1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33 
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42 
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45 
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<BitcodeFile *> elf::lazyBitcodeFiles;
50 std::vector<ELFFileBase *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52 
53 std::unique_ptr<TarWriter> elf::tar;
54 
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
56 std::string lld::toString(const InputFile *f) {
57   if (!f)
58     return "<internal>";
59 
60   if (f->toStringCache.empty()) {
61     if (f->archiveName.empty())
62       f->toStringCache = f->getName();
63     else
64       (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
65   }
66   return std::string(f->toStringCache);
67 }
68 
69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70   unsigned char size;
71   unsigned char endian;
72   std::tie(size, endian) = getElfArchType(mb.getBuffer());
73 
74   auto report = [&](StringRef msg) {
75     StringRef filename = mb.getBufferIdentifier();
76     if (archiveName.empty())
77       fatal(filename + ": " + msg);
78     else
79       fatal(archiveName + "(" + filename + "): " + msg);
80   };
81 
82   if (!mb.getBuffer().startswith(ElfMagic))
83     report("not an ELF file");
84   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85     report("corrupted ELF file: invalid data encoding");
86   if (size != ELFCLASS32 && size != ELFCLASS64)
87     report("corrupted ELF file: invalid file class");
88 
89   size_t bufSize = mb.getBuffer().size();
90   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92     report("corrupted ELF file: file is too short");
93 
94   if (size == ELFCLASS32)
95     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98 
99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100     : mb(m), groupId(nextGroupId), fileKind(k) {
101   // All files within the same --{start,end}-group get the same group ID.
102   // Otherwise, a new file will get a new group ID.
103   if (!isInGroup)
104     ++nextGroupId;
105 }
106 
107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108   llvm::TimeTraceScope timeScope("Load input files", path);
109 
110   // The --chroot option changes our virtual root directory.
111   // This is useful when you are dealing with files created by --reproduce.
112   if (!config->chroot.empty() && path.startswith("/"))
113     path = saver.save(config->chroot + path);
114 
115   log(path);
116   config->dependencyFiles.insert(llvm::CachedHashString(path));
117 
118   auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
119                                        /*RequiresNullTerminator=*/false);
120   if (auto ec = mbOrErr.getError()) {
121     error("cannot open " + path + ": " + ec.message());
122     return None;
123   }
124 
125   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
126   MemoryBufferRef mbref = mb->getMemBufferRef();
127   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
128 
129   if (tar)
130     tar->append(relativeToRoot(path), mbref.getBuffer());
131   return mbref;
132 }
133 
134 // All input object files must be for the same architecture
135 // (e.g. it does not make sense to link x86 object files with
136 // MIPS object files.) This function checks for that error.
137 static bool isCompatible(InputFile *file) {
138   if (!file->isElf() && !isa<BitcodeFile>(file))
139     return true;
140 
141   if (file->ekind == config->ekind && file->emachine == config->emachine) {
142     if (config->emachine != EM_MIPS)
143       return true;
144     if (isMipsN32Abi(file) == config->mipsN32Abi)
145       return true;
146   }
147 
148   StringRef target =
149       !config->bfdname.empty() ? config->bfdname : config->emulation;
150   if (!target.empty()) {
151     error(toString(file) + " is incompatible with " + target);
152     return false;
153   }
154 
155   InputFile *existing;
156   if (!objectFiles.empty())
157     existing = objectFiles[0];
158   else if (!sharedFiles.empty())
159     existing = sharedFiles[0];
160   else if (!bitcodeFiles.empty())
161     existing = bitcodeFiles[0];
162   else
163     llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
164                      "determine target emulation");
165 
166   error(toString(file) + " is incompatible with " + toString(existing));
167   return false;
168 }
169 
170 template <class ELFT> static void doParseFile(InputFile *file) {
171   if (!isCompatible(file))
172     return;
173 
174   // Binary file
175   if (auto *f = dyn_cast<BinaryFile>(file)) {
176     binaryFiles.push_back(f);
177     f->parse();
178     return;
179   }
180 
181   // .a file
182   if (auto *f = dyn_cast<ArchiveFile>(file)) {
183     archiveFiles.push_back(f);
184     f->parse();
185     return;
186   }
187 
188   // Lazy object file
189   if (file->lazy) {
190     if (auto *f = dyn_cast<BitcodeFile>(file)) {
191       lazyBitcodeFiles.push_back(f);
192       f->parseLazy();
193     } else {
194       cast<ObjFile<ELFT>>(file)->parseLazy();
195     }
196     return;
197   }
198 
199   if (config->trace)
200     message(toString(file));
201 
202   // .so file
203   if (auto *f = dyn_cast<SharedFile>(file)) {
204     f->parse<ELFT>();
205     return;
206   }
207 
208   // LLVM bitcode file
209   if (auto *f = dyn_cast<BitcodeFile>(file)) {
210     bitcodeFiles.push_back(f);
211     f->parse<ELFT>();
212     return;
213   }
214 
215   // Regular object file
216   objectFiles.push_back(cast<ELFFileBase>(file));
217   cast<ObjFile<ELFT>>(file)->parse();
218 }
219 
220 // Add symbols in File to the symbol table.
221 void elf::parseFile(InputFile *file) {
222   switch (config->ekind) {
223   case ELF32LEKind:
224     doParseFile<ELF32LE>(file);
225     return;
226   case ELF32BEKind:
227     doParseFile<ELF32BE>(file);
228     return;
229   case ELF64LEKind:
230     doParseFile<ELF64LE>(file);
231     return;
232   case ELF64BEKind:
233     doParseFile<ELF64BE>(file);
234     return;
235   default:
236     llvm_unreachable("unknown ELFT");
237   }
238 }
239 
240 // Concatenates arguments to construct a string representing an error location.
241 static std::string createFileLineMsg(StringRef path, unsigned line) {
242   std::string filename = std::string(path::filename(path));
243   std::string lineno = ":" + std::to_string(line);
244   if (filename == path)
245     return filename + lineno;
246   return filename + lineno + " (" + path.str() + lineno + ")";
247 }
248 
249 template <class ELFT>
250 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
251                                 InputSectionBase &sec, uint64_t offset) {
252   // In DWARF, functions and variables are stored to different places.
253   // First, lookup a function for a given offset.
254   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
255     return createFileLineMsg(info->FileName, info->Line);
256 
257   // If it failed, lookup again as a variable.
258   if (Optional<std::pair<std::string, unsigned>> fileLine =
259           file.getVariableLoc(sym.getName()))
260     return createFileLineMsg(fileLine->first, fileLine->second);
261 
262   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
263   return std::string(file.sourceFile);
264 }
265 
266 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
267                                  uint64_t offset) {
268   if (kind() != ObjKind)
269     return "";
270   switch (config->ekind) {
271   default:
272     llvm_unreachable("Invalid kind");
273   case ELF32LEKind:
274     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
275   case ELF32BEKind:
276     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
277   case ELF64LEKind:
278     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
279   case ELF64BEKind:
280     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
281   }
282 }
283 
284 StringRef InputFile::getNameForScript() const {
285   if (archiveName.empty())
286     return getName();
287 
288   if (nameForScriptCache.empty())
289     nameForScriptCache = (archiveName + Twine(':') + getName()).str();
290 
291   return nameForScriptCache;
292 }
293 
294 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
295   llvm::call_once(initDwarf, [this]() {
296     dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
297         std::make_unique<LLDDwarfObj<ELFT>>(this), "",
298         [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
299         [&](Error warning) {
300           warn(getName() + ": " + toString(std::move(warning)));
301         }));
302   });
303 
304   return dwarf.get();
305 }
306 
307 // Returns the pair of file name and line number describing location of data
308 // object (variable, array, etc) definition.
309 template <class ELFT>
310 Optional<std::pair<std::string, unsigned>>
311 ObjFile<ELFT>::getVariableLoc(StringRef name) {
312   return getDwarf()->getVariableLoc(name);
313 }
314 
315 // Returns source line information for a given offset
316 // using DWARF debug info.
317 template <class ELFT>
318 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
319                                                   uint64_t offset) {
320   // Detect SectionIndex for specified section.
321   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
322   ArrayRef<InputSectionBase *> sections = s->file->getSections();
323   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
324     if (s == sections[curIndex]) {
325       sectionIndex = curIndex;
326       break;
327     }
328   }
329 
330   return getDwarf()->getDILineInfo(offset, sectionIndex);
331 }
332 
333 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
334   ekind = getELFKind(mb, "");
335 
336   switch (ekind) {
337   case ELF32LEKind:
338     init<ELF32LE>();
339     break;
340   case ELF32BEKind:
341     init<ELF32BE>();
342     break;
343   case ELF64LEKind:
344     init<ELF64LE>();
345     break;
346   case ELF64BEKind:
347     init<ELF64BE>();
348     break;
349   default:
350     llvm_unreachable("getELFKind");
351   }
352 }
353 
354 template <typename Elf_Shdr>
355 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
356   for (const Elf_Shdr &sec : sections)
357     if (sec.sh_type == type)
358       return &sec;
359   return nullptr;
360 }
361 
362 template <class ELFT> void ELFFileBase::init() {
363   using Elf_Shdr = typename ELFT::Shdr;
364   using Elf_Sym = typename ELFT::Sym;
365 
366   // Initialize trivial attributes.
367   const ELFFile<ELFT> &obj = getObj<ELFT>();
368   emachine = obj.getHeader().e_machine;
369   osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
370   abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
371 
372   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
373 
374   // Find a symbol table.
375   bool isDSO =
376       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
377   const Elf_Shdr *symtabSec =
378       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
379 
380   if (!symtabSec)
381     return;
382 
383   // Initialize members corresponding to a symbol table.
384   firstGlobal = symtabSec->sh_info;
385 
386   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
387   if (firstGlobal == 0 || firstGlobal > eSyms.size())
388     fatal(toString(this) + ": invalid sh_info in symbol table");
389 
390   elfSyms = reinterpret_cast<const void *>(eSyms.data());
391   numELFSyms = uint32_t(eSyms.size());
392   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
393 }
394 
395 template <class ELFT>
396 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
397   return CHECK(
398       this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
399       this);
400 }
401 
402 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
403   // Read a section table. justSymbols is usually false.
404   if (this->justSymbols)
405     initializeJustSymbols();
406   else
407     initializeSections(ignoreComdats);
408 
409   // Read a symbol table.
410   initializeSymbols();
411 }
412 
413 // Sections with SHT_GROUP and comdat bits define comdat section groups.
414 // They are identified and deduplicated by group name. This function
415 // returns a group name.
416 template <class ELFT>
417 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
418                                               const Elf_Shdr &sec) {
419   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
420   if (sec.sh_info >= symbols.size())
421     fatal(toString(this) + ": invalid symbol index");
422   const typename ELFT::Sym &sym = symbols[sec.sh_info];
423   return CHECK(sym.getName(this->stringTable), this);
424 }
425 
426 template <class ELFT>
427 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
428   // On a regular link we don't merge sections if -O0 (default is -O1). This
429   // sometimes makes the linker significantly faster, although the output will
430   // be bigger.
431   //
432   // Doing the same for -r would create a problem as it would combine sections
433   // with different sh_entsize. One option would be to just copy every SHF_MERGE
434   // section as is to the output. While this would produce a valid ELF file with
435   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
436   // they see two .debug_str. We could have separate logic for combining
437   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
438   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
439   // logic for -r.
440   if (config->optimize == 0 && !config->relocatable)
441     return false;
442 
443   // A mergeable section with size 0 is useless because they don't have
444   // any data to merge. A mergeable string section with size 0 can be
445   // argued as invalid because it doesn't end with a null character.
446   // We'll avoid a mess by handling them as if they were non-mergeable.
447   if (sec.sh_size == 0)
448     return false;
449 
450   // Check for sh_entsize. The ELF spec is not clear about the zero
451   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
452   // the section does not hold a table of fixed-size entries". We know
453   // that Rust 1.13 produces a string mergeable section with a zero
454   // sh_entsize. Here we just accept it rather than being picky about it.
455   uint64_t entSize = sec.sh_entsize;
456   if (entSize == 0)
457     return false;
458   if (sec.sh_size % entSize)
459     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
460           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
461           Twine(entSize) + ")");
462 
463   if (sec.sh_flags & SHF_WRITE)
464     fatal(toString(this) + ":(" + name +
465           "): writable SHF_MERGE section is not supported");
466 
467   return true;
468 }
469 
470 // This is for --just-symbols.
471 //
472 // --just-symbols is a very minor feature that allows you to link your
473 // output against other existing program, so that if you load both your
474 // program and the other program into memory, your output can refer the
475 // other program's symbols.
476 //
477 // When the option is given, we link "just symbols". The section table is
478 // initialized with null pointers.
479 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
480   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
481   this->sections.resize(sections.size());
482 }
483 
484 // An ELF object file may contain a `.deplibs` section. If it exists, the
485 // section contains a list of library specifiers such as `m` for libm. This
486 // function resolves a given name by finding the first matching library checking
487 // the various ways that a library can be specified to LLD. This ELF extension
488 // is a form of autolinking and is called `dependent libraries`. It is currently
489 // unique to LLVM and lld.
490 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
491   if (!config->dependentLibraries)
492     return;
493   if (fs::exists(specifier))
494     driver->addFile(specifier, /*withLOption=*/false);
495   else if (Optional<std::string> s = findFromSearchPaths(specifier))
496     driver->addFile(*s, /*withLOption=*/true);
497   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
498     driver->addFile(*s, /*withLOption=*/true);
499   else
500     error(toString(f) +
501           ": unable to find library from dependent library specifier: " +
502           specifier);
503 }
504 
505 // Record the membership of a section group so that in the garbage collection
506 // pass, section group members are kept or discarded as a unit.
507 template <class ELFT>
508 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
509                                ArrayRef<typename ELFT::Word> entries) {
510   bool hasAlloc = false;
511   for (uint32_t index : entries.slice(1)) {
512     if (index >= sections.size())
513       return;
514     if (InputSectionBase *s = sections[index])
515       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
516         hasAlloc = true;
517   }
518 
519   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
520   // collection. See the comment in markLive(). This rule retains .debug_types
521   // and .rela.debug_types.
522   if (!hasAlloc)
523     return;
524 
525   // Connect the members in a circular doubly-linked list via
526   // nextInSectionGroup.
527   InputSectionBase *head;
528   InputSectionBase *prev = nullptr;
529   for (uint32_t index : entries.slice(1)) {
530     InputSectionBase *s = sections[index];
531     if (!s || s == &InputSection::discarded)
532       continue;
533     if (prev)
534       prev->nextInSectionGroup = s;
535     else
536       head = s;
537     prev = s;
538   }
539   if (prev)
540     prev->nextInSectionGroup = head;
541 }
542 
543 template <class ELFT>
544 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
545   const ELFFile<ELFT> &obj = this->getObj();
546 
547   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
548   StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
549   uint64_t size = objSections.size();
550   this->sections.resize(size);
551 
552   std::vector<ArrayRef<Elf_Word>> selectedGroups;
553 
554   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
555     if (this->sections[i] == &InputSection::discarded)
556       continue;
557     const Elf_Shdr &sec = objSections[i];
558 
559     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
560     // if -r is given, we'll let the final link discard such sections.
561     // This is compatible with GNU.
562     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
563       if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
564         cgProfileSectionIndex = i;
565       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
566         // We ignore the address-significance table if we know that the object
567         // file was created by objcopy or ld -r. This is because these tools
568         // will reorder the symbols in the symbol table, invalidating the data
569         // in the address-significance table, which refers to symbols by index.
570         if (sec.sh_link != 0)
571           this->addrsigSec = &sec;
572         else if (config->icf == ICFLevel::Safe)
573           warn(toString(this) +
574                ": --icf=safe conservatively ignores "
575                "SHT_LLVM_ADDRSIG [index " +
576                Twine(i) +
577                "] with sh_link=0 "
578                "(likely created using objcopy or ld -r)");
579       }
580       this->sections[i] = &InputSection::discarded;
581       continue;
582     }
583 
584     switch (sec.sh_type) {
585     case SHT_GROUP: {
586       // De-duplicate section groups by their signatures.
587       StringRef signature = getShtGroupSignature(objSections, sec);
588       this->sections[i] = &InputSection::discarded;
589 
590       ArrayRef<Elf_Word> entries =
591           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
592       if (entries.empty())
593         fatal(toString(this) + ": empty SHT_GROUP");
594 
595       Elf_Word flag = entries[0];
596       if (flag && flag != GRP_COMDAT)
597         fatal(toString(this) + ": unsupported SHT_GROUP format");
598 
599       bool keepGroup =
600           (flag & GRP_COMDAT) == 0 || ignoreComdats ||
601           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
602               .second;
603       if (keepGroup) {
604         if (config->relocatable)
605           this->sections[i] = createInputSection(i, sec, shstrtab);
606         selectedGroups.push_back(entries);
607         continue;
608       }
609 
610       // Otherwise, discard group members.
611       for (uint32_t secIndex : entries.slice(1)) {
612         if (secIndex >= size)
613           fatal(toString(this) +
614                 ": invalid section index in group: " + Twine(secIndex));
615         this->sections[secIndex] = &InputSection::discarded;
616       }
617       break;
618     }
619     case SHT_SYMTAB_SHNDX:
620       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
621       break;
622     case SHT_SYMTAB:
623     case SHT_STRTAB:
624     case SHT_REL:
625     case SHT_RELA:
626     case SHT_NULL:
627       break;
628     default:
629       this->sections[i] = createInputSection(i, sec, shstrtab);
630     }
631   }
632 
633   // We have a second loop. It is used to:
634   // 1) handle SHF_LINK_ORDER sections.
635   // 2) create SHT_REL[A] sections. In some cases the section header index of a
636   //    relocation section may be smaller than that of the relocated section. In
637   //    such cases, the relocation section would attempt to reference a target
638   //    section that has not yet been created. For simplicity, delay creation of
639   //    relocation sections until now.
640   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
641     if (this->sections[i] == &InputSection::discarded)
642       continue;
643     const Elf_Shdr &sec = objSections[i];
644 
645     if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
646       this->sections[i] = createInputSection(i, sec, shstrtab);
647 
648     // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
649     // the flag.
650     if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
651       continue;
652 
653     InputSectionBase *linkSec = nullptr;
654     if (sec.sh_link < this->sections.size())
655       linkSec = this->sections[sec.sh_link];
656     if (!linkSec)
657       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
658 
659     // A SHF_LINK_ORDER section is discarded if its linked-to section is
660     // discarded.
661     InputSection *isec = cast<InputSection>(this->sections[i]);
662     linkSec->dependentSections.push_back(isec);
663     if (!isa<InputSection>(linkSec))
664       error("a section " + isec->name +
665             " with SHF_LINK_ORDER should not refer a non-regular section: " +
666             toString(linkSec));
667   }
668 
669   for (ArrayRef<Elf_Word> entries : selectedGroups)
670     handleSectionGroup<ELFT>(this->sections, entries);
671 }
672 
673 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
674 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
675 // the input objects have been compiled.
676 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
677                              const InputFile *f) {
678   Optional<unsigned> attr =
679       attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
680   if (!attr.hasValue())
681     // If an ABI tag isn't present then it is implicitly given the value of 0
682     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
683     // including some in glibc that don't use FP args (and should have value 3)
684     // don't have the attribute so we do not consider an implicit value of 0
685     // as a clash.
686     return;
687 
688   unsigned vfpArgs = attr.getValue();
689   ARMVFPArgKind arg;
690   switch (vfpArgs) {
691   case ARMBuildAttrs::BaseAAPCS:
692     arg = ARMVFPArgKind::Base;
693     break;
694   case ARMBuildAttrs::HardFPAAPCS:
695     arg = ARMVFPArgKind::VFP;
696     break;
697   case ARMBuildAttrs::ToolChainFPPCS:
698     // Tool chain specific convention that conforms to neither AAPCS variant.
699     arg = ARMVFPArgKind::ToolChain;
700     break;
701   case ARMBuildAttrs::CompatibleFPAAPCS:
702     // Object compatible with all conventions.
703     return;
704   default:
705     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
706     return;
707   }
708   // Follow ld.bfd and error if there is a mix of calling conventions.
709   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
710     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
711   else
712     config->armVFPArgs = arg;
713 }
714 
715 // The ARM support in lld makes some use of instructions that are not available
716 // on all ARM architectures. Namely:
717 // - Use of BLX instruction for interworking between ARM and Thumb state.
718 // - Use of the extended Thumb branch encoding in relocation.
719 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
720 // The ARM Attributes section contains information about the architecture chosen
721 // at compile time. We follow the convention that if at least one input object
722 // is compiled with an architecture that supports these features then lld is
723 // permitted to use them.
724 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
725   Optional<unsigned> attr =
726       attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
727   if (!attr.hasValue())
728     return;
729   auto arch = attr.getValue();
730   switch (arch) {
731   case ARMBuildAttrs::Pre_v4:
732   case ARMBuildAttrs::v4:
733   case ARMBuildAttrs::v4T:
734     // Architectures prior to v5 do not support BLX instruction
735     break;
736   case ARMBuildAttrs::v5T:
737   case ARMBuildAttrs::v5TE:
738   case ARMBuildAttrs::v5TEJ:
739   case ARMBuildAttrs::v6:
740   case ARMBuildAttrs::v6KZ:
741   case ARMBuildAttrs::v6K:
742     config->armHasBlx = true;
743     // Architectures used in pre-Cortex processors do not support
744     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
745     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
746     break;
747   default:
748     // All other Architectures have BLX and extended branch encoding
749     config->armHasBlx = true;
750     config->armJ1J2BranchEncoding = true;
751     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
752       // All Architectures used in Cortex processors with the exception
753       // of v6-M and v6S-M have the MOVT and MOVW instructions.
754       config->armHasMovtMovw = true;
755     break;
756   }
757 }
758 
759 // If a source file is compiled with x86 hardware-assisted call flow control
760 // enabled, the generated object file contains feature flags indicating that
761 // fact. This function reads the feature flags and returns it.
762 //
763 // Essentially we want to read a single 32-bit value in this function, but this
764 // function is rather complicated because the value is buried deep inside a
765 // .note.gnu.property section.
766 //
767 // The section consists of one or more NOTE records. Each NOTE record consists
768 // of zero or more type-length-value fields. We want to find a field of a
769 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
770 // the ABI is unnecessarily complicated.
771 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
772   using Elf_Nhdr = typename ELFT::Nhdr;
773   using Elf_Note = typename ELFT::Note;
774 
775   uint32_t featuresSet = 0;
776   ArrayRef<uint8_t> data = sec.data();
777   auto reportFatal = [&](const uint8_t *place, const char *msg) {
778     fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
779           Twine::utohexstr(place - sec.data().data()) + "): " + msg);
780   };
781   while (!data.empty()) {
782     // Read one NOTE record.
783     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
784     if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
785       reportFatal(data.data(), "data is too short");
786 
787     Elf_Note note(*nhdr);
788     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
789       data = data.slice(nhdr->getSize());
790       continue;
791     }
792 
793     uint32_t featureAndType = config->emachine == EM_AARCH64
794                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
795                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
796 
797     // Read a body of a NOTE record, which consists of type-length-value fields.
798     ArrayRef<uint8_t> desc = note.getDesc();
799     while (!desc.empty()) {
800       const uint8_t *place = desc.data();
801       if (desc.size() < 8)
802         reportFatal(place, "program property is too short");
803       uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
804       uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
805       desc = desc.slice(8);
806       if (desc.size() < size)
807         reportFatal(place, "program property is too short");
808 
809       if (type == featureAndType) {
810         // We found a FEATURE_1_AND field. There may be more than one of these
811         // in a .note.gnu.property section, for a relocatable object we
812         // accumulate the bits set.
813         if (size < 4)
814           reportFatal(place, "FEATURE_1_AND entry is too short");
815         featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
816       }
817 
818       // Padding is present in the note descriptor, if necessary.
819       desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
820     }
821 
822     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
823     data = data.slice(nhdr->getSize());
824   }
825 
826   return featuresSet;
827 }
828 
829 template <class ELFT>
830 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx, StringRef name,
831                                                 const Elf_Shdr &sec) {
832   uint32_t info = sec.sh_info;
833   if (info < this->sections.size()) {
834     InputSectionBase *target = this->sections[info];
835 
836     // Strictly speaking, a relocation section must be included in the
837     // group of the section it relocates. However, LLVM 3.3 and earlier
838     // would fail to do so, so we gracefully handle that case.
839     if (target == &InputSection::discarded)
840       return nullptr;
841 
842     if (target != nullptr)
843       return target;
844   }
845 
846   error(toString(this) + Twine(": relocation section ") + name + " (index " +
847         Twine(idx) + ") has invalid sh_info (" + Twine(info) + ")");
848   return nullptr;
849 }
850 
851 // Create a regular InputSection class that has the same contents
852 // as a given section.
853 static InputSection *toRegularSection(MergeInputSection *sec) {
854   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
855                             sec->data(), sec->name);
856 }
857 
858 template <class ELFT>
859 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
860                                                     const Elf_Shdr &sec,
861                                                     StringRef shstrtab) {
862   StringRef name = CHECK(getObj().getSectionName(sec, shstrtab), this);
863 
864   if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
865     ARMAttributeParser attributes;
866     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
867     if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
868                                                  ? support::little
869                                                  : support::big)) {
870       auto *isec = make<InputSection>(*this, sec, name);
871       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
872     } else {
873       updateSupportedARMFeatures(attributes);
874       updateARMVFPArgs(attributes, this);
875 
876       // FIXME: Retain the first attribute section we see. The eglibc ARM
877       // dynamic loaders require the presence of an attribute section for dlopen
878       // to work. In a full implementation we would merge all attribute
879       // sections.
880       if (in.attributes == nullptr) {
881         in.attributes = std::make_unique<InputSection>(*this, sec, name);
882         return in.attributes.get();
883       }
884       return &InputSection::discarded;
885     }
886   }
887 
888   if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
889     RISCVAttributeParser attributes;
890     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
891     if (Error e = attributes.parse(contents, support::little)) {
892       auto *isec = make<InputSection>(*this, sec, name);
893       warn(toString(isec) + ": " + llvm::toString(std::move(e)));
894     } else {
895       // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
896       // present.
897 
898       // FIXME: Retain the first attribute section we see. Tools such as
899       // llvm-objdump make use of the attribute section to determine which
900       // standard extensions to enable. In a full implementation we would merge
901       // all attribute sections.
902       if (in.attributes == nullptr) {
903         in.attributes = std::make_unique<InputSection>(*this, sec, name);
904         return in.attributes.get();
905       }
906       return &InputSection::discarded;
907     }
908   }
909 
910   switch (sec.sh_type) {
911   case SHT_LLVM_DEPENDENT_LIBRARIES: {
912     if (config->relocatable)
913       break;
914     ArrayRef<char> data =
915         CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
916     if (!data.empty() && data.back() != '\0') {
917       error(toString(this) +
918             ": corrupted dependent libraries section (unterminated string): " +
919             name);
920       return &InputSection::discarded;
921     }
922     for (const char *d = data.begin(), *e = data.end(); d < e;) {
923       StringRef s(d);
924       addDependentLibrary(s, this);
925       d += s.size() + 1;
926     }
927     return &InputSection::discarded;
928   }
929   case SHT_RELA:
930   case SHT_REL: {
931     // Find a relocation target section and associate this section with that.
932     // Target may have been discarded if it is in a different section group
933     // and the group is discarded, even though it's a violation of the
934     // spec. We handle that situation gracefully by discarding dangling
935     // relocation sections.
936     InputSectionBase *target = getRelocTarget(idx, name, sec);
937     if (!target)
938       return nullptr;
939 
940     // ELF spec allows mergeable sections with relocations, but they are
941     // rare, and it is in practice hard to merge such sections by contents,
942     // because applying relocations at end of linking changes section
943     // contents. So, we simply handle such sections as non-mergeable ones.
944     // Degrading like this is acceptable because section merging is optional.
945     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
946       target = toRegularSection(ms);
947       this->sections[sec.sh_info] = target;
948     }
949 
950     if (target->relSecIdx != 0)
951       fatal(toString(this) +
952             ": multiple relocation sections to one section are not supported");
953     target->relSecIdx = idx;
954 
955     // Relocation sections are usually removed from the output, so return
956     // `nullptr` for the normal case. However, if -r or --emit-relocs is
957     // specified, we need to copy them to the output. (Some post link analysis
958     // tools specify --emit-relocs to obtain the information.)
959     if (!config->copyRelocs)
960       return nullptr;
961     InputSection *relocSec = make<InputSection>(*this, sec, name);
962     // If the relocated section is discarded (due to /DISCARD/ or
963     // --gc-sections), the relocation section should be discarded as well.
964     target->dependentSections.push_back(relocSec);
965     return relocSec;
966   }
967   }
968 
969   if (name.startswith(".n")) {
970     // The GNU linker uses .note.GNU-stack section as a marker indicating
971     // that the code in the object file does not expect that the stack is
972     // executable (in terms of NX bit). If all input files have the marker,
973     // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
974     // make the stack non-executable. Most object files have this section as
975     // of 2017.
976     //
977     // But making the stack non-executable is a norm today for security
978     // reasons. Failure to do so may result in a serious security issue.
979     // Therefore, we make LLD always add PT_GNU_STACK unless it is
980     // explicitly told to do otherwise (by -z execstack). Because the stack
981     // executable-ness is controlled solely by command line options,
982     // .note.GNU-stack sections are simply ignored.
983     if (name == ".note.GNU-stack")
984       return &InputSection::discarded;
985 
986     // Object files that use processor features such as Intel Control-Flow
987     // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
988     // .note.gnu.property section containing a bitfield of feature bits like the
989     // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
990     //
991     // Since we merge bitmaps from multiple object files to create a new
992     // .note.gnu.property containing a single AND'ed bitmap, we discard an input
993     // file's .note.gnu.property section.
994     if (name == ".note.gnu.property") {
995       this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
996       return &InputSection::discarded;
997     }
998 
999     // Split stacks is a feature to support a discontiguous stack,
1000     // commonly used in the programming language Go. For the details,
1001     // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1002     // for split stack will include a .note.GNU-split-stack section.
1003     if (name == ".note.GNU-split-stack") {
1004       if (config->relocatable) {
1005         error(
1006             "cannot mix split-stack and non-split-stack in a relocatable link");
1007         return &InputSection::discarded;
1008       }
1009       this->splitStack = true;
1010       return &InputSection::discarded;
1011     }
1012 
1013     // An object file cmpiled for split stack, but where some of the
1014     // functions were compiled with the no_split_stack_attribute will
1015     // include a .note.GNU-no-split-stack section.
1016     if (name == ".note.GNU-no-split-stack") {
1017       this->someNoSplitStack = true;
1018       return &InputSection::discarded;
1019     }
1020 
1021     // Strip existing .note.gnu.build-id sections so that the output won't have
1022     // more than one build-id. This is not usually a problem because input
1023     // object files normally don't have .build-id sections, but you can create
1024     // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
1025     // against it.
1026     if (name == ".note.gnu.build-id")
1027       return &InputSection::discarded;
1028   }
1029 
1030   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1031   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1032   // sections. Drop those sections to avoid duplicate symbol errors.
1033   // FIXME: This is glibc PR20543, we should remove this hack once that has been
1034   // fixed for a while.
1035   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1036       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1037     return &InputSection::discarded;
1038 
1039   // The linker merges EH (exception handling) frames and creates a
1040   // .eh_frame_hdr section for runtime. So we handle them with a special
1041   // class. For relocatable outputs, they are just passed through.
1042   if (name == ".eh_frame" && !config->relocatable)
1043     return make<EhInputSection>(*this, sec, name);
1044 
1045   if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
1046     return make<MergeInputSection>(*this, sec, name);
1047   return make<InputSection>(*this, sec, name);
1048 }
1049 
1050 // Initialize this->Symbols. this->Symbols is a parallel array as
1051 // its corresponding ELF symbol table.
1052 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1053   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1054   this->symbols.resize(eSyms.size());
1055   SymbolUnion *locals =
1056       firstGlobal == 0
1057           ? nullptr
1058           : getSpecificAllocSingleton<SymbolUnion>().Allocate(firstGlobal);
1059 
1060   for (size_t i = 0; i != firstGlobal; ++i) {
1061     const Elf_Sym &eSym = eSyms[i];
1062     uint32_t secIdx = getSectionIndex(eSym);
1063     if (secIdx >= this->sections.size())
1064       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1065     if (eSym.getBinding() != STB_LOCAL)
1066       error(toString(this) + ": non-local symbol (" + Twine(i) +
1067             ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1068             ")");
1069 
1070     InputSectionBase *sec = this->sections[secIdx];
1071     uint8_t type = eSym.getType();
1072     if (type == STT_FILE)
1073       sourceFile = CHECK(eSym.getName(this->stringTable), this);
1074     if (this->stringTable.size() <= eSym.st_name)
1075       fatal(toString(this) + ": invalid symbol name offset");
1076     StringRefZ name = this->stringTable.data() + eSym.st_name;
1077 
1078     this->symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1079     if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1080       new (this->symbols[i])
1081           Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1082                     /*discardedSecIdx=*/secIdx);
1083     else
1084       new (this->symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1085                                      eSym.st_value, eSym.st_size, sec);
1086   }
1087 
1088   // Some entries have been filled by LazyObjFile.
1089   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1090     if (!this->symbols[i])
1091       this->symbols[i] =
1092           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1093 
1094   // Perform symbol resolution on non-local symbols.
1095   SmallVector<unsigned, 32> undefineds;
1096   for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1097     const Elf_Sym &eSym = eSyms[i];
1098     uint8_t binding = eSym.getBinding();
1099     if (binding == STB_LOCAL) {
1100       errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1101                   ") found at index >= .symtab's sh_info (" +
1102                   Twine(firstGlobal) + ")");
1103       continue;
1104     }
1105     uint32_t secIdx = getSectionIndex(eSym);
1106     if (secIdx >= this->sections.size())
1107       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1108     InputSectionBase *sec = this->sections[secIdx];
1109     uint8_t stOther = eSym.st_other;
1110     uint8_t type = eSym.getType();
1111     uint64_t value = eSym.st_value;
1112     uint64_t size = eSym.st_size;
1113 
1114     if (eSym.st_shndx == SHN_UNDEF) {
1115       undefineds.push_back(i);
1116       continue;
1117     }
1118 
1119     Symbol *sym = this->symbols[i];
1120     const StringRef name = sym->getName();
1121     if (eSym.st_shndx == SHN_COMMON) {
1122       if (value == 0 || value >= UINT32_MAX)
1123         fatal(toString(this) + ": common symbol '" + name +
1124               "' has invalid alignment: " + Twine(value));
1125       sym->resolve(
1126           CommonSymbol{this, name, binding, stOther, type, value, size});
1127       continue;
1128     }
1129 
1130     // If a defined symbol is in a discarded section, handle it as if it
1131     // were an undefined symbol. Such symbol doesn't comply with the
1132     // standard, but in practice, a .eh_frame often directly refer
1133     // COMDAT member sections, and if a comdat group is discarded, some
1134     // defined symbol in a .eh_frame becomes dangling symbols.
1135     if (sec == &InputSection::discarded) {
1136       Undefined und{this, name, binding, stOther, type, secIdx};
1137       // !ArchiveFile::parsed or !LazyObjFile::lazy means that the file
1138       // containing this object has not finished processing, i.e. this symbol is
1139       // a result of a lazy symbol extract. We should demote the lazy symbol to
1140       // an Undefined so that any relocations outside of the group to it will
1141       // trigger a discarded section error.
1142       if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1143            !cast<ArchiveFile>(sym->file)->parsed) ||
1144           (sym->symbolKind == Symbol::LazyObjectKind && !sym->file->lazy)) {
1145         sym->replace(und);
1146         // Prevent LTO from internalizing the symbol in case there is a
1147         // reference to this symbol from this file.
1148         sym->isUsedInRegularObj = true;
1149       } else
1150         sym->resolve(und);
1151       continue;
1152     }
1153 
1154     // Handle global defined symbols.
1155     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1156         binding == STB_GNU_UNIQUE) {
1157       sym->resolve(
1158           Defined{this, name, binding, stOther, type, value, size, sec});
1159       continue;
1160     }
1161 
1162     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1163   }
1164 
1165   // Undefined symbols (excluding those defined relative to non-prevailing
1166   // sections) can trigger recursive extract. Process defined symbols first so
1167   // that the relative order between a defined symbol and an undefined symbol
1168   // does not change the symbol resolution behavior. In addition, a set of
1169   // interconnected symbols will all be resolved to the same file, instead of
1170   // being resolved to different files.
1171   for (unsigned i : undefineds) {
1172     const Elf_Sym &eSym = eSyms[i];
1173     Symbol *sym = this->symbols[i];
1174     sym->resolve(Undefined{this, sym->getName(), eSym.getBinding(),
1175                            eSym.st_other, eSym.getType()});
1176     sym->referenced = true;
1177   }
1178 }
1179 
1180 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1181     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1182       file(std::move(file)) {}
1183 
1184 void ArchiveFile::parse() {
1185   for (const Archive::Symbol &sym : file->symbols())
1186     symtab->addSymbol(LazyArchive{*this, sym});
1187 
1188   // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1189   // archive has been processed.
1190   parsed = true;
1191 }
1192 
1193 // Returns a buffer pointing to a member file containing a given symbol.
1194 void ArchiveFile::extract(const Archive::Symbol &sym) {
1195   Archive::Child c =
1196       CHECK(sym.getMember(), toString(this) +
1197                                  ": could not get the member for symbol " +
1198                                  toELFString(sym));
1199 
1200   if (!seen.insert(c.getChildOffset()).second)
1201     return;
1202 
1203   MemoryBufferRef mb =
1204       CHECK(c.getMemoryBufferRef(),
1205             toString(this) +
1206                 ": could not get the buffer for the member defining symbol " +
1207                 toELFString(sym));
1208 
1209   if (tar && c.getParent()->isThin())
1210     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1211 
1212   InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1213   file->groupId = groupId;
1214   parseFile(file);
1215 }
1216 
1217 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1218 // A tentative definition will be promoted to a global definition if there are
1219 // no non-tentative definitions to dominate it. When we hold a tentative
1220 // definition to a symbol and are inspecting archive members for inclusion
1221 // there are 2 ways we can proceed:
1222 //
1223 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1224 //    tentative to real definition has already happened) and not inspect
1225 //    archive members for Global/Weak definitions to replace the tentative
1226 //    definition. An archive member would only be included if it satisfies some
1227 //    other undefined symbol. This is the behavior Gold uses.
1228 //
1229 // 2) Consider the tentative definition as still undefined (ie the promotion to
1230 //    a real definition happens only after all symbol resolution is done).
1231 //    The linker searches archive members for STB_GLOBAL definitions to
1232 //    replace the tentative definition with. This is the behavior used by
1233 //    GNU ld.
1234 //
1235 //  The second behavior is inherited from SysVR4, which based it on the FORTRAN
1236 //  COMMON BLOCK model. This behavior is needed for proper initialization in old
1237 //  (pre F90) FORTRAN code that is packaged into an archive.
1238 //
1239 //  The following functions search archive members for definitions to replace
1240 //  tentative definitions (implementing behavior 2).
1241 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1242                                   StringRef archiveName) {
1243   IRSymtabFile symtabFile = check(readIRSymtab(mb));
1244   for (const irsymtab::Reader::SymbolRef &sym :
1245        symtabFile.TheReader.symbols()) {
1246     if (sym.isGlobal() && sym.getName() == symName)
1247       return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1248   }
1249   return false;
1250 }
1251 
1252 template <class ELFT>
1253 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1254                            StringRef archiveName) {
1255   ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1256   StringRef stringtable = obj->getStringTable();
1257 
1258   for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1259     Expected<StringRef> name = sym.getName(stringtable);
1260     if (name && name.get() == symName)
1261       return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1262              !sym.isCommon();
1263   }
1264   return false;
1265 }
1266 
1267 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1268                            StringRef archiveName) {
1269   switch (getELFKind(mb, archiveName)) {
1270   case ELF32LEKind:
1271     return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1272   case ELF32BEKind:
1273     return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1274   case ELF64LEKind:
1275     return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1276   case ELF64BEKind:
1277     return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1278   default:
1279     llvm_unreachable("getELFKind");
1280   }
1281 }
1282 
1283 bool ArchiveFile::shouldExtractForCommon(const Archive::Symbol &sym) {
1284   Archive::Child c =
1285       CHECK(sym.getMember(), toString(this) +
1286                                  ": could not get the member for symbol " +
1287                                  toELFString(sym));
1288   MemoryBufferRef mb =
1289       CHECK(c.getMemoryBufferRef(),
1290             toString(this) +
1291                 ": could not get the buffer for the member defining symbol " +
1292                 toELFString(sym));
1293 
1294   if (isBitcode(mb))
1295     return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1296 
1297   return isNonCommonDef(mb, sym.getName(), getName());
1298 }
1299 
1300 size_t ArchiveFile::getMemberCount() const {
1301   size_t count = 0;
1302   Error err = Error::success();
1303   for (const Archive::Child &c : file->children(err)) {
1304     (void)c;
1305     ++count;
1306   }
1307   // This function is used by --print-archive-stats=, where an error does not
1308   // really matter.
1309   consumeError(std::move(err));
1310   return count;
1311 }
1312 
1313 unsigned SharedFile::vernauxNum;
1314 
1315 // Parse the version definitions in the object file if present, and return a
1316 // vector whose nth element contains a pointer to the Elf_Verdef for version
1317 // identifier n. Version identifiers that are not definitions map to nullptr.
1318 template <typename ELFT>
1319 static SmallVector<const void *, 0>
1320 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1321   if (!sec)
1322     return {};
1323 
1324   // Build the Verdefs array by following the chain of Elf_Verdef objects
1325   // from the start of the .gnu.version_d section.
1326   SmallVector<const void *, 0> verdefs;
1327   const uint8_t *verdef = base + sec->sh_offset;
1328   for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1329     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1330     verdef += curVerdef->vd_next;
1331     unsigned verdefIndex = curVerdef->vd_ndx;
1332     if (verdefIndex >= verdefs.size())
1333       verdefs.resize(verdefIndex + 1);
1334     verdefs[verdefIndex] = curVerdef;
1335   }
1336   return verdefs;
1337 }
1338 
1339 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1340 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1341 // implement sophisticated error checking like in llvm-readobj because the value
1342 // of such diagnostics is low.
1343 template <typename ELFT>
1344 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1345                                                const typename ELFT::Shdr *sec) {
1346   if (!sec)
1347     return {};
1348   std::vector<uint32_t> verneeds;
1349   ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1350   const uint8_t *verneedBuf = data.begin();
1351   for (unsigned i = 0; i != sec->sh_info; ++i) {
1352     if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1353       fatal(toString(this) + " has an invalid Verneed");
1354     auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1355     const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1356     for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1357       if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1358         fatal(toString(this) + " has an invalid Vernaux");
1359       auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1360       if (aux->vna_name >= this->stringTable.size())
1361         fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1362       uint16_t version = aux->vna_other & VERSYM_VERSION;
1363       if (version >= verneeds.size())
1364         verneeds.resize(version + 1);
1365       verneeds[version] = aux->vna_name;
1366       vernauxBuf += aux->vna_next;
1367     }
1368     verneedBuf += vn->vn_next;
1369   }
1370   return verneeds;
1371 }
1372 
1373 // We do not usually care about alignments of data in shared object
1374 // files because the loader takes care of it. However, if we promote a
1375 // DSO symbol to point to .bss due to copy relocation, we need to keep
1376 // the original alignment requirements. We infer it in this function.
1377 template <typename ELFT>
1378 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1379                              const typename ELFT::Sym &sym) {
1380   uint64_t ret = UINT64_MAX;
1381   if (sym.st_value)
1382     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1383   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1384     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1385   return (ret > UINT32_MAX) ? 0 : ret;
1386 }
1387 
1388 // Fully parse the shared object file.
1389 //
1390 // This function parses symbol versions. If a DSO has version information,
1391 // the file has a ".gnu.version_d" section which contains symbol version
1392 // definitions. Each symbol is associated to one version through a table in
1393 // ".gnu.version" section. That table is a parallel array for the symbol
1394 // table, and each table entry contains an index in ".gnu.version_d".
1395 //
1396 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1397 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1398 // ".gnu.version_d".
1399 //
1400 // The file format for symbol versioning is perhaps a bit more complicated
1401 // than necessary, but you can easily understand the code if you wrap your
1402 // head around the data structure described above.
1403 template <class ELFT> void SharedFile::parse() {
1404   using Elf_Dyn = typename ELFT::Dyn;
1405   using Elf_Shdr = typename ELFT::Shdr;
1406   using Elf_Sym = typename ELFT::Sym;
1407   using Elf_Verdef = typename ELFT::Verdef;
1408   using Elf_Versym = typename ELFT::Versym;
1409 
1410   ArrayRef<Elf_Dyn> dynamicTags;
1411   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1412   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1413 
1414   const Elf_Shdr *versymSec = nullptr;
1415   const Elf_Shdr *verdefSec = nullptr;
1416   const Elf_Shdr *verneedSec = nullptr;
1417 
1418   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1419   for (const Elf_Shdr &sec : sections) {
1420     switch (sec.sh_type) {
1421     default:
1422       continue;
1423     case SHT_DYNAMIC:
1424       dynamicTags =
1425           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1426       break;
1427     case SHT_GNU_versym:
1428       versymSec = &sec;
1429       break;
1430     case SHT_GNU_verdef:
1431       verdefSec = &sec;
1432       break;
1433     case SHT_GNU_verneed:
1434       verneedSec = &sec;
1435       break;
1436     }
1437   }
1438 
1439   if (versymSec && numELFSyms == 0) {
1440     error("SHT_GNU_versym should be associated with symbol table");
1441     return;
1442   }
1443 
1444   // Search for a DT_SONAME tag to initialize this->soName.
1445   for (const Elf_Dyn &dyn : dynamicTags) {
1446     if (dyn.d_tag == DT_NEEDED) {
1447       uint64_t val = dyn.getVal();
1448       if (val >= this->stringTable.size())
1449         fatal(toString(this) + ": invalid DT_NEEDED entry");
1450       dtNeeded.push_back(this->stringTable.data() + val);
1451     } else if (dyn.d_tag == DT_SONAME) {
1452       uint64_t val = dyn.getVal();
1453       if (val >= this->stringTable.size())
1454         fatal(toString(this) + ": invalid DT_SONAME entry");
1455       soName = this->stringTable.data() + val;
1456     }
1457   }
1458 
1459   // DSOs are uniquified not by filename but by soname.
1460   DenseMap<StringRef, SharedFile *>::iterator it;
1461   bool wasInserted;
1462   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1463 
1464   // If a DSO appears more than once on the command line with and without
1465   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1466   // user can add an extra DSO with --no-as-needed to force it to be added to
1467   // the dependency list.
1468   it->second->isNeeded |= isNeeded;
1469   if (!wasInserted)
1470     return;
1471 
1472   sharedFiles.push_back(this);
1473 
1474   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1475   std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1476 
1477   // Parse ".gnu.version" section which is a parallel array for the symbol
1478   // table. If a given file doesn't have a ".gnu.version" section, we use
1479   // VER_NDX_GLOBAL.
1480   size_t size = numELFSyms - firstGlobal;
1481   std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1482   if (versymSec) {
1483     ArrayRef<Elf_Versym> versym =
1484         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1485               this)
1486             .slice(firstGlobal);
1487     for (size_t i = 0; i < size; ++i)
1488       versyms[i] = versym[i].vs_index;
1489   }
1490 
1491   // System libraries can have a lot of symbols with versions. Using a
1492   // fixed buffer for computing the versions name (foo@ver) can save a
1493   // lot of allocations.
1494   SmallString<0> versionedNameBuffer;
1495 
1496   // Add symbols to the symbol table.
1497   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1498   for (size_t i = 0, e = syms.size(); i != e; ++i) {
1499     const Elf_Sym &sym = syms[i];
1500 
1501     // ELF spec requires that all local symbols precede weak or global
1502     // symbols in each symbol table, and the index of first non-local symbol
1503     // is stored to sh_info. If a local symbol appears after some non-local
1504     // symbol, that's a violation of the spec.
1505     StringRef name = CHECK(sym.getName(this->stringTable), this);
1506     if (sym.getBinding() == STB_LOCAL) {
1507       warn("found local symbol '" + name +
1508            "' in global part of symbol table in file " + toString(this));
1509       continue;
1510     }
1511 
1512     uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1513     if (sym.isUndefined()) {
1514       // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1515       // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1516       if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1517         if (idx >= verneeds.size()) {
1518           error("corrupt input file: version need index " + Twine(idx) +
1519                 " for symbol " + name + " is out of bounds\n>>> defined in " +
1520                 toString(this));
1521           continue;
1522         }
1523         StringRef verName = this->stringTable.data() + verneeds[idx];
1524         versionedNameBuffer.clear();
1525         name =
1526             saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1527       }
1528       Symbol *s = symtab->addSymbol(
1529           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1530       s->exportDynamic = true;
1531       if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
1532           config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1533         requiredSymbols.push_back(s);
1534       continue;
1535     }
1536 
1537     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1538     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1539     // workaround for this bug.
1540     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1541         name == "_gp_disp")
1542       continue;
1543 
1544     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1545     if (!(versyms[i] & VERSYM_HIDDEN)) {
1546       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1547                                      sym.st_other, sym.getType(), sym.st_value,
1548                                      sym.st_size, alignment, idx});
1549     }
1550 
1551     // Also add the symbol with the versioned name to handle undefined symbols
1552     // with explicit versions.
1553     if (idx == VER_NDX_GLOBAL)
1554       continue;
1555 
1556     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1557       error("corrupt input file: version definition index " + Twine(idx) +
1558             " for symbol " + name + " is out of bounds\n>>> defined in " +
1559             toString(this));
1560       continue;
1561     }
1562 
1563     StringRef verName =
1564         this->stringTable.data() +
1565         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1566     versionedNameBuffer.clear();
1567     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1568     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1569                                    sym.st_other, sym.getType(), sym.st_value,
1570                                    sym.st_size, alignment, idx});
1571   }
1572 }
1573 
1574 static ELFKind getBitcodeELFKind(const Triple &t) {
1575   if (t.isLittleEndian())
1576     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1577   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1578 }
1579 
1580 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1581   switch (t.getArch()) {
1582   case Triple::aarch64:
1583   case Triple::aarch64_be:
1584     return EM_AARCH64;
1585   case Triple::amdgcn:
1586   case Triple::r600:
1587     return EM_AMDGPU;
1588   case Triple::arm:
1589   case Triple::thumb:
1590     return EM_ARM;
1591   case Triple::avr:
1592     return EM_AVR;
1593   case Triple::hexagon:
1594     return EM_HEXAGON;
1595   case Triple::mips:
1596   case Triple::mipsel:
1597   case Triple::mips64:
1598   case Triple::mips64el:
1599     return EM_MIPS;
1600   case Triple::msp430:
1601     return EM_MSP430;
1602   case Triple::ppc:
1603   case Triple::ppcle:
1604     return EM_PPC;
1605   case Triple::ppc64:
1606   case Triple::ppc64le:
1607     return EM_PPC64;
1608   case Triple::riscv32:
1609   case Triple::riscv64:
1610     return EM_RISCV;
1611   case Triple::x86:
1612     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1613   case Triple::x86_64:
1614     return EM_X86_64;
1615   default:
1616     error(path + ": could not infer e_machine from bitcode target triple " +
1617           t.str());
1618     return EM_NONE;
1619   }
1620 }
1621 
1622 static uint8_t getOsAbi(const Triple &t) {
1623   switch (t.getOS()) {
1624   case Triple::AMDHSA:
1625     return ELF::ELFOSABI_AMDGPU_HSA;
1626   case Triple::AMDPAL:
1627     return ELF::ELFOSABI_AMDGPU_PAL;
1628   case Triple::Mesa3D:
1629     return ELF::ELFOSABI_AMDGPU_MESA3D;
1630   default:
1631     return ELF::ELFOSABI_NONE;
1632   }
1633 }
1634 
1635 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1636                          uint64_t offsetInArchive, bool lazy)
1637     : InputFile(BitcodeKind, mb) {
1638   this->archiveName = archiveName;
1639   this->lazy = lazy;
1640 
1641   std::string path = mb.getBufferIdentifier().str();
1642   if (config->thinLTOIndexOnly)
1643     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1644 
1645   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1646   // name. If two archives define two members with the same name, this
1647   // causes a collision which result in only one of the objects being taken
1648   // into consideration at LTO time (which very likely causes undefined
1649   // symbols later in the link stage). So we append file offset to make
1650   // filename unique.
1651   StringRef name =
1652       archiveName.empty()
1653           ? saver.save(path)
1654           : saver.save(archiveName + "(" + path::filename(path) + " at " +
1655                        utostr(offsetInArchive) + ")");
1656   MemoryBufferRef mbref(mb.getBuffer(), name);
1657 
1658   obj = CHECK(lto::InputFile::create(mbref), this);
1659 
1660   Triple t(obj->getTargetTriple());
1661   ekind = getBitcodeELFKind(t);
1662   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1663   osabi = getOsAbi(t);
1664 }
1665 
1666 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1667   switch (gvVisibility) {
1668   case GlobalValue::DefaultVisibility:
1669     return STV_DEFAULT;
1670   case GlobalValue::HiddenVisibility:
1671     return STV_HIDDEN;
1672   case GlobalValue::ProtectedVisibility:
1673     return STV_PROTECTED;
1674   }
1675   llvm_unreachable("unknown visibility");
1676 }
1677 
1678 template <class ELFT>
1679 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1680                                    const lto::InputFile::Symbol &objSym,
1681                                    BitcodeFile &f) {
1682   StringRef name = saver.save(objSym.getName());
1683   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1684   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1685   uint8_t visibility = mapVisibility(objSym.getVisibility());
1686   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1687 
1688   int c = objSym.getComdatIndex();
1689   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1690     Undefined newSym(&f, name, binding, visibility, type);
1691     if (canOmitFromDynSym)
1692       newSym.exportDynamic = false;
1693     Symbol *ret = symtab->addSymbol(newSym);
1694     ret->referenced = true;
1695     return ret;
1696   }
1697 
1698   if (objSym.isCommon())
1699     return symtab->addSymbol(
1700         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1701                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1702 
1703   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1704   if (canOmitFromDynSym)
1705     newSym.exportDynamic = false;
1706   return symtab->addSymbol(newSym);
1707 }
1708 
1709 template <class ELFT> void BitcodeFile::parse() {
1710   std::vector<bool> keptComdats;
1711   for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1712     keptComdats.push_back(
1713         s.second == Comdat::NoDeduplicate ||
1714         symtab->comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1715             .second);
1716   }
1717 
1718   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1719     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1720 
1721   for (auto l : obj->getDependentLibraries())
1722     addDependentLibrary(l, this);
1723 }
1724 
1725 void BitcodeFile::parseLazy() {
1726   for (const lto::InputFile::Symbol &sym : obj->symbols())
1727     if (!sym.isUndefined())
1728       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1729 }
1730 
1731 void BinaryFile::parse() {
1732   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1733   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1734                                      8, data, ".data");
1735   sections.push_back(section);
1736 
1737   // For each input file foo that is embedded to a result as a binary
1738   // blob, we define _binary_foo_{start,end,size} symbols, so that
1739   // user programs can access blobs by name. Non-alphanumeric
1740   // characters in a filename are replaced with underscore.
1741   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1742   for (size_t i = 0; i < s.size(); ++i)
1743     if (!isAlnum(s[i]))
1744       s[i] = '_';
1745 
1746   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1747                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1748   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1749                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1750   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1751                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1752 }
1753 
1754 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1755                                  uint64_t offsetInArchive) {
1756   if (isBitcode(mb))
1757     return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false);
1758 
1759   switch (getELFKind(mb, archiveName)) {
1760   case ELF32LEKind:
1761     return make<ObjFile<ELF32LE>>(mb, archiveName);
1762   case ELF32BEKind:
1763     return make<ObjFile<ELF32BE>>(mb, archiveName);
1764   case ELF64LEKind:
1765     return make<ObjFile<ELF64LE>>(mb, archiveName);
1766   case ELF64BEKind:
1767     return make<ObjFile<ELF64BE>>(mb, archiveName);
1768   default:
1769     llvm_unreachable("getELFKind");
1770   }
1771 }
1772 
1773 InputFile *elf::createLazyFile(MemoryBufferRef mb, StringRef archiveName,
1774                                uint64_t offsetInArchive) {
1775   if (isBitcode(mb))
1776     return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/true);
1777 
1778   auto *file =
1779       cast<ELFFileBase>(createObjectFile(mb, archiveName, offsetInArchive));
1780   file->lazy = true;
1781   return file;
1782 }
1783 
1784 template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1785   using Elf_Sym = typename ELFT::Sym;
1786 
1787   // Find a symbol table.
1788   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1789   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1790 
1791   for (const typename ELFT::Shdr &sec : sections) {
1792     if (sec.sh_type != SHT_SYMTAB)
1793       continue;
1794 
1795     // A symbol table is found.
1796     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1797     uint32_t firstGlobal = sec.sh_info;
1798     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1799     this->symbols.resize(eSyms.size());
1800 
1801     // Get existing symbols or insert placeholder symbols.
1802     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1803       if (eSyms[i].st_shndx != SHN_UNDEF)
1804         this->symbols[i] =
1805             symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1806 
1807     // Replace existing symbols with LazyObject symbols.
1808     //
1809     // resolve() may trigger this->extract() if an existing symbol is an
1810     // undefined symbol. If that happens, this LazyObjFile has served
1811     // its purpose, and we can exit from the loop early.
1812     for (Symbol *sym : this->symbols) {
1813       if (!sym)
1814         continue;
1815       sym->resolve(LazyObject{*this, sym->getName()});
1816 
1817       // If extracted, stop iterating because the symbol resolution has been
1818       // done by ObjFile::parse.
1819       if (!lazy)
1820         return;
1821     }
1822     return;
1823   }
1824 }
1825 
1826 bool InputFile::shouldExtractForCommon(StringRef name) {
1827   if (isBitcode(mb))
1828     return isBitcodeNonCommonDef(mb, name, archiveName);
1829 
1830   return isNonCommonDef(mb, name, archiveName);
1831 }
1832 
1833 std::string elf::replaceThinLTOSuffix(StringRef path) {
1834   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1835   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1836 
1837   if (path.consume_back(suffix))
1838     return (path + repl).str();
1839   return std::string(path);
1840 }
1841 
1842 template void BitcodeFile::parse<ELF32LE>();
1843 template void BitcodeFile::parse<ELF32BE>();
1844 template void BitcodeFile::parse<ELF64LE>();
1845 template void BitcodeFile::parse<ELF64BE>();
1846 
1847 template class elf::ObjFile<ELF32LE>;
1848 template class elf::ObjFile<ELF32BE>;
1849 template class elf::ObjFile<ELF64LE>;
1850 template class elf::ObjFile<ELF64BE>;
1851 
1852 template void SharedFile::parse<ELF32LE>();
1853 template void SharedFile::parse<ELF32BE>();
1854 template void SharedFile::parse<ELF64LE>();
1855 template void SharedFile::parse<ELF64BE>();
1856