1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "Driver.h" 12 #include "Error.h" 13 #include "InputSection.h" 14 #include "LinkerScript.h" 15 #include "SymbolTable.h" 16 #include "Symbols.h" 17 #include "SyntheticSections.h" 18 #include "lld/Support/Memory.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Bitcode/BitcodeReader.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/LTO/LTO.h" 26 #include "llvm/MC/StringTableBuilder.h" 27 #include "llvm/Object/ELFObjectFile.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace llvm::ELF; 33 using namespace llvm::object; 34 using namespace llvm::sys::fs; 35 36 using namespace lld; 37 using namespace lld::elf; 38 39 namespace { 40 // In ELF object file all section addresses are zero. If we have multiple 41 // .text sections (when using -ffunction-section or comdat group) then 42 // LLVM DWARF parser will not be able to parse .debug_line correctly, unless 43 // we assign each section some unique address. This callback method assigns 44 // each section an address equal to its offset in ELF object file. 45 class ObjectInfo : public LoadedObjectInfo { 46 public: 47 uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override { 48 return static_cast<const ELFSectionRef &>(Sec).getOffset(); 49 } 50 std::unique_ptr<LoadedObjectInfo> clone() const override { 51 return std::unique_ptr<LoadedObjectInfo>(); 52 } 53 }; 54 } 55 56 template <class ELFT> void elf::ObjectFile<ELFT>::initializeDwarfLine() { 57 std::unique_ptr<object::ObjectFile> Obj = 58 check(object::ObjectFile::createObjectFile(this->MB), 59 "createObjectFile failed"); 60 61 ObjectInfo ObjInfo; 62 DWARFContextInMemory Dwarf(*Obj, &ObjInfo); 63 DwarfLine.reset(new DWARFDebugLine(&Dwarf.getLineSection().Relocs)); 64 DataExtractor LineData(Dwarf.getLineSection().Data, 65 ELFT::TargetEndianness == support::little, 66 ELFT::Is64Bits ? 8 : 4); 67 68 // The second parameter is offset in .debug_line section 69 // for compilation unit (CU) of interest. We have only one 70 // CU (object file), so offset is always 0. 71 DwarfLine->getOrParseLineTable(LineData, 0); 72 } 73 74 // Returns source line information for a given offset 75 // using DWARF debug info. 76 template <class ELFT> 77 std::string elf::ObjectFile<ELFT>::getLineInfo(InputSectionBase<ELFT> *S, 78 uintX_t Offset) { 79 if (!DwarfLine) 80 initializeDwarfLine(); 81 82 // The offset to CU is 0. 83 const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); 84 if (!Tbl) 85 return ""; 86 87 // Use fake address calcuated by adding section file offset and offset in 88 // section. See comments for ObjectInfo class. 89 DILineInfo Info; 90 Tbl->getFileLineInfoForAddress( 91 S->Offset + Offset, nullptr, 92 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); 93 if (Info.Line == 0) 94 return ""; 95 return convertToUnixPathSeparator(Info.FileName) + ":" + 96 std::to_string(Info.Line); 97 } 98 99 // Returns "(internal)", "foo.a(bar.o)" or "baz.o". 100 std::string elf::toString(const InputFile *F) { 101 if (!F) 102 return "(internal)"; 103 if (!F->ArchiveName.empty()) 104 return (F->ArchiveName + "(" + F->getName() + ")").str(); 105 return F->getName(); 106 } 107 108 template <class ELFT> static ELFKind getELFKind() { 109 if (ELFT::TargetEndianness == support::little) 110 return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 111 return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 112 } 113 114 template <class ELFT> 115 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 116 EKind = getELFKind<ELFT>(); 117 EMachine = getObj().getHeader()->e_machine; 118 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 119 } 120 121 template <class ELFT> 122 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalSymbols() { 123 return makeArrayRef(Symbols.begin() + FirstNonLocal, Symbols.end()); 124 } 125 126 template <class ELFT> 127 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 128 return check(getObj().getSectionIndex(&Sym, Symbols, SymtabSHNDX)); 129 } 130 131 template <class ELFT> 132 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 133 const Elf_Shdr *Symtab) { 134 FirstNonLocal = Symtab->sh_info; 135 Symbols = check(getObj().symbols(Symtab)); 136 if (FirstNonLocal == 0 || FirstNonLocal > Symbols.size()) 137 fatal(toString(this) + ": invalid sh_info in symbol table"); 138 139 StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections)); 140 } 141 142 template <class ELFT> 143 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M) 144 : ELFFileBase<ELFT>(Base::ObjectKind, M) {} 145 146 template <class ELFT> 147 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() { 148 return makeArrayRef(this->SymbolBodies).slice(this->FirstNonLocal); 149 } 150 151 template <class ELFT> 152 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() { 153 if (this->SymbolBodies.empty()) 154 return this->SymbolBodies; 155 return makeArrayRef(this->SymbolBodies).slice(1, this->FirstNonLocal - 1); 156 } 157 158 template <class ELFT> 159 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() { 160 if (this->SymbolBodies.empty()) 161 return this->SymbolBodies; 162 return makeArrayRef(this->SymbolBodies).slice(1); 163 } 164 165 template <class ELFT> 166 void elf::ObjectFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 167 // Read section and symbol tables. 168 initializeSections(ComdatGroups); 169 initializeSymbols(); 170 } 171 172 // Sections with SHT_GROUP and comdat bits define comdat section groups. 173 // They are identified and deduplicated by group name. This function 174 // returns a group name. 175 template <class ELFT> 176 StringRef 177 elf::ObjectFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 178 const Elf_Shdr &Sec) { 179 if (this->Symbols.empty()) 180 this->initSymtab(Sections, 181 check(object::getSection<ELFT>(Sections, Sec.sh_link))); 182 const Elf_Sym *Sym = 183 check(object::getSymbol<ELFT>(this->Symbols, Sec.sh_info)); 184 return check(Sym->getName(this->StringTable)); 185 } 186 187 template <class ELFT> 188 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word> 189 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { 190 const ELFFile<ELFT> &Obj = this->getObj(); 191 ArrayRef<Elf_Word> Entries = 192 check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec)); 193 if (Entries.empty() || Entries[0] != GRP_COMDAT) 194 fatal(toString(this) + ": unsupported SHT_GROUP format"); 195 return Entries.slice(1); 196 } 197 198 template <class ELFT> 199 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 200 // We don't merge sections if -O0 (default is -O1). This makes sometimes 201 // the linker significantly faster, although the output will be bigger. 202 if (Config->Optimize == 0) 203 return false; 204 205 // Do not merge sections if generating a relocatable object. It makes 206 // the code simpler because we do not need to update relocation addends 207 // to reflect changes introduced by merging. Instead of that we write 208 // such "merge" sections into separate OutputSections and keep SHF_MERGE 209 // / SHF_STRINGS flags and sh_entsize value to be able to perform merging 210 // later during a final linking. 211 if (Config->Relocatable) 212 return false; 213 214 // A mergeable section with size 0 is useless because they don't have 215 // any data to merge. A mergeable string section with size 0 can be 216 // argued as invalid because it doesn't end with a null character. 217 // We'll avoid a mess by handling them as if they were non-mergeable. 218 if (Sec.sh_size == 0) 219 return false; 220 221 // Check for sh_entsize. The ELF spec is not clear about the zero 222 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 223 // the section does not hold a table of fixed-size entries". We know 224 // that Rust 1.13 produces a string mergeable section with a zero 225 // sh_entsize. Here we just accept it rather than being picky about it. 226 uintX_t EntSize = Sec.sh_entsize; 227 if (EntSize == 0) 228 return false; 229 if (Sec.sh_size % EntSize) 230 fatal(toString(this) + 231 ": SHF_MERGE section size must be a multiple of sh_entsize"); 232 233 uintX_t Flags = Sec.sh_flags; 234 if (!(Flags & SHF_MERGE)) 235 return false; 236 if (Flags & SHF_WRITE) 237 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 238 239 // Don't try to merge if the alignment is larger than the sh_entsize and this 240 // is not SHF_STRINGS. 241 // 242 // Since this is not a SHF_STRINGS, we would need to pad after every entity. 243 // It would be equivalent for the producer of the .o to just set a larger 244 // sh_entsize. 245 if (Flags & SHF_STRINGS) 246 return true; 247 248 return Sec.sh_addralign <= EntSize; 249 } 250 251 template <class ELFT> 252 void elf::ObjectFile<ELFT>::initializeSections( 253 DenseSet<CachedHashStringRef> &ComdatGroups) { 254 ArrayRef<Elf_Shdr> ObjSections = check(this->getObj().sections()); 255 const ELFFile<ELFT> &Obj = this->getObj(); 256 uint64_t Size = ObjSections.size(); 257 Sections.resize(Size); 258 unsigned I = -1; 259 StringRef SectionStringTable = check(Obj.getSectionStringTable(ObjSections)); 260 for (const Elf_Shdr &Sec : ObjSections) { 261 ++I; 262 if (Sections[I] == &InputSection<ELFT>::Discarded) 263 continue; 264 265 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 266 // if -r is given, we'll let the final link discard such sections. 267 // This is compatible with GNU. 268 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 269 Sections[I] = &InputSection<ELFT>::Discarded; 270 continue; 271 } 272 273 switch (Sec.sh_type) { 274 case SHT_GROUP: 275 Sections[I] = &InputSection<ELFT>::Discarded; 276 if (ComdatGroups.insert(CachedHashStringRef( 277 getShtGroupSignature(ObjSections, Sec))) 278 .second) 279 continue; 280 for (uint32_t SecIndex : getShtGroupEntries(Sec)) { 281 if (SecIndex >= Size) 282 fatal(toString(this) + ": invalid section index in group: " + 283 Twine(SecIndex)); 284 Sections[SecIndex] = &InputSection<ELFT>::Discarded; 285 } 286 break; 287 case SHT_SYMTAB: 288 this->initSymtab(ObjSections, &Sec); 289 break; 290 case SHT_SYMTAB_SHNDX: 291 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, ObjSections)); 292 break; 293 case SHT_STRTAB: 294 case SHT_NULL: 295 break; 296 default: 297 Sections[I] = createInputSection(Sec, SectionStringTable); 298 } 299 300 // .ARM.exidx sections have a reverse dependency on the InputSection they 301 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 302 if (Sec.sh_flags & SHF_LINK_ORDER) { 303 if (Sec.sh_link >= Sections.size()) 304 fatal(toString(this) + ": invalid sh_link index: " + 305 Twine(Sec.sh_link)); 306 auto *IS = cast<InputSection<ELFT>>(Sections[Sec.sh_link]); 307 IS->DependentSection = Sections[I]; 308 } 309 } 310 } 311 312 template <class ELFT> 313 InputSectionBase<ELFT> * 314 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 315 uint32_t Idx = Sec.sh_info; 316 if (Idx >= Sections.size()) 317 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 318 InputSectionBase<ELFT> *Target = Sections[Idx]; 319 320 // Strictly speaking, a relocation section must be included in the 321 // group of the section it relocates. However, LLVM 3.3 and earlier 322 // would fail to do so, so we gracefully handle that case. 323 if (Target == &InputSection<ELFT>::Discarded) 324 return nullptr; 325 326 if (!Target) 327 fatal(toString(this) + ": unsupported relocation reference"); 328 return Target; 329 } 330 331 template <class ELFT> 332 InputSectionBase<ELFT> * 333 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec, 334 StringRef SectionStringTable) { 335 StringRef Name = 336 check(this->getObj().getSectionName(&Sec, SectionStringTable)); 337 338 switch (Sec.sh_type) { 339 case SHT_ARM_ATTRIBUTES: 340 // FIXME: ARM meta-data section. Retain the first attribute section 341 // we see. The eglibc ARM dynamic loaders require the presence of an 342 // attribute section for dlopen to work. 343 // In a full implementation we would merge all attribute sections. 344 if (In<ELFT>::ARMAttributes == nullptr) { 345 In<ELFT>::ARMAttributes = make<InputSection<ELFT>>(this, &Sec, Name); 346 return In<ELFT>::ARMAttributes; 347 } 348 return &InputSection<ELFT>::Discarded; 349 case SHT_RELA: 350 case SHT_REL: { 351 // This section contains relocation information. 352 // If -r is given, we do not interpret or apply relocation 353 // but just copy relocation sections to output. 354 if (Config->Relocatable) 355 return make<InputSection<ELFT>>(this, &Sec, Name); 356 357 // Find the relocation target section and associate this 358 // section with it. 359 InputSectionBase<ELFT> *Target = getRelocTarget(Sec); 360 if (!Target) 361 return nullptr; 362 if (Target->FirstRelocation) 363 fatal(toString(this) + 364 ": multiple relocation sections to one section are not supported"); 365 if (!isa<InputSection<ELFT>>(Target) && !isa<EhInputSection<ELFT>>(Target)) 366 fatal(toString(this) + 367 ": relocations pointing to SHF_MERGE are not supported"); 368 369 size_t NumRelocations; 370 if (Sec.sh_type == SHT_RELA) { 371 ArrayRef<Elf_Rela> Rels = check(this->getObj().relas(&Sec)); 372 Target->FirstRelocation = Rels.begin(); 373 NumRelocations = Rels.size(); 374 Target->AreRelocsRela = true; 375 } else { 376 ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec)); 377 Target->FirstRelocation = Rels.begin(); 378 NumRelocations = Rels.size(); 379 Target->AreRelocsRela = false; 380 } 381 assert(isUInt<31>(NumRelocations)); 382 Target->NumRelocations = NumRelocations; 383 return nullptr; 384 } 385 } 386 387 // .note.GNU-stack is a marker section to control the presence of 388 // PT_GNU_STACK segment in outputs. Since the presence of the segment 389 // is controlled only by the command line option (-z execstack) in LLD, 390 // .note.GNU-stack is ignored. 391 if (Name == ".note.GNU-stack") 392 return &InputSection<ELFT>::Discarded; 393 394 if (Name == ".note.GNU-split-stack") { 395 error("objects using splitstacks are not supported"); 396 return &InputSection<ELFT>::Discarded; 397 } 398 399 if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) 400 return &InputSection<ELFT>::Discarded; 401 402 // The linker merges EH (exception handling) frames and creates a 403 // .eh_frame_hdr section for runtime. So we handle them with a special 404 // class. For relocatable outputs, they are just passed through. 405 if (Name == ".eh_frame" && !Config->Relocatable) 406 return make<EhInputSection<ELFT>>(this, &Sec, Name); 407 408 if (shouldMerge(Sec)) 409 return make<MergeInputSection<ELFT>>(this, &Sec, Name); 410 return make<InputSection<ELFT>>(this, &Sec, Name); 411 } 412 413 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() { 414 SymbolBodies.reserve(this->Symbols.size()); 415 for (const Elf_Sym &Sym : this->Symbols) 416 SymbolBodies.push_back(createSymbolBody(&Sym)); 417 } 418 419 template <class ELFT> 420 InputSectionBase<ELFT> * 421 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const { 422 uint32_t Index = this->getSectionIndex(Sym); 423 if (Index >= Sections.size()) 424 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 425 InputSectionBase<ELFT> *S = Sections[Index]; 426 427 // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could 428 // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be 429 // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. 430 // In this case it is fine for section to be null here as we do not 431 // allocate sections of these types. 432 if (!S) { 433 if (Index == 0 || Sym.getType() == STT_SECTION || 434 Sym.getType() == STT_NOTYPE) 435 return nullptr; 436 fatal(toString(this) + ": invalid section index: " + Twine(Index)); 437 } 438 439 if (S == &InputSection<ELFT>::Discarded) 440 return S; 441 return S->Repl; 442 } 443 444 template <class ELFT> 445 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { 446 int Binding = Sym->getBinding(); 447 InputSectionBase<ELFT> *Sec = getSection(*Sym); 448 449 uint8_t StOther = Sym->st_other; 450 uint8_t Type = Sym->getType(); 451 uintX_t Value = Sym->st_value; 452 uintX_t Size = Sym->st_size; 453 454 if (Binding == STB_LOCAL) { 455 if (Sym->getType() == STT_FILE) 456 SourceFile = check(Sym->getName(this->StringTable)); 457 458 if (this->StringTable.size() <= Sym->st_name) 459 fatal(toString(this) + ": invalid symbol name offset"); 460 461 StringRefZ Name = this->StringTable.data() + Sym->st_name; 462 if (Sym->st_shndx == SHN_UNDEF) 463 return new (BAlloc) 464 Undefined(Name, /*IsLocal=*/true, StOther, Type, this); 465 466 return new (BAlloc) DefinedRegular<ELFT>(Name, /*IsLocal=*/true, StOther, 467 Type, Value, Size, Sec, this); 468 } 469 470 StringRef Name = check(Sym->getName(this->StringTable)); 471 472 switch (Sym->st_shndx) { 473 case SHN_UNDEF: 474 return elf::Symtab<ELFT>::X 475 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 476 /*CanOmitFromDynSym=*/false, this) 477 ->body(); 478 case SHN_COMMON: 479 if (Value == 0 || Value >= UINT32_MAX) 480 fatal(toString(this) + ": common symbol '" + Name + 481 "' has invalid alignment: " + Twine(Value)); 482 return elf::Symtab<ELFT>::X 483 ->addCommon(Name, Size, Value, Binding, StOther, Type, this) 484 ->body(); 485 } 486 487 switch (Binding) { 488 default: 489 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 490 case STB_GLOBAL: 491 case STB_WEAK: 492 case STB_GNU_UNIQUE: 493 if (Sec == &InputSection<ELFT>::Discarded) 494 return elf::Symtab<ELFT>::X 495 ->addUndefined(Name, /*IsLocal=*/false, Binding, StOther, Type, 496 /*CanOmitFromDynSym=*/false, this) 497 ->body(); 498 return elf::Symtab<ELFT>::X 499 ->addRegular(Name, StOther, Type, Value, Size, Binding, Sec, this) 500 ->body(); 501 } 502 } 503 504 template <class ELFT> void ArchiveFile::parse() { 505 File = check(Archive::create(MB), 506 MB.getBufferIdentifier() + ": failed to parse archive"); 507 508 // Read the symbol table to construct Lazy objects. 509 for (const Archive::Symbol &Sym : File->symbols()) 510 Symtab<ELFT>::X->addLazyArchive(this, Sym); 511 } 512 513 // Returns a buffer pointing to a member file containing a given symbol. 514 std::pair<MemoryBufferRef, uint64_t> 515 ArchiveFile::getMember(const Archive::Symbol *Sym) { 516 Archive::Child C = 517 check(Sym->getMember(), 518 "could not get the member for symbol " + Sym->getName()); 519 520 if (!Seen.insert(C.getChildOffset()).second) 521 return {MemoryBufferRef(), 0}; 522 523 MemoryBufferRef Ret = 524 check(C.getMemoryBufferRef(), 525 "could not get the buffer for the member defining symbol " + 526 Sym->getName()); 527 528 if (C.getParent()->isThin() && Driver->Cpio) 529 Driver->Cpio->append(relativeToRoot(check(C.getFullName())), 530 Ret.getBuffer()); 531 if (C.getParent()->isThin()) 532 return {Ret, 0}; 533 return {Ret, C.getChildOffset()}; 534 } 535 536 template <class ELFT> 537 SharedFile<ELFT>::SharedFile(MemoryBufferRef M) 538 : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {} 539 540 template <class ELFT> 541 const typename ELFT::Shdr * 542 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { 543 return check( 544 this->getObj().getSection(&Sym, this->Symbols, this->SymtabSHNDX)); 545 } 546 547 // Partially parse the shared object file so that we can call 548 // getSoName on this object. 549 template <class ELFT> void SharedFile<ELFT>::parseSoName() { 550 const Elf_Shdr *DynamicSec = nullptr; 551 552 const ELFFile<ELFT> Obj = this->getObj(); 553 ArrayRef<Elf_Shdr> Sections = check(Obj.sections()); 554 for (const Elf_Shdr &Sec : Sections) { 555 switch (Sec.sh_type) { 556 default: 557 continue; 558 case SHT_DYNSYM: 559 this->initSymtab(Sections, &Sec); 560 break; 561 case SHT_DYNAMIC: 562 DynamicSec = &Sec; 563 break; 564 case SHT_SYMTAB_SHNDX: 565 this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec, Sections)); 566 break; 567 case SHT_GNU_versym: 568 this->VersymSec = &Sec; 569 break; 570 case SHT_GNU_verdef: 571 this->VerdefSec = &Sec; 572 break; 573 } 574 } 575 576 if (this->VersymSec && this->Symbols.empty()) 577 error("SHT_GNU_versym should be associated with symbol table"); 578 579 // DSOs are identified by soname, and they usually contain 580 // DT_SONAME tag in their header. But if they are missing, 581 // filenames are used as default sonames. 582 SoName = sys::path::filename(this->getName()); 583 584 if (!DynamicSec) 585 return; 586 587 ArrayRef<Elf_Dyn> Arr = 588 check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), 589 toString(this) + ": getSectionContentsAsArray failed"); 590 for (const Elf_Dyn &Dyn : Arr) { 591 if (Dyn.d_tag == DT_SONAME) { 592 uintX_t Val = Dyn.getVal(); 593 if (Val >= this->StringTable.size()) 594 fatal(toString(this) + ": invalid DT_SONAME entry"); 595 SoName = StringRef(this->StringTable.data() + Val); 596 return; 597 } 598 } 599 } 600 601 // Parse the version definitions in the object file if present. Returns a vector 602 // whose nth element contains a pointer to the Elf_Verdef for version identifier 603 // n. Version identifiers that are not definitions map to nullptr. The array 604 // always has at least length 1. 605 template <class ELFT> 606 std::vector<const typename ELFT::Verdef *> 607 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { 608 std::vector<const Elf_Verdef *> Verdefs(1); 609 // We only need to process symbol versions for this DSO if it has both a 610 // versym and a verdef section, which indicates that the DSO contains symbol 611 // version definitions. 612 if (!VersymSec || !VerdefSec) 613 return Verdefs; 614 615 // The location of the first global versym entry. 616 const char *Base = this->MB.getBuffer().data(); 617 Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 618 this->FirstNonLocal; 619 620 // We cannot determine the largest verdef identifier without inspecting 621 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 622 // sequentially starting from 1, so we predict that the largest identifier 623 // will be VerdefCount. 624 unsigned VerdefCount = VerdefSec->sh_info; 625 Verdefs.resize(VerdefCount + 1); 626 627 // Build the Verdefs array by following the chain of Elf_Verdef objects 628 // from the start of the .gnu.version_d section. 629 const char *Verdef = Base + VerdefSec->sh_offset; 630 for (unsigned I = 0; I != VerdefCount; ++I) { 631 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 632 Verdef += CurVerdef->vd_next; 633 unsigned VerdefIndex = CurVerdef->vd_ndx; 634 if (Verdefs.size() <= VerdefIndex) 635 Verdefs.resize(VerdefIndex + 1); 636 Verdefs[VerdefIndex] = CurVerdef; 637 } 638 639 return Verdefs; 640 } 641 642 // Fully parse the shared object file. This must be called after parseSoName(). 643 template <class ELFT> void SharedFile<ELFT>::parseRest() { 644 // Create mapping from version identifiers to Elf_Verdef entries. 645 const Elf_Versym *Versym = nullptr; 646 std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); 647 648 Elf_Sym_Range Syms = this->getGlobalSymbols(); 649 for (const Elf_Sym &Sym : Syms) { 650 unsigned VersymIndex = 0; 651 if (Versym) { 652 VersymIndex = Versym->vs_index; 653 ++Versym; 654 } 655 656 StringRef Name = check(Sym.getName(this->StringTable)); 657 if (Sym.isUndefined()) { 658 Undefs.push_back(Name); 659 continue; 660 } 661 662 if (Versym) { 663 // Ignore local symbols and non-default versions. 664 if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN)) 665 continue; 666 } 667 668 const Elf_Verdef *V = 669 VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex]; 670 elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V); 671 } 672 } 673 674 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) { 675 Triple T(check(getBitcodeTargetTriple(MB))); 676 if (T.isLittleEndian()) 677 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 678 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 679 } 680 681 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) { 682 Triple T(check(getBitcodeTargetTriple(MB))); 683 switch (T.getArch()) { 684 case Triple::aarch64: 685 return EM_AARCH64; 686 case Triple::arm: 687 return EM_ARM; 688 case Triple::mips: 689 case Triple::mipsel: 690 case Triple::mips64: 691 case Triple::mips64el: 692 return EM_MIPS; 693 case Triple::ppc: 694 return EM_PPC; 695 case Triple::ppc64: 696 return EM_PPC64; 697 case Triple::x86: 698 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 699 case Triple::x86_64: 700 return EM_X86_64; 701 default: 702 fatal(MB.getBufferIdentifier() + 703 ": could not infer e_machine from bitcode target triple " + T.str()); 704 } 705 } 706 707 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) { 708 EKind = getBitcodeELFKind(MB); 709 EMachine = getBitcodeMachineKind(MB); 710 } 711 712 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 713 switch (GvVisibility) { 714 case GlobalValue::DefaultVisibility: 715 return STV_DEFAULT; 716 case GlobalValue::HiddenVisibility: 717 return STV_HIDDEN; 718 case GlobalValue::ProtectedVisibility: 719 return STV_PROTECTED; 720 } 721 llvm_unreachable("unknown visibility"); 722 } 723 724 template <class ELFT> 725 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 726 const lto::InputFile::Symbol &ObjSym, 727 BitcodeFile *F) { 728 StringRef NameRef = Saver.save(ObjSym.getName()); 729 uint32_t Flags = ObjSym.getFlags(); 730 uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL; 731 732 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 733 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 734 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 735 736 int C = check(ObjSym.getComdatIndex()); 737 if (C != -1 && !KeptComdats[C]) 738 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 739 Visibility, Type, CanOmitFromDynSym, 740 F); 741 742 if (Flags & BasicSymbolRef::SF_Undefined) 743 return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding, 744 Visibility, Type, CanOmitFromDynSym, 745 F); 746 747 if (Flags & BasicSymbolRef::SF_Common) 748 return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(), 749 ObjSym.getCommonAlignment(), Binding, 750 Visibility, STT_OBJECT, F); 751 752 return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type, 753 CanOmitFromDynSym, F); 754 } 755 756 template <class ELFT> 757 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 758 759 // Here we pass a new MemoryBufferRef which is identified by ArchiveName 760 // (the fully resolved path of the archive) + member name + offset of the 761 // member in the archive. 762 // ThinLTO uses the MemoryBufferRef identifier to access its internal 763 // data structures and if two archives define two members with the same name, 764 // this causes a collision which result in only one of the objects being 765 // taken into consideration at LTO time (which very likely causes undefined 766 // symbols later in the link stage). 767 Obj = check(lto::InputFile::create(MemoryBufferRef( 768 MB.getBuffer(), Saver.save(ArchiveName + MB.getBufferIdentifier() + 769 utostr(OffsetInArchive))))); 770 771 std::vector<bool> KeptComdats; 772 for (StringRef S : Obj->getComdatTable()) { 773 StringRef N = Saver.save(S); 774 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second); 775 } 776 777 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 778 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)); 779 } 780 781 template <template <class> class T> 782 static InputFile *createELFFile(MemoryBufferRef MB) { 783 unsigned char Size; 784 unsigned char Endian; 785 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 786 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 787 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 788 789 size_t BufSize = MB.getBuffer().size(); 790 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 791 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 792 fatal(MB.getBufferIdentifier() + ": file is too short"); 793 794 InputFile *Obj; 795 if (Size == ELFCLASS32 && Endian == ELFDATA2LSB) 796 Obj = make<T<ELF32LE>>(MB); 797 else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB) 798 Obj = make<T<ELF32BE>>(MB); 799 else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB) 800 Obj = make<T<ELF64LE>>(MB); 801 else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB) 802 Obj = make<T<ELF64BE>>(MB); 803 else 804 fatal(MB.getBufferIdentifier() + ": invalid file class"); 805 806 if (!Config->FirstElf) 807 Config->FirstElf = Obj; 808 return Obj; 809 } 810 811 template <class ELFT> void BinaryFile::parse() { 812 StringRef Buf = MB.getBuffer(); 813 ArrayRef<uint8_t> Data = 814 makeArrayRef<uint8_t>((const uint8_t *)Buf.data(), Buf.size()); 815 816 std::string Filename = MB.getBufferIdentifier(); 817 std::transform(Filename.begin(), Filename.end(), Filename.begin(), 818 [](char C) { return isalnum(C) ? C : '_'; }); 819 Filename = "_binary_" + Filename; 820 StringRef StartName = Saver.save(Twine(Filename) + "_start"); 821 StringRef EndName = Saver.save(Twine(Filename) + "_end"); 822 StringRef SizeName = Saver.save(Twine(Filename) + "_size"); 823 824 auto *Section = 825 make<InputSection<ELFT>>(SHF_ALLOC, SHT_PROGBITS, 8, Data, ".data"); 826 Sections.push_back(Section); 827 828 elf::Symtab<ELFT>::X->addRegular(StartName, STV_DEFAULT, STT_OBJECT, 0, 0, 829 STB_GLOBAL, Section, nullptr); 830 elf::Symtab<ELFT>::X->addRegular(EndName, STV_DEFAULT, STT_OBJECT, 831 Data.size(), 0, STB_GLOBAL, Section, 832 nullptr); 833 elf::Symtab<ELFT>::X->addRegular(SizeName, STV_DEFAULT, STT_OBJECT, 834 Data.size(), 0, STB_GLOBAL, nullptr, 835 nullptr); 836 } 837 838 static bool isBitcode(MemoryBufferRef MB) { 839 using namespace sys::fs; 840 return identify_magic(MB.getBuffer()) == file_magic::bitcode; 841 } 842 843 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 844 uint64_t OffsetInArchive) { 845 InputFile *F = 846 isBitcode(MB) ? make<BitcodeFile>(MB) : createELFFile<ObjectFile>(MB); 847 F->ArchiveName = ArchiveName; 848 F->OffsetInArchive = OffsetInArchive; 849 return F; 850 } 851 852 InputFile *elf::createSharedFile(MemoryBufferRef MB) { 853 return createELFFile<SharedFile>(MB); 854 } 855 856 MemoryBufferRef LazyObjectFile::getBuffer() { 857 if (Seen) 858 return MemoryBufferRef(); 859 Seen = true; 860 return MB; 861 } 862 863 template <class ELFT> void LazyObjectFile::parse() { 864 for (StringRef Sym : getSymbols()) 865 Symtab<ELFT>::X->addLazyObject(Sym, *this); 866 } 867 868 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() { 869 typedef typename ELFT::Shdr Elf_Shdr; 870 typedef typename ELFT::Sym Elf_Sym; 871 typedef typename ELFT::SymRange Elf_Sym_Range; 872 873 const ELFFile<ELFT> Obj(this->MB.getBuffer()); 874 ArrayRef<Elf_Shdr> Sections = check(Obj.sections()); 875 for (const Elf_Shdr &Sec : Sections) { 876 if (Sec.sh_type != SHT_SYMTAB) 877 continue; 878 Elf_Sym_Range Syms = check(Obj.symbols(&Sec)); 879 uint32_t FirstNonLocal = Sec.sh_info; 880 StringRef StringTable = check(Obj.getStringTableForSymtab(Sec, Sections)); 881 std::vector<StringRef> V; 882 for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) 883 if (Sym.st_shndx != SHN_UNDEF) 884 V.push_back(check(Sym.getName(StringTable))); 885 return V; 886 } 887 return {}; 888 } 889 890 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() { 891 std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB)); 892 std::vector<StringRef> V; 893 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 894 if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined)) 895 V.push_back(Saver.save(Sym.getName())); 896 return V; 897 } 898 899 // Returns a vector of globally-visible defined symbol names. 900 std::vector<StringRef> LazyObjectFile::getSymbols() { 901 if (isBitcode(this->MB)) 902 return getBitcodeSymbols(); 903 904 unsigned char Size; 905 unsigned char Endian; 906 std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer()); 907 if (Size == ELFCLASS32) { 908 if (Endian == ELFDATA2LSB) 909 return getElfSymbols<ELF32LE>(); 910 return getElfSymbols<ELF32BE>(); 911 } 912 if (Endian == ELFDATA2LSB) 913 return getElfSymbols<ELF64LE>(); 914 return getElfSymbols<ELF64BE>(); 915 } 916 917 template void ArchiveFile::parse<ELF32LE>(); 918 template void ArchiveFile::parse<ELF32BE>(); 919 template void ArchiveFile::parse<ELF64LE>(); 920 template void ArchiveFile::parse<ELF64BE>(); 921 922 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 923 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 924 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 925 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 926 927 template void LazyObjectFile::parse<ELF32LE>(); 928 template void LazyObjectFile::parse<ELF32BE>(); 929 template void LazyObjectFile::parse<ELF64LE>(); 930 template void LazyObjectFile::parse<ELF64BE>(); 931 932 template class elf::ELFFileBase<ELF32LE>; 933 template class elf::ELFFileBase<ELF32BE>; 934 template class elf::ELFFileBase<ELF64LE>; 935 template class elf::ELFFileBase<ELF64BE>; 936 937 template class elf::ObjectFile<ELF32LE>; 938 template class elf::ObjectFile<ELF32BE>; 939 template class elf::ObjectFile<ELF64LE>; 940 template class elf::ObjectFile<ELF64BE>; 941 942 template class elf::SharedFile<ELF32LE>; 943 template class elf::SharedFile<ELF32BE>; 944 template class elf::SharedFile<ELF64LE>; 945 template class elf::SharedFile<ELF64BE>; 946 947 template void BinaryFile::parse<ELF32LE>(); 948 template void BinaryFile::parse<ELF32BE>(); 949 template void BinaryFile::parse<ELF64LE>(); 950 template void BinaryFile::parse<ELF64BE>(); 951