufferRef(); 1259 AddedToLink = true; 1260 return MB; 1261 } 1262 1263 InputFile *LazyObjFile::fetch() { 1264 MemoryBufferRef MBRef = getBuffer(); 1265 if (MBRef.getBuffer().empty()) 1266 return nullptr; 1267 1268 InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1269 File->GroupId = GroupId; 1270 return File; 1271 } 1272 1273 template <class ELFT> void LazyObjFile::parse() { 1274 // A lazy object file wraps either a bitcode file or an ELF file. 1275 if (isBitcode(this->MB)) { 1276 std::unique_ptr<lto::InputFile> Obj = 1277 CHECK(lto::InputFile::create(this->MB), this); 1278 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1279 if (!Sym.isUndefined()) 1280 Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this); 1281 return; 1282 } 1283 1284 if (getELFKind(this->MB) != Config->EKind) { 1285 error("incompatible file: " + this->MB.getBufferIdentifier()); 1286 return; 1287 } 1288 1289 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); 1290 ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); 1291 1292 for (const typename ELFT::Shdr &Sec : Sections) { 1293 if (Sec.sh_type != SHT_SYMTAB) 1294 continue; 1295 1296 typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this); 1297 uint32_t FirstGlobal = Sec.sh_info; 1298 StringRef StringTable = 1299 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1300 1301 for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal)) 1302 if (Sym.st_shndx != SHN_UNDEF) 1303 Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this), 1304 *this); 1305 return; 1306 } 1307 } 1308 1309 std::string elf::replaceThinLTOSuffix(StringRef Path) { 1310 StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; 1311 StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; 1312 1313 if (Path.consume_back(Suffix)) 1314 return (Path + Repl).str(); 1315 return Path; 1316 } 1317 1318 template void ArchiveFile::parse<ELF32LE>(); 1319 template void ArchiveFile::parse<ELF32BE>(); 1320 template void ArchiveFile::parse<ELF64LE>(); 1321 template void ArchiveFile::parse<ELF64BE>(); 1322 1323 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1324 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1325 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1326 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1327 1328 template void LazyObjFile::parse<ELF32LE>(); 1329 template void LazyObjFile::parse<ELF32BE>(); 1330 template void LazyObjFile::parse<ELF64LE>(); 1331 template void LazyObjFile::parse<ELF64BE>(); 1332 1333 template class elf::ELFFileBase<ELF32LE>; 1334 template class elf::ELFFileBase<ELF32BE>; 1335 template class elf::ELFFileBase<ELF64LE>; 1336 template class elf::ELFFileBase<ELF64BE>; 1337 1338 template class elf::ObjFile<ELF32LE>; 1339 template class elf::ObjFile<ELF32BE>; 1340 template class elf::ObjFile<ELF64LE>; 1341 template class elf::ObjFile<ELF64BE>; 1342 1343 template class elf::SharedFile<ELF32LE>; 1344 template class elf::SharedFile<ELF32BE>; 1345 template class elf::SharedFile<ELF64LE>; 1346 template class elf::SharedFile<ELF64BE>; 1347