1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "Driver.h"
12 #include "ELFCreator.h"
13 #include "Error.h"
14 #include "InputSection.h"
15 #include "LinkerScript.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Support/Path.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 using namespace llvm;
29 using namespace llvm::ELF;
30 using namespace llvm::object;
31 using namespace llvm::sys::fs;
32 
33 using namespace lld;
34 using namespace lld::elf;
35 
36 std::vector<InputFile *> InputFile::Pool;
37 
38 // Deletes all InputFile instances created so far.
39 void InputFile::freePool() {
40   // Files are freed in reverse order so that files created
41   // from other files (e.g. object files extracted from archives)
42   // are freed in the proper order.
43   for (int I = Pool.size() - 1; I >= 0; --I)
44     delete Pool[I];
45 }
46 
47 // Returns "(internal)", "foo.a(bar.o)" or "baz.o".
48 std::string elf::getFilename(const InputFile *F) {
49   if (!F)
50     return "(internal)";
51   if (!F->ArchiveName.empty())
52     return (F->ArchiveName + "(" + F->getName() + ")").str();
53   return F->getName();
54 }
55 
56 template <class ELFT> static ELFFile<ELFT> createELFObj(MemoryBufferRef MB) {
57   std::error_code EC;
58   ELFFile<ELFT> F(MB.getBuffer(), EC);
59   if (EC)
60     fatal(EC, "failed to read " + MB.getBufferIdentifier());
61   return F;
62 }
63 
64 template <class ELFT> static ELFKind getELFKind() {
65   if (ELFT::TargetEndianness == support::little)
66     return ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
67   return ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
68 }
69 
70 template <class ELFT>
71 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB)
72     : InputFile(K, MB), ELFObj(createELFObj<ELFT>(MB)) {
73   EKind = getELFKind<ELFT>();
74   EMachine = ELFObj.getHeader()->e_machine;
75 }
76 
77 template <class ELFT>
78 typename ELFT::SymRange ELFFileBase<ELFT>::getElfSymbols(bool OnlyGlobals) {
79   if (!Symtab)
80     return Elf_Sym_Range(nullptr, nullptr);
81   Elf_Sym_Range Syms = ELFObj.symbols(Symtab);
82   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
83   uint32_t FirstNonLocal = Symtab->sh_info;
84   if (FirstNonLocal == 0 || FirstNonLocal > NumSymbols)
85     fatal(getFilename(this) + ": invalid sh_info in symbol table");
86 
87   if (OnlyGlobals)
88     return makeArrayRef(Syms.begin() + FirstNonLocal, Syms.end());
89   return makeArrayRef(Syms.begin(), Syms.end());
90 }
91 
92 template <class ELFT>
93 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
94   uint32_t I = Sym.st_shndx;
95   if (I == ELF::SHN_XINDEX)
96     return ELFObj.getExtendedSymbolTableIndex(&Sym, Symtab, SymtabSHNDX);
97   if (I >= ELF::SHN_LORESERVE)
98     return 0;
99   return I;
100 }
101 
102 template <class ELFT> void ELFFileBase<ELFT>::initStringTable() {
103   if (!Symtab)
104     return;
105   StringTable = check(ELFObj.getStringTableForSymtab(*Symtab));
106 }
107 
108 template <class ELFT>
109 elf::ObjectFile<ELFT>::ObjectFile(MemoryBufferRef M)
110     : ELFFileBase<ELFT>(Base::ObjectKind, M) {}
111 
112 template <class ELFT>
113 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getNonLocalSymbols() {
114   if (!this->Symtab)
115     return this->SymbolBodies;
116   uint32_t FirstNonLocal = this->Symtab->sh_info;
117   return makeArrayRef(this->SymbolBodies).slice(FirstNonLocal);
118 }
119 
120 template <class ELFT>
121 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getLocalSymbols() {
122   if (!this->Symtab)
123     return this->SymbolBodies;
124   uint32_t FirstNonLocal = this->Symtab->sh_info;
125   return makeArrayRef(this->SymbolBodies).slice(1, FirstNonLocal - 1);
126 }
127 
128 template <class ELFT>
129 ArrayRef<SymbolBody *> elf::ObjectFile<ELFT>::getSymbols() {
130   if (!this->Symtab)
131     return this->SymbolBodies;
132   return makeArrayRef(this->SymbolBodies).slice(1);
133 }
134 
135 template <class ELFT> uint32_t elf::ObjectFile<ELFT>::getMipsGp0() const {
136   if (ELFT::Is64Bits && MipsOptions && MipsOptions->Reginfo)
137     return MipsOptions->Reginfo->ri_gp_value;
138   if (!ELFT::Is64Bits && MipsReginfo && MipsReginfo->Reginfo)
139     return MipsReginfo->Reginfo->ri_gp_value;
140   return 0;
141 }
142 
143 template <class ELFT>
144 void elf::ObjectFile<ELFT>::parse(DenseSet<StringRef> &ComdatGroups) {
145   // Read section and symbol tables.
146   initializeSections(ComdatGroups);
147   initializeSymbols();
148 }
149 
150 // Sections with SHT_GROUP and comdat bits define comdat section groups.
151 // They are identified and deduplicated by group name. This function
152 // returns a group name.
153 template <class ELFT>
154 StringRef elf::ObjectFile<ELFT>::getShtGroupSignature(const Elf_Shdr &Sec) {
155   const ELFFile<ELFT> &Obj = this->ELFObj;
156   const Elf_Shdr *Symtab = check(Obj.getSection(Sec.sh_link));
157   const Elf_Sym *Sym = Obj.getSymbol(Symtab, Sec.sh_info);
158   StringRef Strtab = check(Obj.getStringTableForSymtab(*Symtab));
159   return check(Sym->getName(Strtab));
160 }
161 
162 template <class ELFT>
163 ArrayRef<typename elf::ObjectFile<ELFT>::Elf_Word>
164 elf::ObjectFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
165   const ELFFile<ELFT> &Obj = this->ELFObj;
166   ArrayRef<Elf_Word> Entries =
167       check(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec));
168   if (Entries.empty() || Entries[0] != GRP_COMDAT)
169     fatal(getFilename(this) + ": unsupported SHT_GROUP format");
170   return Entries.slice(1);
171 }
172 
173 template <class ELFT>
174 bool elf::ObjectFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
175   // We don't merge sections if -O0 (default is -O1). This makes sometimes
176   // the linker significantly faster, although the output will be bigger.
177   if (Config->Optimize == 0)
178     return false;
179 
180   // Do not merge sections if generating a relocatable object. It makes
181   // the code simpler because we do not need to update relocation addends
182   // to reflect changes introduced by merging. Instead of that we write
183   // such "merge" sections into separate OutputSections and keep SHF_MERGE
184   // / SHF_STRINGS flags and sh_entsize value to be able to perform merging
185   // later during a final linking.
186   if (Config->Relocatable)
187     return false;
188 
189   // A mergeable section with size 0 is useless because they don't have
190   // any data to merge. A mergeable string section with size 0 can be
191   // argued as invalid because it doesn't end with a null character.
192   // We'll avoid a mess by handling them as if they were non-mergeable.
193   if (Sec.sh_size == 0)
194     return false;
195 
196   // Check for sh_entsize. The ELF spec is not clear about the zero
197   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
198   // the section does not hold a table of fixed-size entries". We know
199   // that Rust 1.13 produces a string mergeable section with a zero
200   // sh_entsize. Here we just accept it rather than being picky about it.
201   uintX_t EntSize = Sec.sh_entsize;
202   if (EntSize == 0)
203     return false;
204   if (Sec.sh_size % EntSize)
205     fatal(getFilename(this) +
206           ": SHF_MERGE section size must be a multiple of sh_entsize");
207 
208   uintX_t Flags = Sec.sh_flags;
209   if (!(Flags & SHF_MERGE))
210     return false;
211   if (Flags & SHF_WRITE)
212     fatal(getFilename(this) + ": writable SHF_MERGE section is not supported");
213 
214   // Don't try to merge if the alignment is larger than the sh_entsize and this
215   // is not SHF_STRINGS.
216   //
217   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
218   // It would be equivalent for the producer of the .o to just set a larger
219   // sh_entsize.
220   if (Flags & SHF_STRINGS)
221     return true;
222 
223   return Sec.sh_addralign <= EntSize;
224 }
225 
226 template <class ELFT>
227 void elf::ObjectFile<ELFT>::initializeSections(
228     DenseSet<StringRef> &ComdatGroups) {
229   uint64_t Size = this->ELFObj.getNumSections();
230   Sections.resize(Size);
231   unsigned I = -1;
232   const ELFFile<ELFT> &Obj = this->ELFObj;
233   for (const Elf_Shdr &Sec : Obj.sections()) {
234     ++I;
235     if (Sections[I] == &InputSection<ELFT>::Discarded)
236       continue;
237 
238     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
239     // if -r is given, we'll let the final link discard such sections.
240     // This is compatible with GNU.
241     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
242       Sections[I] = &InputSection<ELFT>::Discarded;
243       continue;
244     }
245 
246     switch (Sec.sh_type) {
247     case SHT_GROUP:
248       Sections[I] = &InputSection<ELFT>::Discarded;
249       if (ComdatGroups.insert(getShtGroupSignature(Sec)).second)
250         continue;
251       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
252         if (SecIndex >= Size)
253           fatal(getFilename(this) + ": invalid section index in group: " +
254                 Twine(SecIndex));
255         Sections[SecIndex] = &InputSection<ELFT>::Discarded;
256       }
257       break;
258     case SHT_SYMTAB:
259       this->Symtab = &Sec;
260       break;
261     case SHT_SYMTAB_SHNDX:
262       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
263       break;
264     case SHT_STRTAB:
265     case SHT_NULL:
266       break;
267     default:
268       Sections[I] = createInputSection(Sec);
269     }
270   }
271 }
272 
273 template <class ELFT>
274 InputSectionBase<ELFT> *
275 elf::ObjectFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
276   uint32_t Idx = Sec.sh_info;
277   if (Idx >= Sections.size())
278     fatal(getFilename(this) + ": invalid relocated section index: " +
279           Twine(Idx));
280   InputSectionBase<ELFT> *Target = Sections[Idx];
281 
282   // Strictly speaking, a relocation section must be included in the
283   // group of the section it relocates. However, LLVM 3.3 and earlier
284   // would fail to do so, so we gracefully handle that case.
285   if (Target == &InputSection<ELFT>::Discarded)
286     return nullptr;
287 
288   if (!Target)
289     fatal(getFilename(this) + ": unsupported relocation reference");
290   return Target;
291 }
292 
293 template <class ELFT>
294 InputSectionBase<ELFT> *
295 elf::ObjectFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
296   StringRef Name = check(this->ELFObj.getSectionName(&Sec));
297 
298   switch (Sec.sh_type) {
299   case SHT_ARM_ATTRIBUTES:
300     // FIXME: ARM meta-data section. At present attributes are ignored,
301     // they can be used to reason about object compatibility.
302     return &InputSection<ELFT>::Discarded;
303   case SHT_MIPS_REGINFO:
304     MipsReginfo.reset(new MipsReginfoInputSection<ELFT>(this, &Sec, Name));
305     return MipsReginfo.get();
306   case SHT_MIPS_OPTIONS:
307     MipsOptions.reset(new MipsOptionsInputSection<ELFT>(this, &Sec, Name));
308     return MipsOptions.get();
309   case SHT_MIPS_ABIFLAGS:
310     MipsAbiFlags.reset(new MipsAbiFlagsInputSection<ELFT>(this, &Sec, Name));
311     return MipsAbiFlags.get();
312   case SHT_RELA:
313   case SHT_REL: {
314     // This section contains relocation information.
315     // If -r is given, we do not interpret or apply relocation
316     // but just copy relocation sections to output.
317     if (Config->Relocatable)
318       return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name);
319 
320     // Find the relocation target section and associate this
321     // section with it.
322     InputSectionBase<ELFT> *Target = getRelocTarget(Sec);
323     if (!Target)
324       return nullptr;
325     if (auto *S = dyn_cast<InputSection<ELFT>>(Target)) {
326       S->RelocSections.push_back(&Sec);
327       return nullptr;
328     }
329     if (auto *S = dyn_cast<EhInputSection<ELFT>>(Target)) {
330       if (S->RelocSection)
331         fatal(getFilename(this) +
332               ": multiple relocation sections to .eh_frame are not supported");
333       S->RelocSection = &Sec;
334       return nullptr;
335     }
336     fatal(getFilename(this) +
337           ": relocations pointing to SHF_MERGE are not supported");
338   }
339   }
340 
341   // .note.GNU-stack is a marker section to control the presence of
342   // PT_GNU_STACK segment in outputs. Since the presence of the segment
343   // is controlled only by the command line option (-z execstack) in LLD,
344   // .note.GNU-stack is ignored.
345   if (Name == ".note.GNU-stack")
346     return &InputSection<ELFT>::Discarded;
347 
348   if (Name == ".note.GNU-split-stack") {
349     error("objects using splitstacks are not supported");
350     return &InputSection<ELFT>::Discarded;
351   }
352 
353   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
354     return &InputSection<ELFT>::Discarded;
355 
356   // The linker merges EH (exception handling) frames and creates a
357   // .eh_frame_hdr section for runtime. So we handle them with a special
358   // class. For relocatable outputs, they are just passed through.
359   if (Name == ".eh_frame" && !Config->Relocatable)
360     return new (EHAlloc.Allocate()) EhInputSection<ELFT>(this, &Sec, Name);
361 
362   if (shouldMerge(Sec))
363     return new (MAlloc.Allocate()) MergeInputSection<ELFT>(this, &Sec, Name);
364   return new (IAlloc.Allocate()) InputSection<ELFT>(this, &Sec, Name);
365 }
366 
367 template <class ELFT> void elf::ObjectFile<ELFT>::initializeSymbols() {
368   this->initStringTable();
369   Elf_Sym_Range Syms = this->getElfSymbols(false);
370   uint32_t NumSymbols = std::distance(Syms.begin(), Syms.end());
371   SymbolBodies.reserve(NumSymbols);
372   for (const Elf_Sym &Sym : Syms)
373     SymbolBodies.push_back(createSymbolBody(&Sym));
374 }
375 
376 template <class ELFT>
377 InputSectionBase<ELFT> *
378 elf::ObjectFile<ELFT>::getSection(const Elf_Sym &Sym) const {
379   uint32_t Index = this->getSectionIndex(Sym);
380   if (Index >= Sections.size())
381     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
382   InputSectionBase<ELFT> *S = Sections[Index];
383 
384   // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03
385   // could generate broken objects. STT_SECTION symbols can be
386   // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections.
387   // In this case it is fine for section to be null here as we
388   // do not allocate sections of these types.
389   if (!S) {
390     if (Index == 0 || Sym.getType() == STT_SECTION)
391       return nullptr;
392     fatal(getFilename(this) + ": invalid section index: " + Twine(Index));
393   }
394 
395   if (S == &InputSectionBase<ELFT>::Discarded)
396     return S;
397   return S->Repl;
398 }
399 
400 template <class ELFT>
401 SymbolBody *elf::ObjectFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
402   int Binding = Sym->getBinding();
403   InputSectionBase<ELFT> *Sec = getSection(*Sym);
404   if (Binding == STB_LOCAL) {
405     if (Sym->st_shndx == SHN_UNDEF)
406       return new (this->Alloc)
407           Undefined(Sym->st_name, Sym->st_other, Sym->getType(), this);
408     return new (this->Alloc) DefinedRegular<ELFT>(*Sym, Sec);
409   }
410 
411   StringRef Name = check(Sym->getName(this->StringTable));
412 
413   switch (Sym->st_shndx) {
414   case SHN_UNDEF:
415     return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other,
416                                               Sym->getType(),
417                                               /*CanOmitFromDynSym*/ false, this)
418         ->body();
419   case SHN_COMMON:
420     if (Sym->st_value == 0)
421       fatal(getFilename(this) + ": common symbol '" + Name +
422             "' alignment is 0");
423     return elf::Symtab<ELFT>::X->addCommon(Name, Sym->st_size, Sym->st_value,
424                                            Binding, Sym->st_other,
425                                            Sym->getType(), this)
426         ->body();
427   }
428 
429   switch (Binding) {
430   default:
431     fatal(getFilename(this) + ": unexpected binding: " + Twine(Binding));
432   case STB_GLOBAL:
433   case STB_WEAK:
434   case STB_GNU_UNIQUE:
435     if (Sec == &InputSection<ELFT>::Discarded)
436       return elf::Symtab<ELFT>::X->addUndefined(Name, Binding, Sym->st_other,
437                                                 Sym->getType(),
438                                                 /*CanOmitFromDynSym*/ false,
439                                                 this)
440           ->body();
441     return elf::Symtab<ELFT>::X->addRegular(Name, *Sym, Sec)->body();
442   }
443 }
444 
445 template <class ELFT> void ArchiveFile::parse() {
446   File = check(Archive::create(MB), "failed to parse archive");
447 
448   // Read the symbol table to construct Lazy objects.
449   for (const Archive::Symbol &Sym : File->symbols())
450     Symtab<ELFT>::X->addLazyArchive(this, Sym);
451 }
452 
453 // Returns a buffer pointing to a member file containing a given symbol.
454 MemoryBufferRef ArchiveFile::getMember(const Archive::Symbol *Sym) {
455   Archive::Child C =
456       check(Sym->getMember(),
457             "could not get the member for symbol " + Sym->getName());
458 
459   if (!Seen.insert(C.getChildOffset()).second)
460     return MemoryBufferRef();
461 
462   MemoryBufferRef Ret =
463       check(C.getMemoryBufferRef(),
464             "could not get the buffer for the member defining symbol " +
465                 Sym->getName());
466 
467   if (C.getParent()->isThin() && Driver->Cpio)
468     Driver->Cpio->append(relativeToRoot(check(C.getFullName())),
469                          Ret.getBuffer());
470 
471   return Ret;
472 }
473 
474 template <class ELFT>
475 SharedFile<ELFT>::SharedFile(MemoryBufferRef M)
476     : ELFFileBase<ELFT>(Base::SharedKind, M), AsNeeded(Config->AsNeeded) {}
477 
478 template <class ELFT>
479 const typename ELFT::Shdr *
480 SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const {
481   uint32_t Index = this->getSectionIndex(Sym);
482   if (Index == 0)
483     return nullptr;
484   return check(this->ELFObj.getSection(Index));
485 }
486 
487 // Partially parse the shared object file so that we can call
488 // getSoName on this object.
489 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
490   typedef typename ELFT::Dyn Elf_Dyn;
491   typedef typename ELFT::uint uintX_t;
492   const Elf_Shdr *DynamicSec = nullptr;
493 
494   const ELFFile<ELFT> Obj = this->ELFObj;
495   for (const Elf_Shdr &Sec : Obj.sections()) {
496     switch (Sec.sh_type) {
497     default:
498       continue;
499     case SHT_DYNSYM:
500       this->Symtab = &Sec;
501       break;
502     case SHT_DYNAMIC:
503       DynamicSec = &Sec;
504       break;
505     case SHT_SYMTAB_SHNDX:
506       this->SymtabSHNDX = check(Obj.getSHNDXTable(Sec));
507       break;
508     case SHT_GNU_versym:
509       this->VersymSec = &Sec;
510       break;
511     case SHT_GNU_verdef:
512       this->VerdefSec = &Sec;
513       break;
514     }
515   }
516 
517   this->initStringTable();
518 
519   // DSOs are identified by soname, and they usually contain
520   // DT_SONAME tag in their header. But if they are missing,
521   // filenames are used as default sonames.
522   SoName = sys::path::filename(this->getName());
523 
524   if (!DynamicSec)
525     return;
526 
527   ArrayRef<Elf_Dyn> Arr =
528       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
529             getFilename(this) + ": getSectionContentsAsArray failed");
530   for (const Elf_Dyn &Dyn : Arr) {
531     if (Dyn.d_tag == DT_SONAME) {
532       uintX_t Val = Dyn.getVal();
533       if (Val >= this->StringTable.size())
534         fatal(getFilename(this) + ": invalid DT_SONAME entry");
535       SoName = StringRef(this->StringTable.data() + Val);
536       return;
537     }
538   }
539 }
540 
541 // Parse the version definitions in the object file if present. Returns a vector
542 // whose nth element contains a pointer to the Elf_Verdef for version identifier
543 // n. Version identifiers that are not definitions map to nullptr. The array
544 // always has at least length 1.
545 template <class ELFT>
546 std::vector<const typename ELFT::Verdef *>
547 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
548   std::vector<const Elf_Verdef *> Verdefs(1);
549   // We only need to process symbol versions for this DSO if it has both a
550   // versym and a verdef section, which indicates that the DSO contains symbol
551   // version definitions.
552   if (!VersymSec || !VerdefSec)
553     return Verdefs;
554 
555   // The location of the first global versym entry.
556   Versym = reinterpret_cast<const Elf_Versym *>(this->ELFObj.base() +
557                                                 VersymSec->sh_offset) +
558            this->Symtab->sh_info;
559 
560   // We cannot determine the largest verdef identifier without inspecting
561   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
562   // sequentially starting from 1, so we predict that the largest identifier
563   // will be VerdefCount.
564   unsigned VerdefCount = VerdefSec->sh_info;
565   Verdefs.resize(VerdefCount + 1);
566 
567   // Build the Verdefs array by following the chain of Elf_Verdef objects
568   // from the start of the .gnu.version_d section.
569   const uint8_t *Verdef = this->ELFObj.base() + VerdefSec->sh_offset;
570   for (unsigned I = 0; I != VerdefCount; ++I) {
571     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
572     Verdef += CurVerdef->vd_next;
573     unsigned VerdefIndex = CurVerdef->vd_ndx;
574     if (Verdefs.size() <= VerdefIndex)
575       Verdefs.resize(VerdefIndex + 1);
576     Verdefs[VerdefIndex] = CurVerdef;
577   }
578 
579   return Verdefs;
580 }
581 
582 // Fully parse the shared object file. This must be called after parseSoName().
583 template <class ELFT> void SharedFile<ELFT>::parseRest() {
584   // Create mapping from version identifiers to Elf_Verdef entries.
585   const Elf_Versym *Versym = nullptr;
586   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
587 
588   Elf_Sym_Range Syms = this->getElfSymbols(true);
589   for (const Elf_Sym &Sym : Syms) {
590     unsigned VersymIndex = 0;
591     if (Versym) {
592       VersymIndex = Versym->vs_index;
593       ++Versym;
594     }
595 
596     StringRef Name = check(Sym.getName(this->StringTable));
597     if (Sym.isUndefined()) {
598       Undefs.push_back(Name);
599       continue;
600     }
601 
602     if (Versym) {
603       // Ignore local symbols and non-default versions.
604       if (VersymIndex == VER_NDX_LOCAL || (VersymIndex & VERSYM_HIDDEN))
605         continue;
606     }
607 
608     const Elf_Verdef *V =
609         VersymIndex == VER_NDX_GLOBAL ? nullptr : Verdefs[VersymIndex];
610     elf::Symtab<ELFT>::X->addShared(this, Name, Sym, V);
611   }
612 }
613 
614 static ELFKind getBitcodeELFKind(MemoryBufferRef MB) {
615   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
616   if (T.isLittleEndian())
617     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
618   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
619 }
620 
621 static uint8_t getBitcodeMachineKind(MemoryBufferRef MB) {
622   Triple T(getBitcodeTargetTriple(MB, Driver->Context));
623   switch (T.getArch()) {
624   case Triple::aarch64:
625     return EM_AARCH64;
626   case Triple::arm:
627     return EM_ARM;
628   case Triple::mips:
629   case Triple::mipsel:
630   case Triple::mips64:
631   case Triple::mips64el:
632     return EM_MIPS;
633   case Triple::ppc:
634     return EM_PPC;
635   case Triple::ppc64:
636     return EM_PPC64;
637   case Triple::x86:
638     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
639   case Triple::x86_64:
640     return EM_X86_64;
641   default:
642     fatal(MB.getBufferIdentifier() +
643           ": could not infer e_machine from bitcode target triple " + T.str());
644   }
645 }
646 
647 BitcodeFile::BitcodeFile(MemoryBufferRef MB) : InputFile(BitcodeKind, MB) {
648   EKind = getBitcodeELFKind(MB);
649   EMachine = getBitcodeMachineKind(MB);
650 }
651 
652 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
653   switch (GvVisibility) {
654   case GlobalValue::DefaultVisibility:
655     return STV_DEFAULT;
656   case GlobalValue::HiddenVisibility:
657     return STV_HIDDEN;
658   case GlobalValue::ProtectedVisibility:
659     return STV_PROTECTED;
660   }
661   llvm_unreachable("unknown visibility");
662 }
663 
664 template <class ELFT>
665 static Symbol *createBitcodeSymbol(const DenseSet<const Comdat *> &KeptComdats,
666                                    const lto::InputFile::Symbol &ObjSym,
667                                    StringSaver &Saver, BitcodeFile *F) {
668   StringRef NameRef = Saver.save(ObjSym.getName());
669   uint32_t Flags = ObjSym.getFlags();
670   uint32_t Binding = (Flags & BasicSymbolRef::SF_Weak) ? STB_WEAK : STB_GLOBAL;
671 
672   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
673   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
674   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
675 
676   if (const Comdat *C = check(ObjSym.getComdat()))
677     if (!KeptComdats.count(C))
678       return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
679                                            CanOmitFromDynSym, F);
680 
681   if (Flags & BasicSymbolRef::SF_Undefined)
682     return Symtab<ELFT>::X->addUndefined(NameRef, Binding, Visibility, Type,
683                                          CanOmitFromDynSym, F);
684 
685   if (Flags & BasicSymbolRef::SF_Common)
686     return Symtab<ELFT>::X->addCommon(NameRef, ObjSym.getCommonSize(),
687                                       ObjSym.getCommonAlignment(), Binding,
688                                       Visibility, STT_OBJECT, F);
689 
690   return Symtab<ELFT>::X->addBitcode(NameRef, Binding, Visibility, Type,
691                                      CanOmitFromDynSym, F);
692 }
693 
694 template <class ELFT>
695 void BitcodeFile::parse(DenseSet<StringRef> &ComdatGroups) {
696   Obj = check(lto::InputFile::create(MB));
697   DenseSet<const Comdat *> KeptComdats;
698   for (const auto &P : Obj->getComdatSymbolTable()) {
699     StringRef N = Saver.save(P.first());
700     if (ComdatGroups.insert(N).second)
701       KeptComdats.insert(&P.second);
702   }
703 
704   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
705     Symbols.push_back(
706         createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, Saver, this));
707 }
708 
709 template <template <class> class T>
710 static InputFile *createELFFile(MemoryBufferRef MB) {
711   unsigned char Size;
712   unsigned char Endian;
713   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
714   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
715     fatal("invalid data encoding: " + MB.getBufferIdentifier());
716 
717   InputFile *Obj;
718   if (Size == ELFCLASS32 && Endian == ELFDATA2LSB)
719     Obj = new T<ELF32LE>(MB);
720   else if (Size == ELFCLASS32 && Endian == ELFDATA2MSB)
721     Obj = new T<ELF32BE>(MB);
722   else if (Size == ELFCLASS64 && Endian == ELFDATA2LSB)
723     Obj = new T<ELF64LE>(MB);
724   else if (Size == ELFCLASS64 && Endian == ELFDATA2MSB)
725     Obj = new T<ELF64BE>(MB);
726   else
727     fatal("invalid file class: " + MB.getBufferIdentifier());
728 
729   if (!Config->FirstElf)
730     Config->FirstElf = Obj;
731   return Obj;
732 }
733 
734 // Wraps a binary blob with an ELF header and footer
735 // so that we can link it as a regular ELF file.
736 template <class ELFT> InputFile *BinaryFile::createELF() {
737   // Fill the ELF file header.
738   ELFCreator<ELFT> ELF(ET_REL, Config->EMachine);
739   auto DataSec = ELF.addSection(".data");
740   DataSec.Header->sh_flags = SHF_ALLOC;
741   DataSec.Header->sh_size = MB.getBufferSize();
742   DataSec.Header->sh_type = SHT_PROGBITS;
743   DataSec.Header->sh_addralign = 8;
744 
745   // Replace non-alphanumeric characters with '_'.
746   std::string Filepath = MB.getBufferIdentifier();
747   std::transform(Filepath.begin(), Filepath.end(), Filepath.begin(),
748                  [](char C) { return isalnum(C) ? C : '_'; });
749 
750   // Add _start, _end and _size symbols.
751   std::string StartSym = "_binary_" + Filepath + "_start";
752   auto SSym = ELF.addSymbol(StartSym);
753   SSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT);
754   SSym.Sym->st_shndx = DataSec.Index;
755 
756   std::string EndSym = "_binary_" + Filepath + "_end";
757   auto ESym = ELF.addSymbol(EndSym);
758   ESym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT);
759   ESym.Sym->st_shndx = DataSec.Index;
760   ESym.Sym->st_value = MB.getBufferSize();
761 
762   std::string SizeSym = "_binary_" + Filepath + "_size";
763   auto SZSym = ELF.addSymbol(SizeSym);
764   SZSym.Sym->setBindingAndType(STB_GLOBAL, STT_OBJECT);
765   SZSym.Sym->st_shndx = SHN_ABS;
766   SZSym.Sym->st_value = MB.getBufferSize();
767 
768   // Fix the ELF file layout and write it down to ELFData uint8_t vector.
769   std::size_t Size = ELF.layout();
770   ELFData.resize(Size);
771   ELF.write(ELFData.data());
772 
773   // Fill .data section with actual data.
774   std::copy(MB.getBufferStart(), MB.getBufferEnd(),
775             ELFData.data() + DataSec.Header->sh_offset);
776 
777   return createELFFile<ObjectFile>(MemoryBufferRef(
778       StringRef((char *)ELFData.data(), Size), MB.getBufferIdentifier()));
779 }
780 
781 static bool isBitcode(MemoryBufferRef MB) {
782   using namespace sys::fs;
783   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
784 }
785 
786 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName) {
787   InputFile *F =
788       isBitcode(MB) ? new BitcodeFile(MB) : createELFFile<ObjectFile>(MB);
789   F->ArchiveName = ArchiveName;
790   return F;
791 }
792 
793 InputFile *elf::createSharedFile(MemoryBufferRef MB) {
794   return createELFFile<SharedFile>(MB);
795 }
796 
797 MemoryBufferRef LazyObjectFile::getBuffer() {
798   if (Seen)
799     return MemoryBufferRef();
800   Seen = true;
801   return MB;
802 }
803 
804 template <class ELFT> void LazyObjectFile::parse() {
805   for (StringRef Sym : getSymbols())
806     Symtab<ELFT>::X->addLazyObject(Sym, *this);
807 }
808 
809 template <class ELFT> std::vector<StringRef> LazyObjectFile::getElfSymbols() {
810   typedef typename ELFT::Shdr Elf_Shdr;
811   typedef typename ELFT::Sym Elf_Sym;
812   typedef typename ELFT::SymRange Elf_Sym_Range;
813 
814   const ELFFile<ELFT> Obj = createELFObj<ELFT>(this->MB);
815   for (const Elf_Shdr &Sec : Obj.sections()) {
816     if (Sec.sh_type != SHT_SYMTAB)
817       continue;
818     Elf_Sym_Range Syms = Obj.symbols(&Sec);
819     uint32_t FirstNonLocal = Sec.sh_info;
820     StringRef StringTable = check(Obj.getStringTableForSymtab(Sec));
821     std::vector<StringRef> V;
822     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
823       if (Sym.st_shndx != SHN_UNDEF)
824         V.push_back(check(Sym.getName(StringTable)));
825     return V;
826   }
827   return {};
828 }
829 
830 std::vector<StringRef> LazyObjectFile::getBitcodeSymbols() {
831   std::unique_ptr<lto::InputFile> Obj = check(lto::InputFile::create(this->MB));
832   std::vector<StringRef> V;
833   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
834     if (!(Sym.getFlags() & BasicSymbolRef::SF_Undefined))
835       V.push_back(Saver.save(Sym.getName()));
836   return V;
837 }
838 
839 // Returns a vector of globally-visible defined symbol names.
840 std::vector<StringRef> LazyObjectFile::getSymbols() {
841   if (isBitcode(this->MB))
842     return getBitcodeSymbols();
843 
844   unsigned char Size;
845   unsigned char Endian;
846   std::tie(Size, Endian) = getElfArchType(this->MB.getBuffer());
847   if (Size == ELFCLASS32) {
848     if (Endian == ELFDATA2LSB)
849       return getElfSymbols<ELF32LE>();
850     return getElfSymbols<ELF32BE>();
851   }
852   if (Endian == ELFDATA2LSB)
853     return getElfSymbols<ELF64LE>();
854   return getElfSymbols<ELF64BE>();
855 }
856 
857 template void ArchiveFile::parse<ELF32LE>();
858 template void ArchiveFile::parse<ELF32BE>();
859 template void ArchiveFile::parse<ELF64LE>();
860 template void ArchiveFile::parse<ELF64BE>();
861 
862 template void BitcodeFile::parse<ELF32LE>(DenseSet<StringRef> &);
863 template void BitcodeFile::parse<ELF32BE>(DenseSet<StringRef> &);
864 template void BitcodeFile::parse<ELF64LE>(DenseSet<StringRef> &);
865 template void BitcodeFile::parse<ELF64BE>(DenseSet<StringRef> &);
866 
867 template void LazyObjectFile::parse<ELF32LE>();
868 template void LazyObjectFile::parse<ELF32BE>();
869 template void LazyObjectFile::parse<ELF64LE>();
870 template void LazyObjectFile::parse<ELF64BE>();
871 
872 template class elf::ELFFileBase<ELF32LE>;
873 template class elf::ELFFileBase<ELF32BE>;
874 template class elf::ELFFileBase<ELF64LE>;
875 template class elf::ELFFileBase<ELF64BE>;
876 
877 template class elf::ObjectFile<ELF32LE>;
878 template class elf::ObjectFile<ELF32BE>;
879 template class elf::ObjectFile<ELF64LE>;
880 template class elf::ObjectFile<ELF64BE>;
881 
882 template class elf::SharedFile<ELF32LE>;
883 template class elf::SharedFile<ELF32BE>;
884 template class elf::SharedFile<ELF64LE>;
885 template class elf::SharedFile<ELF64BE>;
886 
887 template InputFile *BinaryFile::createELF<ELF32LE>();
888 template InputFile *BinaryFile::createELF<ELF32BE>();
889 template InputFile *BinaryFile::createELF<ELF64LE>();
890 template InputFile *BinaryFile::createELF<ELF64BE>();
891