1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "InputFiles.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "Memory.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/Path.h"
27 #include "llvm/Support/TarWriter.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 using namespace llvm::ELF;
32 using namespace llvm::object;
33 using namespace llvm::sys::fs;
34 
35 using namespace lld;
36 using namespace lld::elf;
37 
38 std::vector<BinaryFile *> elf::BinaryFiles;
39 std::vector<BitcodeFile *> elf::BitcodeFiles;
40 std::vector<InputFile *> elf::ObjectFiles;
41 std::vector<InputFile *> elf::SharedFiles;
42 
43 TarWriter *elf::Tar;
44 
45 InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {}
46 
47 Optional<MemoryBufferRef> elf::readFile(StringRef Path) {
48   // The --chroot option changes our virtual root directory.
49   // This is useful when you are dealing with files created by --reproduce.
50   if (!Config->Chroot.empty() && Path.startswith("/"))
51     Path = Saver.save(Config->Chroot + Path);
52 
53   log(Path);
54 
55   auto MBOrErr = MemoryBuffer::getFile(Path);
56   if (auto EC = MBOrErr.getError()) {
57     error("cannot open " + Path + ": " + EC.message());
58     return None;
59   }
60 
61   std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
62   MemoryBufferRef MBRef = MB->getMemBufferRef();
63   make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership
64 
65   if (Tar)
66     Tar->append(relativeToRoot(Path), MBRef.getBuffer());
67   return MBRef;
68 }
69 
70 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
71   DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this));
72   const DWARFObject &Obj = Dwarf.getDWARFObj();
73   DwarfLine.reset(new DWARFDebugLine);
74   DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE,
75                               Config->Wordsize);
76 
77   // The second parameter is offset in .debug_line section
78   // for compilation unit (CU) of interest. We have only one
79   // CU (object file), so offset is always 0.
80   const DWARFDebugLine::LineTable *LT =
81       DwarfLine->getOrParseLineTable(LineData, 0);
82 
83   // Return if there is no debug information about CU available.
84   if (!Dwarf.getNumCompileUnits())
85     return;
86 
87   // Loop over variable records and insert them to VariableLoc.
88   DWARFCompileUnit *CU = Dwarf.getCompileUnitAtIndex(0);
89   for (const auto &Entry : CU->dies()) {
90     DWARFDie Die(CU, &Entry);
91     // Skip all tags that are not variables.
92     if (Die.getTag() != dwarf::DW_TAG_variable)
93       continue;
94 
95     // Skip if a local variable because we don't need them for generating error
96     // messages. In general, only non-local symbols can fail to be linked.
97     if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0))
98       continue;
99 
100     // Get the source filename index for the variable.
101     unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0);
102     if (!LT->hasFileAtIndex(File))
103       continue;
104 
105     // Get the line number on which the variable is declared.
106     unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0);
107 
108     // Get the name of the variable and add the collected information to
109     // VariableLoc. Usually Name is non-empty, but it can be empty if the input
110     // object file lacks some debug info.
111     StringRef Name = dwarf::toString(Die.find(dwarf::DW_AT_name), "");
112     if (!Name.empty())
113       VariableLoc.insert({Name, {File, Line}});
114   }
115 }
116 
117 // Returns the pair of file name and line number describing location of data
118 // object (variable, array, etc) definition.
119 template <class ELFT>
120 Optional<std::pair<std::string, unsigned>>
121 ObjFile<ELFT>::getVariableLoc(StringRef Name) {
122   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
123 
124   // There is always only one CU so it's offset is 0.
125   const DWARFDebugLine::LineTable *LT = DwarfLine->getLineTable(0);
126   if (!LT)
127     return None;
128 
129   // Return if we have no debug information about data object.
130   auto It = VariableLoc.find(Name);
131   if (It == VariableLoc.end())
132     return None;
133 
134   // Take file name string from line table.
135   std::string FileName;
136   if (!LT->getFileNameByIndex(
137           It->second.first /* File */, nullptr,
138           DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName))
139     return None;
140 
141   return std::make_pair(FileName, It->second.second /*Line*/);
142 }
143 
144 // Returns source line information for a given offset
145 // using DWARF debug info.
146 template <class ELFT>
147 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S,
148                                                   uint64_t Offset) {
149   llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); });
150 
151   // The offset to CU is 0.
152   const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0);
153   if (!Tbl)
154     return None;
155 
156   // Use fake address calcuated by adding section file offset and offset in
157   // section. See comments for ObjectInfo class.
158   DILineInfo Info;
159   Tbl->getFileLineInfoForAddress(
160       S->getOffsetInFile() + Offset, nullptr,
161       DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info);
162   if (Info.Line == 0)
163     return None;
164   return Info;
165 }
166 
167 // Returns source line information for a given offset
168 // using DWARF debug info.
169 template <class ELFT>
170 std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) {
171   if (Optional<DILineInfo> Info = getDILineInfo(S, Offset))
172     return Info->FileName + ":" + std::to_string(Info->Line);
173   return "";
174 }
175 
176 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
177 std::string lld::toString(const InputFile *F) {
178   if (!F)
179     return "<internal>";
180 
181   if (F->ToStringCache.empty()) {
182     if (F->ArchiveName.empty())
183       F->ToStringCache = F->getName();
184     else
185       F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str();
186   }
187   return F->ToStringCache;
188 }
189 
190 template <class ELFT>
191 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) {
192   if (ELFT::TargetEndianness == support::little)
193     EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind;
194   else
195     EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind;
196 
197   EMachine = getObj().getHeader()->e_machine;
198   OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI];
199 }
200 
201 template <class ELFT>
202 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() {
203   return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end());
204 }
205 
206 template <class ELFT>
207 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const {
208   return check(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX),
209                toString(this));
210 }
211 
212 template <class ELFT>
213 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections,
214                                    const Elf_Shdr *Symtab) {
215   FirstNonLocal = Symtab->sh_info;
216   ELFSyms = check(getObj().symbols(Symtab), toString(this));
217   if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size())
218     fatal(toString(this) + ": invalid sh_info in symbol table");
219 
220   StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections),
221                       toString(this));
222 }
223 
224 template <class ELFT>
225 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName)
226     : ELFFileBase<ELFT>(Base::ObjKind, M) {
227   this->ArchiveName = ArchiveName;
228 }
229 
230 template <class ELFT> ArrayRef<SymbolBody *> ObjFile<ELFT>::getLocalSymbols() {
231   if (this->Symbols.empty())
232     return {};
233   return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1);
234 }
235 
236 template <class ELFT>
237 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
238   // Read section and symbol tables.
239   initializeSections(ComdatGroups);
240   initializeSymbols();
241 }
242 
243 // Sections with SHT_GROUP and comdat bits define comdat section groups.
244 // They are identified and deduplicated by group name. This function
245 // returns a group name.
246 template <class ELFT>
247 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections,
248                                               const Elf_Shdr &Sec) {
249   // Group signatures are stored as symbol names in object files.
250   // sh_info contains a symbol index, so we fetch a symbol and read its name.
251   if (this->ELFSyms.empty())
252     this->initSymtab(
253         Sections,
254         check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this)));
255 
256   const Elf_Sym *Sym = check(
257       object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), toString(this));
258   StringRef Signature = check(Sym->getName(this->StringTable), toString(this));
259 
260   // As a special case, if a symbol is a section symbol and has no name,
261   // we use a section name as a signature.
262   //
263   // Such SHT_GROUP sections are invalid from the perspective of the ELF
264   // standard, but GNU gold 1.14 (the neweset version as of July 2017) or
265   // older produce such sections as outputs for the -r option, so we need
266   // a bug-compatibility.
267   if (Signature.empty() && Sym->getType() == STT_SECTION)
268     return getSectionName(Sec);
269   return Signature;
270 }
271 
272 template <class ELFT>
273 ArrayRef<typename ObjFile<ELFT>::Elf_Word>
274 ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) {
275   const ELFFile<ELFT> &Obj = this->getObj();
276   ArrayRef<Elf_Word> Entries = check(
277       Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this));
278   if (Entries.empty() || Entries[0] != GRP_COMDAT)
279     fatal(toString(this) + ": unsupported SHT_GROUP format");
280   return Entries.slice(1);
281 }
282 
283 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) {
284   // We don't merge sections if -O0 (default is -O1). This makes sometimes
285   // the linker significantly faster, although the output will be bigger.
286   if (Config->Optimize == 0)
287     return false;
288 
289   // Do not merge sections if generating a relocatable object. It makes
290   // the code simpler because we do not need to update relocation addends
291   // to reflect changes introduced by merging.
292   if (Config->Relocatable)
293     return false;
294 
295   // A mergeable section with size 0 is useless because they don't have
296   // any data to merge. A mergeable string section with size 0 can be
297   // argued as invalid because it doesn't end with a null character.
298   // We'll avoid a mess by handling them as if they were non-mergeable.
299   if (Sec.sh_size == 0)
300     return false;
301 
302   // Check for sh_entsize. The ELF spec is not clear about the zero
303   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
304   // the section does not hold a table of fixed-size entries". We know
305   // that Rust 1.13 produces a string mergeable section with a zero
306   // sh_entsize. Here we just accept it rather than being picky about it.
307   uint64_t EntSize = Sec.sh_entsize;
308   if (EntSize == 0)
309     return false;
310   if (Sec.sh_size % EntSize)
311     fatal(toString(this) +
312           ": SHF_MERGE section size must be a multiple of sh_entsize");
313 
314   uint64_t Flags = Sec.sh_flags;
315   if (!(Flags & SHF_MERGE))
316     return false;
317   if (Flags & SHF_WRITE)
318     fatal(toString(this) + ": writable SHF_MERGE section is not supported");
319 
320   // Don't try to merge if the alignment is larger than the sh_entsize and this
321   // is not SHF_STRINGS.
322   //
323   // Since this is not a SHF_STRINGS, we would need to pad after every entity.
324   // It would be equivalent for the producer of the .o to just set a larger
325   // sh_entsize.
326   if (Flags & SHF_STRINGS)
327     return true;
328 
329   return Sec.sh_addralign <= EntSize;
330 }
331 
332 template <class ELFT>
333 void ObjFile<ELFT>::initializeSections(
334     DenseSet<CachedHashStringRef> &ComdatGroups) {
335   const ELFFile<ELFT> &Obj = this->getObj();
336 
337   ArrayRef<Elf_Shdr> ObjSections =
338       check(this->getObj().sections(), toString(this));
339   uint64_t Size = ObjSections.size();
340   this->Sections.resize(Size);
341   this->SectionStringTable =
342       check(Obj.getSectionStringTable(ObjSections), toString(this));
343 
344   for (size_t I = 0, E = ObjSections.size(); I < E; I++) {
345     if (this->Sections[I] == &InputSection::Discarded)
346       continue;
347     const Elf_Shdr &Sec = ObjSections[I];
348 
349     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
350     // if -r is given, we'll let the final link discard such sections.
351     // This is compatible with GNU.
352     if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) {
353       this->Sections[I] = &InputSection::Discarded;
354       continue;
355     }
356 
357     switch (Sec.sh_type) {
358     case SHT_GROUP: {
359       // De-duplicate section groups by their signatures.
360       StringRef Signature = getShtGroupSignature(ObjSections, Sec);
361       bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second;
362       this->Sections[I] = &InputSection::Discarded;
363 
364       // If it is a new section group, we want to keep group members.
365       // Group leader sections, which contain indices of group members, are
366       // discarded because they are useless beyond this point. The only
367       // exception is the -r option because in order to produce re-linkable
368       // object files, we want to pass through basically everything.
369       if (IsNew) {
370         if (Config->Relocatable)
371           this->Sections[I] = createInputSection(Sec);
372         continue;
373       }
374 
375       // Otherwise, discard group members.
376       for (uint32_t SecIndex : getShtGroupEntries(Sec)) {
377         if (SecIndex >= Size)
378           fatal(toString(this) +
379                 ": invalid section index in group: " + Twine(SecIndex));
380         this->Sections[SecIndex] = &InputSection::Discarded;
381       }
382       break;
383     }
384     case SHT_SYMTAB:
385       this->initSymtab(ObjSections, &Sec);
386       break;
387     case SHT_SYMTAB_SHNDX:
388       this->SymtabSHNDX =
389           check(Obj.getSHNDXTable(Sec, ObjSections), toString(this));
390       break;
391     case SHT_STRTAB:
392     case SHT_NULL:
393       break;
394     default:
395       this->Sections[I] = createInputSection(Sec);
396     }
397 
398     // .ARM.exidx sections have a reverse dependency on the InputSection they
399     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
400     if (Sec.sh_flags & SHF_LINK_ORDER) {
401       if (Sec.sh_link >= this->Sections.size())
402         fatal(toString(this) + ": invalid sh_link index: " +
403               Twine(Sec.sh_link));
404       this->Sections[Sec.sh_link]->DependentSections.push_back(
405           cast<InputSection>(this->Sections[I]));
406     }
407   }
408 }
409 
410 template <class ELFT>
411 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) {
412   uint32_t Idx = Sec.sh_info;
413   if (Idx >= this->Sections.size())
414     fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx));
415   InputSectionBase *Target = this->Sections[Idx];
416 
417   // Strictly speaking, a relocation section must be included in the
418   // group of the section it relocates. However, LLVM 3.3 and earlier
419   // would fail to do so, so we gracefully handle that case.
420   if (Target == &InputSection::Discarded)
421     return nullptr;
422 
423   if (!Target)
424     fatal(toString(this) + ": unsupported relocation reference");
425   return Target;
426 }
427 
428 // Create a regular InputSection class that has the same contents
429 // as a given section.
430 InputSectionBase *toRegularSection(MergeInputSection *Sec) {
431   auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment,
432                                  Sec->Data, Sec->Name);
433   Ret->File = Sec->File;
434   return Ret;
435 }
436 
437 template <class ELFT>
438 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) {
439   StringRef Name = getSectionName(Sec);
440 
441   switch (Sec.sh_type) {
442   case SHT_ARM_ATTRIBUTES:
443     // FIXME: ARM meta-data section. Retain the first attribute section
444     // we see. The eglibc ARM dynamic loaders require the presence of an
445     // attribute section for dlopen to work.
446     // In a full implementation we would merge all attribute sections.
447     if (InX::ARMAttributes == nullptr) {
448       InX::ARMAttributes = make<InputSection>(this, &Sec, Name);
449       return InX::ARMAttributes;
450     }
451     return &InputSection::Discarded;
452   case SHT_RELA:
453   case SHT_REL: {
454     // Find the relocation target section and associate this
455     // section with it. Target can be discarded, for example
456     // if it is a duplicated member of SHT_GROUP section, we
457     // do not create or proccess relocatable sections then.
458     InputSectionBase *Target = getRelocTarget(Sec);
459     if (!Target)
460       return nullptr;
461 
462     // This section contains relocation information.
463     // If -r is given, we do not interpret or apply relocation
464     // but just copy relocation sections to output.
465     if (Config->Relocatable)
466       return make<InputSection>(this, &Sec, Name);
467 
468     if (Target->FirstRelocation)
469       fatal(toString(this) +
470             ": multiple relocation sections to one section are not supported");
471 
472     // Mergeable sections with relocations are tricky because relocations
473     // need to be taken into account when comparing section contents for
474     // merging. It's not worth supporting such mergeable sections because
475     // they are rare and it'd complicates the internal design (we usually
476     // have to determine if two sections are mergeable early in the link
477     // process much before applying relocations). We simply handle mergeable
478     // sections with relocations as non-mergeable.
479     if (auto *MS = dyn_cast<MergeInputSection>(Target)) {
480       Target = toRegularSection(MS);
481       this->Sections[Sec.sh_info] = Target;
482     }
483 
484     size_t NumRelocations;
485     if (Sec.sh_type == SHT_RELA) {
486       ArrayRef<Elf_Rela> Rels =
487           check(this->getObj().relas(&Sec), toString(this));
488       Target->FirstRelocation = Rels.begin();
489       NumRelocations = Rels.size();
490       Target->AreRelocsRela = true;
491     } else {
492       ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this));
493       Target->FirstRelocation = Rels.begin();
494       NumRelocations = Rels.size();
495       Target->AreRelocsRela = false;
496     }
497     assert(isUInt<31>(NumRelocations));
498     Target->NumRelocations = NumRelocations;
499 
500     // Relocation sections processed by the linker are usually removed
501     // from the output, so returning `nullptr` for the normal case.
502     // However, if -emit-relocs is given, we need to leave them in the output.
503     // (Some post link analysis tools need this information.)
504     if (Config->EmitRelocs) {
505       InputSection *RelocSec = make<InputSection>(this, &Sec, Name);
506       // We will not emit relocation section if target was discarded.
507       Target->DependentSections.push_back(RelocSec);
508       return RelocSec;
509     }
510     return nullptr;
511   }
512   }
513 
514   // The GNU linker uses .note.GNU-stack section as a marker indicating
515   // that the code in the object file does not expect that the stack is
516   // executable (in terms of NX bit). If all input files have the marker,
517   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
518   // make the stack non-executable. Most object files have this section as
519   // of 2017.
520   //
521   // But making the stack non-executable is a norm today for security
522   // reasons. Failure to do so may result in a serious security issue.
523   // Therefore, we make LLD always add PT_GNU_STACK unless it is
524   // explicitly told to do otherwise (by -z execstack). Because the stack
525   // executable-ness is controlled solely by command line options,
526   // .note.GNU-stack sections are simply ignored.
527   if (Name == ".note.GNU-stack")
528     return &InputSection::Discarded;
529 
530   // Split stacks is a feature to support a discontiguous stack. At least
531   // as of 2017, it seems that the feature is not being used widely.
532   // Only GNU gold supports that. We don't. For the details about that,
533   // see https://gcc.gnu.org/wiki/SplitStacks
534   if (Name == ".note.GNU-split-stack") {
535     error(toString(this) +
536           ": object file compiled with -fsplit-stack is not supported");
537     return &InputSection::Discarded;
538   }
539 
540   if (Config->Strip != StripPolicy::None && Name.startswith(".debug"))
541     return &InputSection::Discarded;
542 
543   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
544   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
545   // sections. Drop those sections to avoid duplicate symbol errors.
546   // FIXME: This is glibc PR20543, we should remove this hack once that has been
547   // fixed for a while.
548   if (Name.startswith(".gnu.linkonce."))
549     return &InputSection::Discarded;
550 
551   // The linker merges EH (exception handling) frames and creates a
552   // .eh_frame_hdr section for runtime. So we handle them with a special
553   // class. For relocatable outputs, they are just passed through.
554   if (Name == ".eh_frame" && !Config->Relocatable)
555     return make<EhInputSection>(this, &Sec, Name);
556 
557   if (shouldMerge(Sec))
558     return make<MergeInputSection>(this, &Sec, Name);
559   return make<InputSection>(this, &Sec, Name);
560 }
561 
562 template <class ELFT>
563 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) {
564   return check(this->getObj().getSectionName(&Sec, SectionStringTable),
565                toString(this));
566 }
567 
568 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
569   this->Symbols.reserve(this->ELFSyms.size());
570   for (const Elf_Sym &Sym : this->ELFSyms)
571     this->Symbols.push_back(createSymbolBody(&Sym));
572 }
573 
574 template <class ELFT>
575 InputSectionBase *ObjFile<ELFT>::getSection(uint32_t Index) const {
576   if (Index == 0)
577     return nullptr;
578   if (Index >= this->Sections.size())
579     fatal(toString(this) + ": invalid section index: " + Twine(Index));
580 
581   if (InputSectionBase *Sec = this->Sections[Index])
582     return Sec->Repl;
583   return nullptr;
584 }
585 
586 template <class ELFT>
587 SymbolBody *ObjFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) {
588   int Binding = Sym->getBinding();
589   InputSectionBase *Sec = getSection(this->getSectionIndex(*Sym));
590 
591   uint8_t StOther = Sym->st_other;
592   uint8_t Type = Sym->getType();
593   uint64_t Value = Sym->st_value;
594   uint64_t Size = Sym->st_size;
595 
596   if (Binding == STB_LOCAL) {
597     if (Sym->getType() == STT_FILE)
598       SourceFile = check(Sym->getName(this->StringTable), toString(this));
599 
600     if (this->StringTable.size() <= Sym->st_name)
601       fatal(toString(this) + ": invalid symbol name offset");
602 
603     StringRefZ Name = this->StringTable.data() + Sym->st_name;
604     if (Sym->st_shndx == SHN_UNDEF)
605       return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type);
606 
607     return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value,
608                                 Size, Sec);
609   }
610 
611   StringRef Name = check(Sym->getName(this->StringTable), toString(this));
612 
613   switch (Sym->st_shndx) {
614   case SHN_UNDEF:
615     return Symtab->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding, StOther,
616                                       Type,
617                                       /*CanOmitFromDynSym=*/false, this);
618   case SHN_COMMON:
619     if (Value == 0 || Value >= UINT32_MAX)
620       fatal(toString(this) + ": common symbol '" + Name +
621             "' has invalid alignment: " + Twine(Value));
622     return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this);
623   }
624 
625   switch (Binding) {
626   default:
627     fatal(toString(this) + ": unexpected binding: " + Twine(Binding));
628   case STB_GLOBAL:
629   case STB_WEAK:
630   case STB_GNU_UNIQUE:
631     if (Sec == &InputSection::Discarded)
632       return Symtab->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding,
633                                         StOther, Type,
634                                         /*CanOmitFromDynSym=*/false, this);
635     return Symtab->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding,
636                                     Sec, this);
637   }
638 }
639 
640 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File)
641     : InputFile(ArchiveKind, File->getMemoryBufferRef()),
642       File(std::move(File)) {}
643 
644 template <class ELFT> void ArchiveFile::parse() {
645   Symbols.reserve(File->getNumberOfSymbols());
646   for (const Archive::Symbol &Sym : File->symbols())
647     Symbols.push_back(Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym));
648 }
649 
650 // Returns a buffer pointing to a member file containing a given symbol.
651 std::pair<MemoryBufferRef, uint64_t>
652 ArchiveFile::getMember(const Archive::Symbol *Sym) {
653   Archive::Child C =
654       check(Sym->getMember(), toString(this) +
655                                   ": could not get the member for symbol " +
656                                   Sym->getName());
657 
658   if (!Seen.insert(C.getChildOffset()).second)
659     return {MemoryBufferRef(), 0};
660 
661   MemoryBufferRef Ret =
662       check(C.getMemoryBufferRef(),
663             toString(this) +
664                 ": could not get the buffer for the member defining symbol " +
665                 Sym->getName());
666 
667   if (C.getParent()->isThin() && Tar)
668     Tar->append(relativeToRoot(check(C.getFullName(), toString(this))),
669                 Ret.getBuffer());
670   if (C.getParent()->isThin())
671     return {Ret, 0};
672   return {Ret, C.getChildOffset()};
673 }
674 
675 template <class ELFT>
676 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName)
677     : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName),
678       AsNeeded(Config->AsNeeded) {}
679 
680 // Partially parse the shared object file so that we can call
681 // getSoName on this object.
682 template <class ELFT> void SharedFile<ELFT>::parseSoName() {
683   const Elf_Shdr *DynamicSec = nullptr;
684   const ELFFile<ELFT> Obj = this->getObj();
685   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
686 
687   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
688   for (const Elf_Shdr &Sec : Sections) {
689     switch (Sec.sh_type) {
690     default:
691       continue;
692     case SHT_DYNSYM:
693       this->initSymtab(Sections, &Sec);
694       break;
695     case SHT_DYNAMIC:
696       DynamicSec = &Sec;
697       break;
698     case SHT_SYMTAB_SHNDX:
699       this->SymtabSHNDX =
700           check(Obj.getSHNDXTable(Sec, Sections), toString(this));
701       break;
702     case SHT_GNU_versym:
703       this->VersymSec = &Sec;
704       break;
705     case SHT_GNU_verdef:
706       this->VerdefSec = &Sec;
707       break;
708     }
709   }
710 
711   if (this->VersymSec && this->ELFSyms.empty())
712     error("SHT_GNU_versym should be associated with symbol table");
713 
714   // Search for a DT_SONAME tag to initialize this->SoName.
715   if (!DynamicSec)
716     return;
717   ArrayRef<Elf_Dyn> Arr =
718       check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec),
719             toString(this));
720   for (const Elf_Dyn &Dyn : Arr) {
721     if (Dyn.d_tag == DT_SONAME) {
722       uint64_t Val = Dyn.getVal();
723       if (Val >= this->StringTable.size())
724         fatal(toString(this) + ": invalid DT_SONAME entry");
725       SoName = this->StringTable.data() + Val;
726       return;
727     }
728   }
729 }
730 
731 // Parse the version definitions in the object file if present. Returns a vector
732 // whose nth element contains a pointer to the Elf_Verdef for version identifier
733 // n. Version identifiers that are not definitions map to nullptr. The array
734 // always has at least length 1.
735 template <class ELFT>
736 std::vector<const typename ELFT::Verdef *>
737 SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) {
738   std::vector<const Elf_Verdef *> Verdefs(1);
739   // We only need to process symbol versions for this DSO if it has both a
740   // versym and a verdef section, which indicates that the DSO contains symbol
741   // version definitions.
742   if (!VersymSec || !VerdefSec)
743     return Verdefs;
744 
745   // The location of the first global versym entry.
746   const char *Base = this->MB.getBuffer().data();
747   Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) +
748            this->FirstNonLocal;
749 
750   // We cannot determine the largest verdef identifier without inspecting
751   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
752   // sequentially starting from 1, so we predict that the largest identifier
753   // will be VerdefCount.
754   unsigned VerdefCount = VerdefSec->sh_info;
755   Verdefs.resize(VerdefCount + 1);
756 
757   // Build the Verdefs array by following the chain of Elf_Verdef objects
758   // from the start of the .gnu.version_d section.
759   const char *Verdef = Base + VerdefSec->sh_offset;
760   for (unsigned I = 0; I != VerdefCount; ++I) {
761     auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef);
762     Verdef += CurVerdef->vd_next;
763     unsigned VerdefIndex = CurVerdef->vd_ndx;
764     if (Verdefs.size() <= VerdefIndex)
765       Verdefs.resize(VerdefIndex + 1);
766     Verdefs[VerdefIndex] = CurVerdef;
767   }
768 
769   return Verdefs;
770 }
771 
772 // Fully parse the shared object file. This must be called after parseSoName().
773 template <class ELFT> void SharedFile<ELFT>::parseRest() {
774   // Create mapping from version identifiers to Elf_Verdef entries.
775   const Elf_Versym *Versym = nullptr;
776   std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym);
777 
778   ArrayRef<Elf_Shdr> Sections =
779       check(this->getObj().sections(), toString(this));
780 
781   // Add symbols to the symbol table.
782   Elf_Sym_Range Syms = this->getGlobalELFSyms();
783   for (const Elf_Sym &Sym : Syms) {
784     unsigned VersymIndex = 0;
785     if (Versym) {
786       VersymIndex = Versym->vs_index;
787       ++Versym;
788     }
789     bool Hidden = VersymIndex & VERSYM_HIDDEN;
790     VersymIndex = VersymIndex & ~VERSYM_HIDDEN;
791 
792     StringRef Name = check(Sym.getName(this->StringTable), toString(this));
793     if (Sym.isUndefined()) {
794       Undefs.push_back(Name);
795       continue;
796     }
797 
798     // Ignore local symbols.
799     if (Versym && VersymIndex == VER_NDX_LOCAL)
800       continue;
801     const Elf_Verdef *Ver = nullptr;
802     if (VersymIndex != VER_NDX_GLOBAL) {
803       if (VersymIndex >= Verdefs.size()) {
804         error("corrupt input file: version definition index " +
805               Twine(VersymIndex) + " for symbol " + Name +
806               " is out of bounds\n>>> defined in " + toString(this));
807         continue;
808       }
809       Ver = Verdefs[VersymIndex];
810     }
811 
812     // We do not usually care about alignments of data in shared object
813     // files because the loader takes care of it. However, if we promote a
814     // DSO symbol to point to .bss due to copy relocation, we need to keep
815     // the original alignment requirements. We infer it here.
816     uint32_t Alignment = 1;
817     if (Sym.st_value)
818       Alignment = 1ULL << countTrailingZeros((uint64_t)Sym.st_value);
819     if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) {
820       uint32_t SecAlign = Sections[Sym.st_shndx].sh_addralign;
821       Alignment = std::min(Alignment, SecAlign);
822     }
823 
824     if (!Hidden)
825       Symtab->addShared(Name, this, Sym, Alignment, Ver);
826 
827     // Also add the symbol with the versioned name to handle undefined symbols
828     // with explicit versions.
829     if (Ver) {
830       StringRef VerName = this->StringTable.data() + Ver->getAux()->vda_name;
831       Name = Saver.save(Name + "@" + VerName);
832       Symtab->addShared(Name, this, Sym, Alignment, Ver);
833     }
834   }
835 }
836 
837 static ELFKind getBitcodeELFKind(const Triple &T) {
838   if (T.isLittleEndian())
839     return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
840   return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
841 }
842 
843 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) {
844   switch (T.getArch()) {
845   case Triple::aarch64:
846     return EM_AARCH64;
847   case Triple::arm:
848   case Triple::thumb:
849     return EM_ARM;
850   case Triple::avr:
851     return EM_AVR;
852   case Triple::mips:
853   case Triple::mipsel:
854   case Triple::mips64:
855   case Triple::mips64el:
856     return EM_MIPS;
857   case Triple::ppc:
858     return EM_PPC;
859   case Triple::ppc64:
860     return EM_PPC64;
861   case Triple::x86:
862     return T.isOSIAMCU() ? EM_IAMCU : EM_386;
863   case Triple::x86_64:
864     return EM_X86_64;
865   default:
866     fatal(Path + ": could not infer e_machine from bitcode target triple " +
867           T.str());
868   }
869 }
870 
871 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName,
872                          uint64_t OffsetInArchive)
873     : InputFile(BitcodeKind, MB) {
874   this->ArchiveName = ArchiveName;
875 
876   // Here we pass a new MemoryBufferRef which is identified by ArchiveName
877   // (the fully resolved path of the archive) + member name + offset of the
878   // member in the archive.
879   // ThinLTO uses the MemoryBufferRef identifier to access its internal
880   // data structures and if two archives define two members with the same name,
881   // this causes a collision which result in only one of the objects being
882   // taken into consideration at LTO time (which very likely causes undefined
883   // symbols later in the link stage).
884   MemoryBufferRef MBRef(MB.getBuffer(),
885                         Saver.save(ArchiveName + MB.getBufferIdentifier() +
886                                    utostr(OffsetInArchive)));
887   Obj = check(lto::InputFile::create(MBRef), toString(this));
888 
889   Triple T(Obj->getTargetTriple());
890   EKind = getBitcodeELFKind(T);
891   EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T);
892 }
893 
894 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) {
895   switch (GvVisibility) {
896   case GlobalValue::DefaultVisibility:
897     return STV_DEFAULT;
898   case GlobalValue::HiddenVisibility:
899     return STV_HIDDEN;
900   case GlobalValue::ProtectedVisibility:
901     return STV_PROTECTED;
902   }
903   llvm_unreachable("unknown visibility");
904 }
905 
906 template <class ELFT>
907 static SymbolBody *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
908                                        const lto::InputFile::Symbol &ObjSym,
909                                        BitcodeFile *F) {
910   StringRef NameRef = Saver.save(ObjSym.getName());
911   uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL;
912 
913   uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE;
914   uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
915   bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
916 
917   int C = ObjSym.getComdatIndex();
918   if (C != -1 && !KeptComdats[C])
919     return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding,
920                                       Visibility, Type, CanOmitFromDynSym, F);
921 
922   if (ObjSym.isUndefined())
923     return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding,
924                                       Visibility, Type, CanOmitFromDynSym, F);
925 
926   if (ObjSym.isCommon())
927     return Symtab->addCommon(NameRef, ObjSym.getCommonSize(),
928                              ObjSym.getCommonAlignment(), Binding, Visibility,
929                              STT_OBJECT, F);
930 
931   return Symtab->addBitcode(NameRef, Binding, Visibility, Type,
932                             CanOmitFromDynSym, F);
933 }
934 
935 template <class ELFT>
936 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
937   std::vector<bool> KeptComdats;
938   for (StringRef S : Obj->getComdatTable())
939     KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
940 
941   for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
942     Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));
943 }
944 
945 static ELFKind getELFKind(MemoryBufferRef MB) {
946   unsigned char Size;
947   unsigned char Endian;
948   std::tie(Size, Endian) = getElfArchType(MB.getBuffer());
949 
950   if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB)
951     fatal(MB.getBufferIdentifier() + ": invalid data encoding");
952   if (Size != ELFCLASS32 && Size != ELFCLASS64)
953     fatal(MB.getBufferIdentifier() + ": invalid file class");
954 
955   size_t BufSize = MB.getBuffer().size();
956   if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) ||
957       (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr)))
958     fatal(MB.getBufferIdentifier() + ": file is too short");
959 
960   if (Size == ELFCLASS32)
961     return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
962   return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
963 }
964 
965 template <class ELFT> void BinaryFile::parse() {
966   ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer());
967   auto *Section =
968       make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data");
969   Sections.push_back(Section);
970 
971   // For each input file foo that is embedded to a result as a binary
972   // blob, we define _binary_foo_{start,end,size} symbols, so that
973   // user programs can access blobs by name. Non-alphanumeric
974   // characters in a filename are replaced with underscore.
975   std::string S = "_binary_" + MB.getBufferIdentifier().str();
976   for (size_t I = 0; I < S.size(); ++I)
977     if (!isAlnum(S[I]))
978       S[I] = '_';
979 
980   Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT,
981                            0, 0, STB_GLOBAL, Section, nullptr);
982   Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT,
983                            Data.size(), 0, STB_GLOBAL, Section, nullptr);
984   Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT,
985                            Data.size(), 0, STB_GLOBAL, nullptr, nullptr);
986 }
987 
988 static bool isBitcode(MemoryBufferRef MB) {
989   using namespace sys::fs;
990   return identify_magic(MB.getBuffer()) == file_magic::bitcode;
991 }
992 
993 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName,
994                                  uint64_t OffsetInArchive) {
995   if (isBitcode(MB))
996     return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive);
997 
998   switch (getELFKind(MB)) {
999   case ELF32LEKind:
1000     return make<ObjFile<ELF32LE>>(MB, ArchiveName);
1001   case ELF32BEKind:
1002     return make<ObjFile<ELF32BE>>(MB, ArchiveName);
1003   case ELF64LEKind:
1004     return make<ObjFile<ELF64LE>>(MB, ArchiveName);
1005   case ELF64BEKind:
1006     return make<ObjFile<ELF64BE>>(MB, ArchiveName);
1007   default:
1008     llvm_unreachable("getELFKind");
1009   }
1010 }
1011 
1012 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) {
1013   switch (getELFKind(MB)) {
1014   case ELF32LEKind:
1015     return make<SharedFile<ELF32LE>>(MB, DefaultSoName);
1016   case ELF32BEKind:
1017     return make<SharedFile<ELF32BE>>(MB, DefaultSoName);
1018   case ELF64LEKind:
1019     return make<SharedFile<ELF64LE>>(MB, DefaultSoName);
1020   case ELF64BEKind:
1021     return make<SharedFile<ELF64BE>>(MB, DefaultSoName);
1022   default:
1023     llvm_unreachable("getELFKind");
1024   }
1025 }
1026 
1027 MemoryBufferRef LazyObjFile::getBuffer() {
1028   if (Seen)
1029     return MemoryBufferRef();
1030   Seen = true;
1031   return MB;
1032 }
1033 
1034 InputFile *LazyObjFile::fetch() {
1035   MemoryBufferRef MBRef = getBuffer();
1036   if (MBRef.getBuffer().empty())
1037     return nullptr;
1038   return createObjectFile(MBRef, ArchiveName, OffsetInArchive);
1039 }
1040 
1041 template <class ELFT> void LazyObjFile::parse() {
1042   for (StringRef Sym : getSymbolNames())
1043     Symtab->addLazyObject<ELFT>(Sym, *this);
1044 }
1045 
1046 template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() {
1047   typedef typename ELFT::Shdr Elf_Shdr;
1048   typedef typename ELFT::Sym Elf_Sym;
1049   typedef typename ELFT::SymRange Elf_Sym_Range;
1050 
1051   ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer()));
1052   ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this));
1053   for (const Elf_Shdr &Sec : Sections) {
1054     if (Sec.sh_type != SHT_SYMTAB)
1055       continue;
1056 
1057     Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this));
1058     uint32_t FirstNonLocal = Sec.sh_info;
1059     StringRef StringTable =
1060         check(Obj.getStringTableForSymtab(Sec, Sections), toString(this));
1061     std::vector<StringRef> V;
1062 
1063     for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal))
1064       if (Sym.st_shndx != SHN_UNDEF)
1065         V.push_back(check(Sym.getName(StringTable), toString(this)));
1066     return V;
1067   }
1068   return {};
1069 }
1070 
1071 std::vector<StringRef> LazyObjFile::getBitcodeSymbols() {
1072   std::unique_ptr<lto::InputFile> Obj =
1073       check(lto::InputFile::create(this->MB), toString(this));
1074   std::vector<StringRef> V;
1075   for (const lto::InputFile::Symbol &Sym : Obj->symbols())
1076     if (!Sym.isUndefined())
1077       V.push_back(Saver.save(Sym.getName()));
1078   return V;
1079 }
1080 
1081 // Returns a vector of globally-visible defined symbol names.
1082 std::vector<StringRef> LazyObjFile::getSymbolNames() {
1083   if (isBitcode(this->MB))
1084     return getBitcodeSymbols();
1085 
1086   switch (getELFKind(this->MB)) {
1087   case ELF32LEKind:
1088     return getElfSymbols<ELF32LE>();
1089   case ELF32BEKind:
1090     return getElfSymbols<ELF32BE>();
1091   case ELF64LEKind:
1092     return getElfSymbols<ELF64LE>();
1093   case ELF64BEKind:
1094     return getElfSymbols<ELF64BE>();
1095   default:
1096     llvm_unreachable("getELFKind");
1097   }
1098 }
1099 
1100 template void ArchiveFile::parse<ELF32LE>();
1101 template void ArchiveFile::parse<ELF32BE>();
1102 template void ArchiveFile::parse<ELF64LE>();
1103 template void ArchiveFile::parse<ELF64BE>();
1104 
1105 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &);
1106 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &);
1107 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &);
1108 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &);
1109 
1110 template void LazyObjFile::parse<ELF32LE>();
1111 template void LazyObjFile::parse<ELF32BE>();
1112 template void LazyObjFile::parse<ELF64LE>();
1113 template void LazyObjFile::parse<ELF64BE>();
1114 
1115 template class elf::ELFFileBase<ELF32LE>;
1116 template class elf::ELFFileBase<ELF32BE>;
1117 template class elf::ELFFileBase<ELF64LE>;
1118 template class elf::ELFFileBase<ELF64BE>;
1119 
1120 template class elf::ObjFile<ELF32LE>;
1121 template class elf::ObjFile<ELF32BE>;
1122 template class elf::ObjFile<ELF64LE>;
1123 template class elf::ObjFile<ELF64BE>;
1124 
1125 template class elf::SharedFile<ELF32LE>;
1126 template class elf::SharedFile<ELF32BE>;
1127 template class elf::SharedFile<ELF64LE>;
1128 template class elf::SharedFile<ELF64BE>;
1129 
1130 template void BinaryFile::parse<ELF32LE>();
1131 template void BinaryFile::parse<ELF32BE>();
1132 template void BinaryFile::parse<ELF64LE>();
1133 template void BinaryFile::parse<ELF64BE>();
1134